共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Santos-Aberturas J Vicente CM Guerra SM Payero TD Martín JF Aparicio JF 《The Journal of biological chemistry》2011,286(11):9150-9161
6.
Heme-mediated regulation, presented in many biological processes, is achieved in part with proteins containing heme regulatory motif. In this study, we demonstrate that FLAG-tagged PpsR isolated from Rhodobacter sphaeroides cells contains bound heme. In vitro heme binding studies with tagless apo-PpsR show that PpsR binds heme at a near one-to-one ratio with a micromolar binding constant. Mutational and spectral assays suggest that both the second Per-Arnt-Sim (PAS) and DNA binding domains of PpsR are involved in the heme binding. Furthermore, we show that heme changes the DNA binding patterns of PpsR and induces different responses of photosystem genes expression. Thus, PpsR functions as both a redox and heme sensor to coordinate the amount of heme, bacteriochlorophyll, and photosystem apoprotein synthesis thereby providing fine tune control to avoid excess free tetrapyrrole accumulation. 相似文献
7.
8.
Adjele Wilson James N. Kinney Petrus H. Zwart Claire Punginelli Sandrine D'Haene Fran?ois Perreau Michael G. Klein Diana Kirilovsky Cheryl A. Kerfeld 《The Journal of biological chemistry》2010,285(24):18364-18375
The photoprotective processes of photosynthetic organisms involve the dissipation of excess absorbed light energy as heat. Photoprotection in cyanobacteria is mechanistically distinct from that in plants; it involves the orange carotenoid protein (OCP), a water-soluble protein containing a single carotenoid. The OCP is a new member of the family of blue light-photoactive proteins; blue-green light triggers the OCP-mediated photoprotective response. Here we report structural and functional characterization of the wild type and two mutant forms of the OCP, from the model organism Synechocystis PCC6803. The structural analysis provides high resolution detail of the carotenoid-protein interactions that underlie the optical properties of the OCP, unique among carotenoid-proteins in binding a single pigment per polypeptide chain. Collectively, these data implicate several key amino acids in the function of the OCP and reveal that the photoconversion and photoprotective responses of the OCP to blue-green light can be decoupled. 相似文献
9.
The RecA-dependent DNA damage response pathway (SOS response) appears to be the major DNA repair mechanism in most bacteria, but it has been suggested that a RecA-independent mechanism is responsible for controlling expression of most damage-inducible DNA repair genes in Mycobacterium tuberculosis. The specific reparative responses and molecular mediators involved in the DNA repair mechanism remain largely unclear in this pathogen and its related species. In this study, a mycobacterial ClpR-like regulator, corresponding to Rv2745c in M. tuberculosis and to Ms2694 in M. smegmatis mc(2)155, was found to interact with the promoter regions of multiple damage-inducible DNA repair genes. Specific binding of the ClpR-like factor to the conserved RecA-independent promoter RecA-NDp motif was then confirmed using in vitro electrophoretic mobility shift assays as well as in vivo chromatin immunoprecipitation experiments. The ClpR knock-out experiments, in combination with quantitative real time PCR assays, demonstrated that the expression of these RecA-independent genes were significantly down-regulated in the mutant strain of M. smegmatis in response to a DNA-damaging agent compared with the wild type strain. Furthermore, the ClpR-like factor was shown to contribute to mycobacterial genomic stability. These results enhance our understanding of the function of the ClpR regulator and the regulatory mechanism of RecA-independent DNA repair in mycobacteria. 相似文献
10.
11.
12.
Phenotypic evaluation of isogenic mutants derived from Brucella abortus 2308 indicates that the AlcR homolog DhbR (2,3-dihydroxybenzoic acid [2,3-DHBA] biosynthesis regulator) modulates the expression of the genes involved in 2,3-DHBA production, employing 2,3-DHBA or brucebactin as a coinducer. 相似文献
13.
Motoshi Kunugi Atsushi Takabayashi Ayumi Tanaka 《The Journal of biological chemistry》2013,288(27):19330-19341
Chlorophyll b is found in photosynthetic prokaryotes and primary and secondary endosymbionts, although their light-harvesting systems are quite different. Chlorophyll b is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO), which is a Rieske-mononuclear iron oxygenase. Comparison of the amino acid sequences of CAO among photosynthetic organisms elucidated changes in the domain structures of CAO during evolution. However, the evolutionary relationship between the light-harvesting system and the domain structure of CAO remains unclear. To elucidate this relationship, we investigated the CAO structure and the pigment composition of chlorophyll-protein complexes in the prasinophyte Micromonas. The Micromonas CAO is composed of two genes, MpCAO1 and MpCAO2, that possess Rieske and mononuclear iron-binding motifs, respectively. Only when both genes were introduced into the chlorophyll b-less Arabidopsis mutant (ch1-1) was chlorophyll b accumulated, indicating that cooperation between the two subunits is required to synthesize chlorophyll b. Although Micromonas has a characteristic light-harvesting system in which chlorophyll b is incorporated into the core antennas of reaction centers, chlorophyll b was also incorporated into the core antennas of reaction centers of the Arabidopsis transformants that contained the two Micromonas CAO proteins. Based on these results, we discuss the evolutionary relationship between the structures of CAO and light-harvesting systems. 相似文献
14.
Hollingshead S Kopecná J Jackson PJ Canniffe DP Davison PA Dickman MJ Sobotka R Hunter CN 《The Journal of biological chemistry》2012,287(33):27823-27833
The cyclase step in chlorophyll (Chl) biosynthesis has not been characterized biochemically, although there are some plausible candidates for cyclase subunits. Two of these, Sll1214 and Sll1874 from the cyanobacterium Synechocystis 6803, were FLAG-tagged in vivo and used as bait in separate pulldown experiments. Mass spectrometry identified Ycf54 as an interaction partner in each case, and this interaction was confirmed by a reciprocal pulldown using FLAG-tagged Ycf54 as bait. Inactivation of the ycf54 gene (slr1780) in Synechocystis 6803 resulted in a strain that exhibited significantly reduced Chl levels. A detailed analysis of Chl precursors in the ycf54 mutant revealed accumulation of very high levels of Mg-protoporphyrin IX methyl ester and only traces of protochlorophyllide, the product of the cyclase, were detected. Western blotting demonstrated that levels of the cyclase component Sll1214 and the Chl biosynthesis enzymes Mg-protoporphyrin IX methyltransferase and protochlorophyllide reductase are significantly impaired in the ycf54 mutant. Ycf54 is, therefore, essential for the activity and stability of the oxidative cyclase. We discuss a possible role of Ycf54 as an auxiliary factor essential for the assembly of a cyclase complex or even a large multienzyme catalytic center. 相似文献
15.
Ashby MK 《FEMS microbiology letters》2004,233(2):277-281
The numbers of potential response regulator genes were determined from the complete and annotated genome sequences of Archaea and Bacteria. The numbers of each class of response regulators are shown for each organism, determined principally from BLASTP searches, but with reference to the gene category lists where available. The survey shows that for Bacteria there is a link between the total number of potential response regulator genes and both the genome complexity (number of potential protein-coding genes) and the organism's lifestyle/habitat. Increasingly complex lifestyles and genome complexities are matched by an increase in the average number of potential response regulator genes per genome, indicating that a higher degree of complexity requires a higher level of control of gene expression and cellular activity. Detailed results of this study are available online at and. 相似文献
16.
17.
18.
Bacteriochlorophylls (BChls) c, d, and e are the major chlorophylls in chlorosomes, which are the largest and one of the most efficient antennae produced by chlorophototrophic organisms. In the biosynthesis of these three BChls, a C-13(2)-methylcarboxyl group found in all other chlorophylls (Chls) must be removed. This reaction is postulated to be the first committed step in the synthesis of these BChls. Analyses of gene neighborhoods of (B)Chl biosynthesis genes and distribution patterns in organisms producing chlorosomes helped to identify a gene (bciC) that appeared to be a good candidate to produce the enzyme involved in this biochemical reaction. To confirm that this was the case, a deletion mutant of an open reading frame orthologous to bciC, CT1077, was constructed in Chlorobaculum tepidum, a genetically tractible green sulfur bacterium. The CT1077 deletion mutant was unable to synthesize BChl c but still synthesized BChl a and Chl a. The deletion mutant accumulated large amounts of various (bacterio)pheophorbides, all of which still had C-13(2)-methylcarboxyl groups. A C. tepidum strain in which CT1077 was replaced by an orthologous gene, Cabther_B0081 [corrected] from Candidatus Chloracidobacterium thermophilum was constructed. Although the product of Cabther_B0081 [corrected] was only 28% identical to the product of CT1077, this strain synthesized BChl c, BChl a, and Chl a in amounts similar to wild-type C. tepidum cells. To indicate their roles in the first committed step of BChl c, d, and e biosynthesis, open reading frames CT1077 and Cabther_B0081 [corrected] have been redesignated bciC. The potential mechanism by which BciC removes the C-13(2)-methylcarboxyl moiety of chlorophyllide a is discussed. 相似文献
19.
《Harmful algae》2019
The cyanobacterium Raphidiopsis raciborskii is a nuisance in freshwater ecosystems. Strains vary in their physiological responses to environmental drivers, thus a greater understanding of the magnitude of strain variation is required to characterize the species. In this study, two strains of R. raciborskii isolated from a tropical Australian water reservoir were grown with and without phosphorus (P) to determine any relative response to P stress. The strains had the same growth rates and under P free conditions, cells grew at the same rate as P replete conditions until day 9 when cell growth ceased. There was no difference in the alkaline phosphatase activity per cell for the P replete and P free conditions, but the level of activity per cell was greater in CS-505 than CS-506. P acquisition genes were identified from the sequenced genomes; both strains contained the same genes, but with differences in copy number of phoA (7 and 6), phnK (3 and 1) and phnH (2 and 1) between CS-505 and CS-506 (respectively). The expression of P acquisition genes under P stress was measured throughout the experiment and shown to vary in magnitude and timing across strains, and in P replete versus P free cultures. In strain CS-505, upregulation of the pstS1 and phoA genes occurred late in the growth phase and into senescence. These genes are involved in phosphate uptake and use of various forms of organic P. For strain CS-506, there was upregulation of the phosphate uptake gene, pit, and organic P utilization genes, phoA, phoU, phnD and phnK, commencing late in the growth phase. Our study shows that despite the fact that these two strains were isolated from the same waterbody, they differed markedly in their gene expression response to P free conditions. This capacity of R. raciborskii to vary in strain responses to P conditions gives the organism flexibility in responding to environmental change, particularly P stress conditions. 相似文献