首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During budding of yeast cells peroxisomes are distributed over mother cell and bud, a process that involves the myosin motor protein Myo2p and the peroxisomal membrane protein Inp2p. Here, we show that Pex19p, a peroxin implicated in targeting and complex formation of peroxisomal membrane proteins, also plays a role in peroxisome partitioning. Binding studies revealed that Pex19p interacts with the cargo-binding domain of Myo2p. We identified mutations in Myo2p that specifically reduced binding to Pex19p, but not to Inp2p. The interaction between Myo2p and Pex19p was also reduced by a mutation that blocked Pex19p farnesylation. Microscopy revealed that the Pex19p-Myo2p interaction is important for peroxisome inheritance, because mutations that affect this interaction hamper peroxisome inheritance in vivo. Together these data suggest that both Inp2p and Pex19p are required for proper association of peroxisomes to Myo2p.  相似文献   

2.
Eukaryotic cells have evolved molecular mechanisms to ensure the faithful partitioning of cellular components during cell division. The budding yeast Saccharomyces cerevisiae has to actively deliver about half of its organelles to the growing bud, while retaining the remaining organelles in the mother cell. Until lately, little was known about the inheritance of peroxisomes. Recent studies have identified the peroxisomal proteins Inp1p and Inp2p as two key regulators of peroxisome inheritance that perform antagonistic functions. Inp1p is required for the retention of peroxisomes in mother cells, whereas Inp2p promotes the bud-directed movement of these organelles. Inp1p anchors peroxisomes to the cell cortex by interacting with specific structures lining the cell periphery. On the other hand, Inp2p functions as the peroxisome-specific receptor for the class V myosin, Myo2p, thereby linking peroxisomes to the translocation machinery that propels peroxisome movement. Tight coordination between Inp1p and Inp2p ensures a fair and harmonious spatial segregation of peroxisomes upon cell division.  相似文献   

3.
Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance.  相似文献   

4.
In Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family. Here, we demonstrate an unexpected role for Pex3 proteins in peroxisome inheritance. Both Pex3p and Pex3Bp are peroxisomal integral membrane proteins that function as peroxisomal receptors for class V myosin through direct interaction with the myosin globular tail. In cells lacking Pex3Bp, peroxisomes are preferentially retained by the mother cell, whereas most peroxisomes gather and are transferred en masse to the bud in cells overexpressing Pex3Bp or Pex3p. Our results reveal an unprecedented role for members of the Pex3 protein family in peroxisome motility and inheritance in addition to their well-established role in peroxisome biogenesis at the endoplasmic reticulum. Our results point to a temporal link between peroxisome formation and inheritance and delineate a general mechanism of peroxisome inheritance in eukaryotic cells.  相似文献   

5.
EMBO J 32 18, 2439–2453 doi:10.1038/emboj.2013.170; published online July302013During cell division, peroxisomes are inherited to daughter cells but some are retained in the mother cells. Our knowledge on how peroxisome inheritance and retention is balanced and how this is regulated for each individual organelle remains incompletely understood. The new findings by Knoblach et al (2013) published in this issue of The EMBO Journal demonstrate that Inp1p functions as a bridging protein to connect ER-resident Pex3p and peroxisomal Pex3p, which anchors peroxisomes to the cortical ER for organelle retention in the mother cell. Asymmetric peroxisome division generates peroxisomes, which lack Inp1p but contain Inp2p instead, and only these peroxisomes are primed for myosin-driven transport to daughter cells.Peroxisomes are single membrane-bound organelles found in almost all eukaryotic cells. They harbour a wide spectrum of metabolic activities that vary among different species, developmental stages and cell types (Schlüter et al, 2010). Eukaryotic cells have evolved elaborate mechanisms to ensure the maintenance of peroxisomes. New peroxisomes can form either de novo by budding from the ER or by growth and division of pre-existing organelles (Lazarow and Fujiki, 1985; Hoepfner et al, 2005). Despite the fact that peroxisomes can form de novo, yeast favours to multiply peroxisomes by growth and division (Motley and Hettema, 2007). It therefore has to be ensured that both mother and daughter cells get their share of peroxisomes during cell division. Thus, some peroxisomes need to be retained in the mother cell, while other peroxisomes are directed for transport and inheritance to daughter cells. Both processes have to be balanced to ensure a successful distribution of the organelles between the mother cell and the newly formed bud.The molecular details of how an even peroxisome distribution of dividing cells are maintained have now been disclosed by Knoblach et al (2013), advancing an exciting scientific journey. This journey originally started by the finding that the partitioning of peroxisomes between mother cell and bud is dependent on actin filaments and the myosin motor protein Myo2p (Hoepfner et al, 2001). Inp1p and Inp2p were identified by the Rachubinski group and Inp2p turned out to function as the peroxisomal tether, which interacts with Myo2p and hooks the organelle onto the actin-track on the road to the bud (Fagarasanu et al, 2006). Inp1p was shown to be a peripheral peroxisomal membrane protein, which acts as a peroxisome-retention factor, tethering peroxisomes to putative anchoring structures within the mother cell and bud (Fagarasanu et al, 2005). Later on, Pex3p, a multi-functional protein of the peroxisomal life cycle, was identified as peroxisomal membrane anchor of Inp1p (Munck et al, 2009). Until now, it was therefore known that peroxisomes hook onto Inp1p by Pex3p and Inp1p connects peroxisomes to cortical structures of unknown nature. Thus, it was an open question how peroxisomes are trapped in the mother cell and which additional factors are required for this process.The work of Knoblach et al (2013) published in this issue of The EMBO Journal now unravelled this mystery, allowing for a more complete picture of the whole process of peroxisome retention and inheritance (Figure 1A). The authors show that peroxisomes are recruited to mitochondria that artificially expose Inp1p on their surface, clearly demonstrating that Inp1p acts as a peroxisome tether. Most importantly, they identified the mechanism of how peroxisomes are directed and anchored to the cell cortex: the ER acts as a membrane anchor for the retention of peroxisomes during cell division. In vitro binding assays revealed that Inp1p contains two independent binding sites for Pex3p, located at the C- and the N-terminal region of the protein, respectively. Since Pex3p exhibits a dual localization at the peroxisomal membrane and at the ER, Inp1p seems to bind to Pex3p of both compartments in vivo and thus link Pex3p molecules across two membranes. Indeed, it turned out that ER-located Pex3p recruits Inp1p to discrete foci in close proximity to the cortical ER. Using the split-GFP assay, the authors confirmed that Inp1p interacts not only with ER-bound Pex3p but also with Pex3p in the peroxisomal membrane. Thus, the core of the ER-peroxisome tether is generated by the Inp1p-mediated linkage of ER-bound Pex3p with peroxisomal Pex3p. The functional relevance of this ER-peroxisome tether is disclosed by the phenotype of peroxisome inheritance mutants. Accordingly, the Pex3p–V81E mutant, affected in the recruitment of Inp1p to the ER, is characterized by a defect of ER retention of peroxisomes, which drives all peroxisomes into the bud and leaves no peroxisomes in the mother cell (Figure 1B).Open in a separate windowFigure 1Peroxisome retention and inheritance (A) free peroxisomes in the mother cell (stage I) are anchored to cortical ER by a tethering complex consisting of two molecules Pex3p, one located at the ER and the other associated with the peroxisomal membrane and Inp1p, which connects the ER-bound and peroxisome-bound Pex3p (stage II). Accordingly, Inp1p contains two Pex3p-binding domains, allowing the protein to function as a bridge between the two Pex3p-containing organelles. Peroxisomes elongate and divide, and Inp2p is loaded onto peroxisomes with an asymmetric distribution (stage III). The peroxisomal population that lacks Inp2p is anchored to the cortical ER, whereas the population of cytosolic peroxisomes containing Inp2p is destined for the transport to the bud (stage IV). To this end, Inp2p interacts with Myo2p and thus triggers the movement of the peroxisome along actin cables to the bud. The process is completed when the peroxisome is released from Myo2p in the bud (stage I). In wild-type cells, the described retention and inheritance process leads to an equal distribution of peroxisomes between mother cell. The described molecular mechanism results in a regulated balance of retention and inheritance of peroxisomes, ensuring that both the mother cell and the newly formed bud gain their share of peroxisomes. (B) However, when the endogenous Pex3p is replaced by a Pex3p-mutant (Pex3p–V81E), which lost its strong binding capacity to Inp1p, peroxisomes are not anchored to the cortical ER anymore, with the consequence that during cells'' division the entire organelle population is transported to the bud and peroxisomes are not retained in the mother cell.To piece together the puzzle, a final gap had to be filled. How is the peroxisomal fraction remaining in the mother cell discriminated from those ferried to the bud during cell division? In budding wild-type cells, Inp1p exhibits a striking asymmetry along the cell division axis. Knoblach et al (2013) show that most peroxisomes of the mother cell contain Inp1p, while peroxisomes that are ferried towards the bud contain little or no Inp1p. Live-cell video microscopy of individual peroxisome revealed that Inp1p-containing peroxisomes were mostly immobile and retained in the mother cell, while highly mobile peroxisomes contained Inp2p and were predominantly found in the bud. The question remains of how peroxisomes lacking Inp1p but containing Inp2p are formed? To tackle this question, the authors took advantage of the fact that cells defective in peroxisome division contain single enlarged peroxisomes and project a tubular extension into the bud upon cell division (Kuravi et al, 2006). Remarkably, Knoblach et al (2013) show that Inp1p and Inp2p localized to opposite ends of the giant peroxisome. Inp1p was confined to the part of the peroxisome that was retained in the mother cell, while Inp2p enriched at the tubule that protruded into the bud.In summary, Knoblach et al (2013) discovered the ER as the site for peroxisome binding to the cell cortex that is responsible for the retention of peroxisomes in the mother cells during cell division and identified Inp1p as a molecular hinge connecting Pex3p of peroxisomal and ER membranes. Furthermore, peroxisome division is shown to result in an asymmetric distribution of inheritance factors with Inp1p-containing organelles remaining tethered to the ER in the mother cell, while Inp2p-containing peroxisomes hook onto myosin motor proteins for movement to the bud. These remarkable discoveries disclose the molecular mechanism of peroxisome retention and inheritance during cell division. Moreover, this study adds to other known functions of Pex3p, which besides its newly discovered role as ER-tether for peroxisomes is also known as an initiator of de novo formation of peroxisomes, a docking factor for the transport of peroxisomal membrane proteins and a tether for the regulated degradation of peroxisomes. This study adds more complexity to the network of regulated processes in peroxisome biogenesis that all merge at Pex3p, and will certainly provide the ground for further exploration.  相似文献   

6.
Eukaryotic cells compartmentalize biochemical reactions into membrane‐enclosed organelles that must be faithfully propagated from one cell generation to the next. Transport and retention processes balance the partitioning of organelles between mother and daughter cells. Here we report the identification of an ER‐peroxisome tether that links peroxisomes to the ER and ensures peroxisome population control in the yeast Saccharomyces cerevisiae. The tether consists of the peroxisome biogenic protein, Pex3p, and the peroxisome inheritance factor, Inp1p. Inp1p bridges the two compartments by acting as a molecular hinge between ER‐bound Pex3p and peroxisomal Pex3p. Asymmetric peroxisome division leads to the formation of Inp1p‐containing anchored peroxisomes and Inp1p‐deficient mobile peroxisomes that segregate to the bud. While peroxisomes in mother cells are not released from tethering, de novo formation of tethers in the bud assists in the directionality of peroxisome transfer. Peroxisomes are thus stably maintained over generations of cells through their continued interaction with tethers.  相似文献   

7.
In vivo time-lapse microscopy reveals that the number of peroxisomes in Saccharomyces cerevisiae cells is fairly constant and that a subset of the organelles are targeted and segregated to the bud in a highly ordered, vectorial process. The dynamin-like protein Vps1p controls the number of peroxisomes, since in a vps1Delta mutant only one or two giant peroxisomes remain. Analogous to the function of other dynamin-related proteins, Vps1p may be involved in a membrane fission event that is required for the regulation of peroxisome abundance. We found that efficient segregation of peroxisomes from mother to bud is dependent on the actin cytoskeleton, and active movement of peroxisomes along actin filaments is driven by the class V myosin motor protein, Myo2p: (a) peroxisomal dynamics always paralleled the polarity of the actin cytoskeleton, (b) double labeling of peroxisomes and actin cables revealed a close association between both, (c) depolymerization of the actin cytoskeleton abolished all peroxisomal movements, and (d) in cells containing thermosensitive alleles of MYO2, all peroxisome movement immediately stopped at the nonpermissive temperature. In addition, time-lapse videos showing peroxisome movement in wild-type and vps1Delta cells suggest the existence of various levels of control involved in the partitioning of peroxisomes.  相似文献   

8.
Eukaryotic cells have evolved molecular mechanisms to ensure the faithful inheritance of organelles by daughter cells in order to maintain the benefits afforded by the compartmentalization of biochemical functions. Little is known about the inheritance of peroxisomes, organelles of lipid metabolism. We have analyzed peroxisome dynamics and inheritance in the dimorphic yeast Yarrowia lipolytica. Most peroxisomes are anchored at the periphery of cells of Y. lipolytica. In vivo video microscopy showed that at cell division, approximately half of the anchored peroxisomes in the mother cell are dislodged individually from their static positions and transported to the bud. Peroxisome motility is dependent on the actin cytoskeleton. YlInp1p is a peripheral peroxisomal membrane protein that affects the partitioning of peroxisomes between mother cell and bud in Y. lipolytica. In cells lacking YlInp1p, most peroxisomes were transferred to the bud, with only a few remaining in the mother cell, while in cells overexpressing YlInp1p, peroxisomes were preferentially retained in the mother cell, resulting in buds nearly devoid of peroxisomes. Our results are consistent with a role for YlInp1p in anchoring peroxisomes in cells. YlInp1p has a role in the dimorphic transition in Y. lipolytica, as cells lacking the YlINP1 gene more readily convert from the yeast to the mycelial form in oleic acid-containing medium, the metabolism of which requires peroxisomal activity, than does the wild-type strain. This study reports the first analysis of organelle inheritance in a true dimorphic yeast and identifies the first protein required for peroxisome inheritance in Y. lipolytica.  相似文献   

9.
Organelle inheritance occurs during cell division. In Saccharomyces cerevisiae, inheritance of the vacuole, and the distribution of mitochondria and cortical endoplasmic reticulum are regulated by Ptc1p, a type 2C protein phosphatase. Here we show that PTC1/VAC10 controls the distribution of additional cargoes moved by a myosin-V motor. These include peroxisomes, secretory vesicles, cargoes of Myo2p, and ASH1 mRNA, a cargo of Myo4p. We find that Ptc1p is required for the proper distribution of both Myo2p and Myo4p. Surprisingly, PTC1 is also required to maintain the steady-state levels of organelle-specific receptors, including Vac17p, Inp2p, and Mmr1p, which attach Myo2p to the vacuole, peroxisomes, and mitochondria, respectively. Furthermore, Vac17p fused to the cargo-binding domain of Myo2p suppressed the vacuole inheritance defect in ptc1Δ cells. These findings suggest that PTC1 promotes the association of myosin-V with its organelle-specific adaptor proteins. Moreover, these observations suggest that despite the existence of organelle-specific receptors, there is a higher order regulation that coordinates the movement of diverse cellular components.  相似文献   

10.
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells.  相似文献   

11.
Pex3p is a peroxisomal integral membrane protein required early in peroxisome biogenesis, and Pex3p-deficient cells lack identifiable peroxisomes. Two temperature-sensitive pex3 mutant strains of the yeast Yarrowia lipolytica were made to investigate the role of Pex3p in the early stages of peroxisome biogenesis. In glucose medium at 16 degrees C, these mutants underwent de novo peroxisome biogenesis and exhibited early matrix protein sequestration into peroxisome-like structures found at the endoplasmic reticulum-rich periphery of cells or sometimes associated with nuclei. The de novo peroxisome biogenesis seemed unsynchronized, with peroxisomes occurring at different stages of development both within cells and between cells. Cells with peripheral nascent peroxisomes and cells with structures morphologically distinct from peroxisomes, such as semi/circular tubular structures that immunostained with antibodies to peroxisomal matrix proteins and to the endoplasmic reticulum-resident protein Kar2p, and that surrounded lipid droplets, were observed during up-regulation of peroxisome biogenesis in cells incubated in oleic acid medium at 16 degrees C. These structures were not detected in wild-type or Pex3p-deficient cells. Their role in peroxisome biogenesis remains unclear. Targeting of peroxisomal matrix proteins to these structures suggests that Pex3p directly or indirectly sequesters components of the peroxisome biogenesis machinery. Such a role is consistent with Pex3p overexpression producing cells with fewer, larger, and clustered peroxisomes.  相似文献   

12.
Saccharomyces cerevisiae Pex3p has been shown to act at the ER during de novo peroxisome formation. However, its steady state is at the peroxisomal membrane, where its role is debated. Here we show that Pex3p has a dual function: one in peroxisome formation and one in peroxisome segregation. We show that the peroxisome retention factor Inp1p interacts physically with Pex3p in vitro and in vivo, and split-GFP analysis shows that the site of interaction is the peroxisomal membrane. Furthermore, we have generated PEX3 alleles that support peroxisome formation but fail to support recruitment of Inp1p to peroxisomes, and as a consequence are affected in peroxisome segregation. We conclude that Pex3p functions as an anchor for Inp1p at the peroxisomal membrane, and that this function is independent of its role at the ER in peroxisome biogenesis.  相似文献   

13.
Mating yeast cells remove their cell walls and fuse their plasma membranes in a spatially restricted cell contact region. Cell wall removal is dependent on Fus2p, an amphiphysin-associated Rho-GEF homolog. As mating cells polarize, Fus2p-GFP localizes to the tip of the mating projection, where cell fusion will occur, and to cytoplasmic puncta, which show rapid movement toward the tip. Movement requires polymerized actin, whereas tip localization is dependent on both actin and a membrane protein, Fus1p. Here, we show that Fus2p-GFP movement is specifically dependent on Myo2p, a type V myosin, and not on Myo4p, another type V myosin, or Myo3p and Myo5p, type I myosins. Fus2p-GFP tip localization and actin polarization in shmoos are also dependent on Myo2p. A temperature-sensitive tropomyosin mutation and Myo2p alleles that specifically disrupt vesicle binding caused rapid loss of actin patch organization, indicating that transport is required to maintain actin polarity. Mutant shmoos lost actin polarity more rapidly than mitotic cells, suggesting that the maintenance of cell polarity in shmoos is more sensitive to perturbation. The different velocities, differential sensitivity to mutation and lack of colocalization suggest that Fus2p and Sec4p, another Myo2p cargo associated with exocytotic vesicles, reside predominantly on different cellular organelles.  相似文献   

14.
Myo4p is a nonessential type V myosin required for the bud tip localization of ASH1 and IST2 mRNA. These mRNAs associate with Myo4p via the She2p and She3p proteins. She3p is an adaptor protein that links Myo4p to its cargo. She2p binds to ASH1 and IST2 mRNA, while She3p binds to both She2p and Myo4p. Here we show that Myo4p and She3p, but not She2p, are required for the inheritance of cortical ER in the budding yeast Saccharomyces cerevisiae. Consistent with this observation, we find that cortical ER inheritance is independent of mRNA transport. Cortical ER is a dynamic network that forms cytoplasmic tubular connections to the nuclear envelope. ER tubules failed to grow when actin polymerization was blocked with the drug latrunculin A (Lat-A). Additionally, a reduction in the number of cytoplasmic ER tubules was observed in Lat-A-treated and myo4Delta cells. Our results suggest that Myo4p and She3p facilitate the growth and orientation of ER tubules.  相似文献   

15.
Two actin-dependent force generators contribute to mitochondrial inheritance: Arp2/3 complex and the myosin V Myo2p (together with its Rab-like binding partner Ypt11p). We found that deletion of YPT11, reduction of the length of the Myo2p lever arm (myo2-Delta6IQ), or deletion of MYO4 (the other yeast myosin V), had no effect on mitochondrial morphology, colocalization of mitochondria with actin cables, or the velocity of bud-directed mitochondrial movement. In contrast, retention of mitochondria in the bud was compromised in YPT11 and MYO2 mutants. Retention of mitochondria in the bud tip of wild-type cells results in a 60% decrease in mitochondrial movement in buds compared with mother cells. In ypt11Delta mutants, however, the level of mitochondrial motility in buds was similar to that observed in mother cells. Moreover, the myo2-66 mutant, which carries a temperature-sensitive mutation in the Myo2p motor domain, exhibited a 55% decrease in accumulation of mitochondria in the bud tip, and an increase in accumulation of mitochondria at the retention site in the mother cell after shift to restrictive temperatures. Finally, destabilization of actin cables and the resulting delocalization of Myo2p from the bud tip had no significant effect on the accumulation of mitochondria in the bud tip.  相似文献   

16.
Organelle tethering and intercommunication are crucial for proper cell function. We previously described a tether between peroxisomes and the endoplasmic reticulum (ER) that acts in peroxisome population control in the yeast, Saccharomyces cerevisiae. Components of this tether are Pex3p, an integral membrane protein of both peroxisomes and the ER and Inp1p, a connector that links peroxisomes to the ER. Here, we report the analysis of random Inp1p mutants that enabled identification of regions in Inp1p required for the assembly and maintenance of the ER‐peroxisome tether. Interaction analysis between Inp1p mutants and known Inp1p‐binding proteins demonstrated that Pex3p and Inp1p do not constitute the sole components of the ER‐peroxisome tether. Deletion of these Inp1p interactors whose steady‐state localization is outside of ER‐peroxisome tethers affected peroxisome dynamics. Our findings are consistent with the presence of regulatory cues that act on ER‐peroxisome tethers and point to the existence of membrane contact sites between peroxisomes and organelles other than the ER.   相似文献   

17.
PEX genes encode peroxins, which are proteins required for peroxisome assembly. The PEX19 gene of the yeast Yarrowia lipolytica was isolated by functional complementation of the oleic acid-nonutilizing strain pex19-1 and encodes Pex19p, a protein of 324 amino acids (34,822 Da). Subcellular fractionation and immunofluorescence microscopy showed Pex19p to be localized primarily to peroxisomes. Pex19p is detected in cells grown in glucose-containing medium, and its levels are not increased by incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. pex19 cells preferentially mislocalize peroxisomal matrix proteins and the peripheral intraperoxisomal membrane peroxin Pex16p to the cytosol, although small amounts of these proteins could be reproducibly localized to a subcellular fraction enriched for peroxisomes. In contrast, the peroxisomal integral membrane protein Pex2p exhibits greatly reduced levels in pex19 cells compared with its levels in wild-type cells. Importantly, pex19 cells were shown by electron microscopy to contain structures that resemble wild-type peroxisomes in regards to size, shape, number, and electron density. Subcellular fractionation and isopycnic density gradient centrifugation confirmed the presence of vesicular structures in pex19 mutant strains that were similar in density to wild-type peroxisomes and that contained profiles of peroxisomal matrix and membrane proteins that are similar to, yet distinct from, those of wild-type peroxisomes. Because peroxisomal structures form in pex19 cells, Pex19p apparently does not function as a peroxisomal membrane protein receptor in Y. lipolytica. Our results are consistent with a role for Y. lipolytica Pex19p in stabilizing the peroxisomal membrane.  相似文献   

18.
Pex11p (formerly Pmp27) has been implicated in peroxisomal proliferation (Erdmann, R., and G. Blobel. 1995. J. Cell Biol. 128; 509- 523; Marshall, P.A., Y.I. Krimkevich, R.H. Lark, J.M. Dyer, M. Veenhuis, and J.M. Goodman, 1995. J. Cell Biol. 129; 345-355). In its absence, peroxisomes in Saccharomyces cerevisiae fail to proliferate in response to oleic acid; instead, one or two large peroxisomes are formed. Conversely, overproduction of Pex11p causes an increase in peroxisomal number. In this report, we confirm the function of Pex11p in organelle proliferation by demonstrating that this protein can cause fragmentation in vivo of large peroxisomes into smaller organelles. Pex11p is on the inner surface of the peroxisomal membrane. It can form homodimers, and this species is more abundant in mature peroxisomes than in proliferating organelles. Removing one of the three cysteines in the protein inhibits homodimerization. This cysteine 3-->alanine mutation leads to an increase in number and a decrease in peroxisomal density, compared with the wild-type protein, in response to oleic acid. We propose that the active species is the "monomeric" form, and that the increasing oxidative metabolism within maturing peroxisomes causes dimer formation and inhibition of further organelle division.  相似文献   

19.
We have analyzed the properties of peroxisomal remnants in Hansenula polymorpha pex5 cells. In such cells PTS1 matrix protein import is fully impaired. In H. polymorpha pex5 cells, grown on ethanol/ammonium sulfate, conditions that repressed the PTS2 protein amine oxidase (AMO), peroxisomal structures were below the limit of detection. In methanol/ammonium sulfate-grown cells, normal peroxisomes are absent, but a few small membranous structures were observed that apparently represented peroxisomal ghosts since they contained Pex14p. These structures were the target of a Pex10p.myc fusion protein that was produced in pex5 cells under the control of the homologous alcohol oxidase promoter (strain pex5::P(AOX).PEX10.MYC). Glycerol/methanol/ammonium sulfate-grown cells of this transformant were placed in fresh glucose/methylamine media, conditions that fully repress the synthesis of the Pex10p.myc fusion protein but induce the synthesis of AMO. Two hours after the shift Pex10p.myc-containing structures were detectable that had accumulated newly synthesized AMO protein and which during further cultivation developed in normal peroxisomes. Concurrently, the remaining portion of these structures was rapidly degraded. These findings indicate that peroxisomal remnants in pex5 cells can develop into peroxisomes. Also, as for normal peroxisomes in H. polymorpha, apparently a minor portion of these structures actually take part in the development of these organelles.  相似文献   

20.
The product of the CIT2 gene has the tripeptide SKL at its carboxyl terminus. This amino acid sequence has been shown to act as a peroxisomal targeting signal in mammalian cells. We examined the subcellular site of this extramitochondrial citrate synthase. Cells of Saccharomyces cerevisiae were grown on oleate medium to induce peroxisome proliferation. A fraction containing membrane-enclosed vesicles and organelles was analyzed by sedimentation on density gradients. In wild-type cells, the major peak of citrate synthase activity was recovered in the mitochondrial fraction, but a second peak of activity cosedimented with peroxisomes. The peroxisomal activity, but not the mitochondrial activity, was inhibited by incubation at pH 8.1, a characteristic of the extramitochondrial citrate synthase encoded by the CIT2 gene. In a strain in which the CIT1 gene encoding mitochondrial citrate synthase had been disrupted, the major peak of citrate synthase activity was peroxisomal, and all of the activity was sensitive to incubation at pH 8.1. Yeast cells bearing a cit2 disruption were unable to mobilize stored lipids and did not form stable peroxisomes in oleate. We conclude that citrate synthase encoded by CIT2 is peroxisomal and participates in the glyoxylate cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号