首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhang WJ  Luo X  Liu YL  Shao XX  Wade JD  Bathgate RA  Guo ZY 《Amino acids》2012,43(2):983-992
Relaxin-3 (also known as INSL7) is a recently identified neuropeptide belonging to the insulin/relaxin superfamily. It has putative roles in the regulation of stress responses, food intake, and reproduction by activation of its cognate G-protein-coupled receptor RXFP3. It also binds and activates the relaxin family peptide receptors RXFP1 and RXFP4 in vitro. To obtain a europium-labeled relaxin-3 as tracer for studying the interaction of these receptors with various ligands, in the present work we propose a novel site-specific labeling strategy for the recombinant human relaxin-3 that has been previously prepared in our laboratory. First, the N-terminal 6 × His-tag of the single-chain relaxin-3 precursor was removed by Aeromonas aminopeptidase and all of the primary amines of the resultant peptide were reversibly blocked by citroconic anhydride. Second, the A-chain N-terminus of the blocked peptide was released by endoproteinase Asp-N cleavage that removed the linker peptide between the B- and A-chains. Third, an alkyne moiety was introduced to the newly released A-chain N-terminus by reaction with the highly active primary amine-specific N-hydroxysuccinimide ester. Fourth, after removal of the reversible blockage under mild acidic condition, europium-loaded DOTA with an azide moiety was introduced to the two-chain relaxin-3 carrying the alkyne moiety through click chemistry. Using this site-specific labeling strategy, homogeneous monoeuropium-labeled human relaxin-3 could be obtained with good overall yield. In contrast, conventional random labeling resulted in a complex mixture that was poorly resolved because human relaxin-3 has four primary amine moieties that all react with the modification reagent. Both saturation and competition binding assays demonstrated that the DOTA/Eu(3+)-labeled relaxin-3 retained high binding affinity for human RXFP3, RXFP4, and RXFP1 and was therefore a suitable non-radioactive and stable tracer to study the interaction of various natural or designed ligands with these receptors. Using this site-specific labeling strategy, other functional probes, such as fluorescent dyes, biotin, or nanoparticles could also be introduced to the A-chain N-terminal of the recombinant human relaxin-3. Additionally, we improved the time-resolved fluorescence assay for the DOTA-bound europium ion which paves the way for the use of DOTA as a lanthanide chelator for protein and peptide labeling in future studies.  相似文献   

2.
Insulin-like peptide 3 (INSL3) is a peptide hormone belonging to the insulin/relaxin superfamily, which mediates testes descent in the male fetus, and suppresses male germ cell apoptosis and promotes oocyte maturation in adults by activating the leucine-rich repeat-containing G-protein coupled receptor RXFP2. In a previous work, we prepared mature two-chain INSL3 by recombinant expression of a designed single-chain precursor in Escherichia coli and subsequent in vitro maturation. To establish a convenient high throughput receptor-binding assay for screening novel RXFP2 agonists or antagonists, in the present study we designed and recombinantly prepared a fully active easily-labeled INSL3 analog. Due to presence of a single primary amine moiety, the easily-labeled analog was conveniently mono-labeled by a DTPA/Eu3+-moiety at the A-chain N-terminus through reacting with excess modification reagent in a simple one-step procedure. The DTPA/Eu3+-labeled INSL3 analog bound receptor RXFP2 with high affinity and low non-specific binding. Using this non-radioactive tracer, we established a high throughput cell-based receptor-binding assay for screening of novel RXFP2 agonists or antagonists in future studies.  相似文献   

3.
Recent findings suggest that the relaxin-3 neural network may represent a new ascending arousal pathway able to modulate a range of neural circuits including those affecting circadian rhythm and sleep/wake states, spatial and emotional memory, motivation and reward, the response to stress, and feeding and metabolism. Therefore, the relaxin-3 receptor (RXFP3) is a potential therapeutic target for the treatment of various CNS diseases. Here we describe a novel selective RXFP3 receptor positive allosteric modulator (PAM), 3-[3,5-Bis(trifluoromethyl)phenyl]-1-(3,4-dichlorobenzyl)-1-[2-(5-methoxy-1H-indol-3-yl)ethyl]urea (135PAM1). Calcium mobilization and cAMP accumulation assays in cell lines expressing the cloned human RXFP3 receptor show the compound does not directly activate RXFP3 receptor but increases functional responses to amidated relaxin-3 or R3/I5, a chimera of the INSL5 A chain and the Relaxin-3 B chain. 135PAM1 increases calcium mobilization in the presence of relaxin-3(NH2) and R3/I5(NH2) with pEC50 values of 6.54 (6.46 to 6.64) and 6.07 (5.94 to 6.20), respectively. In the cAMP accumulation assay, 135PAM1 inhibits the CRE response to forskolin with a pIC50 of 6.12 (5.98 to 6.27) in the presence of a probe (10 nM) concentration of relaxin-3(NH2). 135PAM1 does not compete for binding with the orthosteric radioligand, [(125)I] R3I5 (amide), in membranes prepared from cells expressing the cloned human RXFP3 receptor. 135PAM1 is selective for RXFP3 over RXFP4, which also responds to relaxin-3. However, when using the free acid (native) form of relaxin-3 or R3/I5, 135PAM1 doesn't activate RXFP3 indicating that the compound's effect is probe dependent. Thus one can exchange the entire A-chain of the probe peptide while retaining PAM activity, but the state of the probe's c-terminus is crucial to allosteric activity of the PAM. These data demonstrate the existence of an allosteric site for modulation of this GPCR as well as the subtlety of changes in probe molecules that can affect allosteric modulation of RXFP3.  相似文献   

4.
Tanaka M 《The FEBS journal》2010,277(24):4990-4997
Relaxin-3, also known as insulin-like peptide-7, is a newly-identified peptide of the insulin superfamily. All members of this superfamily have a similar structure, which consists of two subunits (A-chain and B-chain) linked by disulfide bonds. Relaxin-3 is so named because it has a motif that can interact with the relaxin receptor. By contrast to other relaxins, relaxin-3 is mainly expressed in the brain and testis. In rodent brain, anatomical studies have revealed its predominant expression in neurons of the nucleus incertus of the dorsal pons, and a few other regions of the brainstem. On the other hand, relaxin-3-expressing nerve fibers and the relaxin-3 receptors, RXFP3 and RXFP1, are widely distributed in the forebrain, with the hypothalamus being one of the most densely-innervated regions. Therefore, relaxin-3 is considered to exert various actions through its ligand-receptor system. This minireview describes the expression of relaxin-3 in the brain, as well as its functions in the hypothalamus, including the stress response and food intake.  相似文献   

5.
The relaxin peptides are a family of hormones that share a structural fold characterized by two chains, A and B, that are cross-braced by three disulfide bonds. Relaxins signal through two different classes of G-protein-coupled receptors (GPCRs), leucine-rich repeat-containing GPCRs LGR7 and LGR8 together with GPCR135 and GPCR142, now referred to as the relaxin family peptide (RXFP) receptors 1-4, respectively. Although key binding residues have been identified in the B-chain of the relaxin peptides, the role of the A-chain in their activity is currently unknown. A recent study showed that INSL3 can be truncated at the N terminus of its A-chain by up to 9 residues without affecting the binding affinity to its receptor RXFP2 while becoming a high affinity antagonist. This suggests that the N terminus of the INSL3 A-chain contains residues essential for RXFP2 activation. In this study, we have synthesized A-chain truncated human relaxin-2 and -3 (H2 and H3) relaxin peptides, characterized their structure by both CD and NMR spectroscopy, and tested their binding and cAMP activities on RXFP1, RXFP2, and RXFP3. In stark contrast to INSL3, A-chain-truncated H2 relaxin peptides lost RXFP1 and RXFP2 binding affinity and concurrently cAMP-stimulatory activity. H3 relaxin A-chain-truncated peptides displayed similar properties on RXFP1, highlighting a similar binding mechanism for H2 and H3 relaxin. In contrast, A-chain-truncated H3 relaxin peptides showed identical activity on RXFP3, highlighting that the B-chain is the sole determinant of the H3 relaxin-RXFP3 interaction. Our results provide new insights into the action of relaxins and demonstrate that the role of the A-chain for relaxin activity is both peptide- and receptor-dependent.  相似文献   

6.
An efficient solid-phase synthesis protocol has been developed which, together with regioselective sequential formation of the three disulfide bonds, enabled the preparation of specifically monolanthanide (europium)-labeled human insulin-like peptide 3 (INSL3) for the study of its interaction with its G-protein-coupled receptor, RXFP2, via time-resolved fluorometry. A commercially available chelator, diethylene triamine pentaacetic acid (DTPA), was coupled to the N-terminus of the INSL3 A-chain on the solid phase, and then a coordination complex between europium ion and DTPA was formed using EuCl 3 to protect the chelator from production of an unidentified adduct during subsequent combination of the A- and B-chains. The labeled peptide was purified in high yield using high-performance liquid chromatography with nearly neutral pH buffers to prevent the liberation of Eu (3+) from the chelator. Using time-resolved fluorometry, saturation binding assays were undertaken to determine the binding affinity (p K d) of labeled INSL3 for RXFP2 in HEK-293T cells stably expressing RXFP2. The dissociation constant of DTPA-labeled INSL3 (9.05 +/- 0.03, n = 3) that was obtained from saturation binding experiments was comparable to that of (125)I-labeled INSL3 (9.59 +/- 0.09, n = 3). The receptor binding affinity (p K i) of human INSL3 was determined to be 9.27 +/- 0.06, n = 3, using Eu-DTPA-INSL3 as a labeled ligand, which again is similar to that obtained when (125)I-INSL3 was used as labeled ligand (9.34 +/- 0.02, n = 4). This novel lanthanide-coordinated, DTPA-labeled INSL3 has excellent sensitivity, stability, and high specific activity, properties that will be particularly beneficial in high-throughput screening of INSL3 analogues in structure-activity studies.  相似文献   

7.
Relaxin-3 is a newly identified insulin/relaxin superfamily peptide that plays a putative role in the regulation of food intake and stress response by activating its cognate G-protein-coupled receptor RXFP3. Relaxin-3 has three highly conserved arginine residues, B12Arg, B16Arg and B26Arg. We speculated that these positively charged arginines may interact with certain negatively charged residues of RXFP3. To test this hypothesis, we first replaced the negatively charged residues in the extracellular domain of RXFP3 with arginine, respectively. Receptor activation assays showed that arginine replacement of Glu141 or Asp145, especially Glu141, significantly decreased the sensitivity of RXFP3 to wild-type relaxin-3. In contrast, arginine replacement of other negatively charged extracellular residues had little effect. Thus, we deduced that Glu141 and Asp145, locating at the extracellular end of the second transmembrane domain, played a critical role in the interaction of RXFP3 with relaxin-3. To identify the ligand residues interacting with the negatively charged EXXXD motif of RXFP3, we replaced the three conserved arginines of relaxin-3 with negatively charged glutamate or aspartate, respectively. The mutant relaxin-3s retained the native structure, but their binding and activation potencies towards wild-type RXFP3 were decreased significantly. The compensatory effects of the mutant relaxin-3s towards mutant RXFP3s suggested two probable interaction pairs during ligand–receptor interaction: Glu141 of RXFP3 interacted with B26Arg of relaxin-3, meanwhile Asp145 of RXFP3 interacted with both B12Arg and B16Arg of relaxin-3. Based on these results, we proposed a relaxin-3/RXFP3 interaction model that shed new light on the interaction mechanism of the relaxin family peptides with their receptors.  相似文献   

8.
Human relaxin-3 is a neuropeptide that is structurally similar to human insulin with two chains (A and B) connected by three disulfide bonds. It is expressed primarily in the brain and has modulatory roles in stress and anxiety, feeding and metabolism, and arousal and behavioural activation. Structure-activity relationship studies have shown that relaxin-3 interacts with its cognate receptor RXFP3 primarily through its B-chain and that its A-chain does not have any functional role. In this study, we have investigated the effect of modification of the B-chain C-terminus on the binding and activity of the peptide. We have chemically synthesised and characterized H3 relaxin as C-termini acid (both A and B chains having free C-termini; native form) and amide forms (both chains’ C-termini were amidated). We have confirmed that the acid form of the peptide is more potent than its amide form at both RXFP3 and RXFP4 receptors. We further investigated the effects of amidation at the C-terminus of individual chains. We report here for the first time that amidation at the C-terminus of the B-chain of H3 relaxin leads to significant drop in the binding and activity of the peptide at RXFP3/RXFP4 receptors. However, modification of the A-chain C-terminus does not have any effect on the activity. We have confirmed using circular dichroism spectroscopy that there is no secondary structural change between the acid and amide form of the peptide, and it is likely that it is the local C-terminal carboxyl group orientation that is crucial for interacting with the receptors.  相似文献   

9.
Relaxin family peptides have important biological functions, and so far, four G‐protein‐coupled receptors have been identified as their receptors (RXFP1–4). A chimeric relaxin family peptide R3/I5, containing the B‐chain of relaxin‐3 and the A‐chain of INSL5, is a selective agonist for both RXFP3 and RXFP4. In a previous study, europium‐labeled R3/I5, as a nonradioactive and low‐background receptor‐binding tracer, was prepared through a chemical synthesis approach. In the present study, we established a convenient alternative approach for preparing the europium‐labeled R3/I5 tracer based on a recombinant R3/I5 designed to carry a solubilizing tag at the A‐chain N‐terminus and a pyroglutamate residue at the B‐chain N‐terminus. Because of the presence of a single primary amine moiety, the recombinant R3/I5 peptide was site‐specifically mono‐labeled at the A‐chain N‐terminus by a diethylenetriaminepentaacetic acid/europium moiety through a convenient one‐step procedure. The diethylenetriaminepentaacetic acid/Eu3+‐labeled R3/I5 bound both receptors RXFP3 and RXFP4 with high binding affinities and low nonspecific binding. Thus, we have presented a valuable nonradioactive tracer for future interaction studies on RXFP3 and RXFP4 with various natural or designed ligands. The present approach could also be adapted for preparing and labeling of other chimeric relaxin family peptides. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The human relaxin family comprises seven peptide hormones with various biological functions mediated through interactions with G-protein-coupled receptors. Interestingly, among the hitherto characterized receptors there is no absolute selectivity toward their primary ligand. The most striking example of this is the relaxin family ancestor, relaxin-3, which is an agonist for three of the four currently known relaxin receptors: GPCR135, GPCR142, and LGR7. Relaxin-3 and its endogenous receptor GPCR135 are both expressed predominantly in the brain and have been linked to regulation of stress and feeding. However, to fully understand the role of relaxin-3 in neurological signaling, the development of selective GPCR135 agonists and antagonists for in vivo studies is crucial. Recent reports have demonstrated that such selective ligands can be achieved by making chimeric peptides comprising the relaxin-3 B-chain combined with the INSL5 A-chain. To obtain structural insights into the consequences of combining A- and B-chains from different relaxins we have determined the NMR solution structure of a human relaxin-3/INSL5 chimeric peptide. The structure reveals that the INSL5 A-chain adopts a conformation similar to the relaxin-3 A-chain, and thus has the ability to structurally support a native-like conformation of the relaxin-3 B-chain. These findings suggest that the decrease in activity at the LGR7 receptor seen for this peptide is a result of the removal of a secondary LGR7 binding site present in the relaxin-3 A-chain, rather than conformational changes in the primary B-chain receptor binding site.  相似文献   

11.
Evidence suggests that relaxin-3 may have biological functions in the reproductive and central nervous systems. To date, however, relaxin-3 biodistribution has only been investigated in the mouse, rat, pig and teleost fish. Characterizing relaxin-3 gene structure, expression patterns, and function in non-human primates and humans is critical to delineating its biological significance. Experiments were performed to clone the rhesus macaque orthologues of the relaxin-3 peptide hormone and its cognitive receptors (RXFP1 and RXFP4). An investigation of rhesus relaxin-3 bioactivity and RXFP1 binding properties was also performed. Next we sought to investigate relaxin-3 immunoreactivity in human and rhesus macaque tissues. Immunohistofluorescence staining for relaxin-3 in the brain, testis, and prostate indicated predominant immunostaining in the ventral and dorsal tegmental nuclei, interstitial space surrounding the seminiferous tubules, and prostatic stromal cells, respectively. Further, in studies designed towards exploring biological functions, we observed neuroprotective actions of rhesus relaxin-3 on human neuronal cell cultures. Taken together, this study broadens the significance of relaxin-3 as a peptide involved in both neuronal cell function and reproductive tissues in primates.  相似文献   

12.
The hypothalamus plays a key role in the regulation of both energy homeostasis and reproduction. Evidence suggests that relaxin-3, a recently discovered member of the insulin superfamily, is an orexigenic hypothalamic neuropeptide. Relaxin-3 is thought to act in the brain via the RXFP3 receptor, although the RXFP1 receptor may also play a role. Relaxin-3, RXFP3, and RXFP1 are present in the hypothalamic paraventricular nucleus, an area with a well-characterized role in the regulation of energy balance that also modulates reproductive function by providing inputs to hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Other members of the relaxin family are known to play a role in the regulation of reproduction. However, the effects of relaxin-3 on reproductive function are unknown. We studied the role of relaxin-3 in the regulation of the hypothalamo-pituitary-gonadal (HPG) axis. Intracerebroventricular (5 nmol) and intraparaventricular (540-1,620 pmol) administration of human relaxin-3 (H3) in adult male Wistar rats significantly increased plasma luteinizing hormone (LH) 30 min postinjection. This effect was blocked by pretreatment with a peripheral GnRH antagonist. Central administration of human relaxin-2 showed no significant effect on plasma LH. H3 dose-dependently stimulated the release of GnRH from hypothalamic explants and GT(1)-7 cells, which express RXFP1 and RXFP3, but did not influence LH or follicle-stimulating hormone release from pituitary fragments in vitro. We have demonstrated a novel role for relaxin-3 in the stimulation of the HPG axis, putatively via hypothalamic GnRH neurons. Relaxin-3 may act as a central signal linking nutritional status and reproductive function.  相似文献   

13.
Diethylenetriamine pentaacetic acid (DTPA) is a popular chelator agent for enabling the labeling of peptides for their use in structure-activity relationship study and biodistribution analysis. Solid phase peptide synthesis was employed to couple this commercially available chelator at the N-terminus of either the A-chain or B-chain of H2 relaxin. The coupling of the DTPA chelator at the N-terminus of the B-chain and subsequent loading of a lanthanide (europium) ion into the chelator led to a labeled peptide (Eu-DTPA-(B)-H2) in low yield and having very poor water solubility. On the other hand, coupling of the DTPA and loading of Eu at the N-terminus of the A-chain led to a water-soluble peptide (Eu-DTPA-(A)-H2) with a significantly improved final yield. The conjugation of the DTPA chelator at the N-terminus of the A-chain did not have any impact on the secondary structure of the peptide determined by circular dichroism spectroscopy (CD). On the other hand, it was not possible to determine the secondary structure of Eu-DTPA-(B)-H2 because of its insolubility in phosphate buffer. The B-chain labeled peptide Eu-DTPA-(B)-H2 required solubilization in DMSO prior to carrying out binding assays, and showed lower affinity for binding to H2 relaxin receptor, RXFP1, compared to the water-soluble A-chain labeled peptide Eu-DTPA-(A)-H2. The mono-Eu-DTPA labeled A-chain peptide, Eu-DTPA-(A)-H2, thus can be used as a valuable probe to study ligand-receptor interactions of therapeutically important H2 relaxin analogs. Our results show that it is critical to choose an approriate site for incorporating chelators such as DTPA. Otherwise, the bulky size of the chelator, depending on the site of incorporation, can affect yield, solubility, structure and pharmacological profile of the peptide.  相似文献   

14.
Insulin-like peptide 5 (INSL5) is a recently identified insulin superfamily member. Although it binds to and activates the G-protein coupled receptor, RXFP4, its precise biological function remains unknown. To help determine its function, significant quantities of INSL5 are required. In the present work, three single-chain INSL5 precursors were designed, two of which were successfully expressed in E. coli cells. The expressed precursors were solubilized from inclusion bodies, purified almost to homogeneity by immobilized metal-ion affinity chromatography, and then refolded in vitro. One precursor could be converted to two-chain human INSL5 bearing an extended N-terminus of the A-chain (designated long-INSL5) by sequential Lys-C endoproteinase and carboxypeptidase B treatment. The 6 residue A-chain N-terminal extension of long-INSL5 was subsequently removed by Aeromonas aminopeptidase to yield native INSL5 that was designated short-INSL5. Circular dichroism spectroscopic analysis and peptide mapping showed that the recombinant INSL5s adopted an insulin-like conformation and possessed the expected characteristic insulin-like disulfide linkages. Activity assay showed that both long- and short-INSL5 had full RXFP4 receptor activity compared with chemically synthesized human INSL5. This suggested that extension of the N-terminus of the A-chain of long-INSL5 did not adversely impact upon the binding to or activation of the RXFP4 receptor. However, the single-chain INSL5 precursor was inactive which indicated that a free C-terminus of the B-chain is critical for the activity of INSL5. Our present work thus provides an efficient approach for preparation of INSL5 and its analogs through recombinant expression in E. coli cells.  相似文献   

15.
The successful use of peptides as potential radiopharmaceuticals essentially requires the modification of the bioactive peptide hormones to introduce chelators for radiolabeling. In this study, four Y 1/Y 2 receptor-selective NPY analogues with different receptor subtype specificities have been investigated. For in vitro studies, the cold metal surrogate was used. Gallium and indium complexes were introduced by using 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid as bifunctional chelator. The peptides were synthesized by solid-phase peptide synthesis (SPPS), the chelator was coupled either at the N-terminus or at the N(epsilon) side chain of Lys(4) of the resin-bound peptide, and the labeling was performed in solution after cleavage. Competitive binding assays showed high binding affinity of the receptor-selective analogues at NPY receptor expressing cells. To test internalization of the novel peptide analogues and the metabolic stability in human blood plasma, the corresponding 5(6)-carboxyfluorescein (CF) analogues were prepared and investigated. One of the most promising analogues, the Y 1-receptor selective [Lys(DOTA)(4), Phe(7), Pro(34)]NPY was labeled with (111)In and injected into nude mice that bear MCF-7 breast cancer xenografts, and biodistribution studies were performed. In vitro and in vivo studies suggest that receptor-selective analogues of NPY have promising characteristics for future applications in nuclear medicine for breast tumor diagnosis and therapy.  相似文献   

16.
Insulin-like peptide 3 (INSL3) is a reproduction-related peptide hormone belonging to the insulin/relaxin superfamily, which mediates testicular descent in the male fetus, suppresses male germ cell apoptosis and promotes oocyte maturation in adults by activating the relaxin family peptide receptor 2 (RXFP2). To establish an ultrasensitive receptor-binding assay for INSL3−RXFP2 interaction studies, in the present work we labeled a recombinant INSL3 peptide with a newly developed nanoluciferase (NanoLuc) reporter through a convenient chemical conjugation approach, including the introduction of an active disulfide bond to INSL3 by chemical modification and engineering of a 6× His-Cys-NanoLuc carrying a unique exposed cysteine at the N-terminus. The bioluminescent NanoLuc-conjugated INSL3 retained high binding affinity with the target receptor RXFP2 (Kd = 2.0 ± 0.1 nM, n = 3) and was able to sensitively monitor the receptor-binding of a variety of ligands, representing a novel ultrasensitive tracer for non-radioactive receptor-binding assays. Our present chemical conjugation approach could readily be adapted for conjugation of NanoLuc with other proteins, even other macrobiomolecules, for various highly sensitive bioluminescent assays.  相似文献   

17.
Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand –receptor and receptor–receptor interactions.  相似文献   

18.
Stressful life events are causally linked with alcohol use disorders (AUDs), providing support for a hypothesis that alcohol consumption is aimed at stress reduction. We have previously shown that expression of relaxin-3 mRNA in rat brain correlates with alcohol intake and that central antagonism of relaxin-3 receptors (RXFP3) prevents stress-induced reinstatement of alcohol-seeking. Therefore the objectives of these studies were to investigate the impact of Rxfp3 gene deletion in C57BL/6J mice on baseline and stress-related alcohol consumption. Male wild-type (WT) and Rxfp3 knockout (KO) (C57/B6JRXFP3TM1/DGen) littermate mice were tested for baseline saccharin and alcohol consumption and preference over water in a continuous access two-bottle free-choice paradigm. Another cohort of mice was subjected to repeated restraint followed by swim stress to examine stress-related alcohol preference. Hepatic alcohol and aldehyde dehydrogenase activity was assessed in mice following chronic alcohol intake and in naive controls. WT and Rxfp3 KO mice had similar baseline saccharin and alcohol preference, and hepatic alcohol processing. However, Rxfp3 KO mice displayed a stress-induced reduction in alcohol preference that was not observed in WT littermates. Notably, this phenotype, once established, persisted for at least six weeks after cessation of stress exposure. These findings suggest that in mice, relaxin-3/RXFP3 signalling is involved in maintaining high alcohol preference during and after stress, but does not appear to strongly regulate the primary reinforcing effects of alcohol.  相似文献   

19.
Three human Escherichia coli heat-stable peptide (STh) analogues, each containing a DOTA chelating group, were synthesized by SPPS and oxidative refolding and compared in in vitro and in vivo systems. One analogue, DOTA-F19-STh(1-19), contains an N-terminal DOTA group attached via an amide bond linkage to an STh moiety which is essentially wild-type except for a Tyr to Phe alteration at position 19 of the molecule. A second analogue, DOTA-R1,4,F19-STh(1-19), differs from the first in that asparagine residues in positions 1 and 4 have been altered to arginine residues in order to examine the effect of positively charged groups in the linker domain. A third analogue, DOTA-11AUN-F19-STh(1-19), differs from the first in that it incorporates an 11-aminoundecanoic acid spacer group between the DOTA group and the first asparagine residue. In vitro competitive binding assays utilizing T-84 human colon cancer cells demonstrated that significant alterations to the N-terminal region of the STh molecule were well tolerated and did not significantly affect binding affinity of STh for the guanylyl cyclase C (GC-C) receptor. Internalization and efflux studies of the indium-labeled species demonstrated that inclusion of positive charge in the linker moiety inhibits internalization of the compound within tumor cells. The characteristics of the three analogues were compared in an in vivo model utilizing T-84 human colon cancer cell xenografts in SCID mice. Clearance of all analogues was rapid, primarily via renal excretion into the urine, with >89% ID excreted into the urine at 1 h pi for all analogues. The 111In-DOTA-R1,4,F19-STh(1-19) and 111In-DOTA-11AUN-F19-STh(1-19) analogues both had longer residence times in the blood than did the 111In-DOTA-F19-STh(1-19) analogue, probably accounting for increased %ID/g values for tumors and nontarget tissues at 1 h pi. At 4 h pi, significant differences between analogues were only seen with respect to metabolic routes of excretion, indicating that increased blood residence time did not result in increased tumor residualization. Reduction of hepatic uptake of these compounds, however, could have significance in the development of agents for the imaging of hepatic metastases. The ability to manipulate in vivo pharmacodynamics and tumor uptake of radiolabeled STh peptides through modification of linker moieties is under continuing investigation in order to produce optimal imaging and therapeutic radiopharmaceuticals.  相似文献   

20.
Human gene-2 (H2) relaxin is currently in Phase III clinical trials for the treatment of acute heart failure. It is a 53-amino acid insulin-like peptide comprising two chains and three disulfide bonds. It interacts with two of the relaxin family peptide (RXFP) receptors. Although its cognate receptor is RXFP1, it is also able to cross-react with RXFP2, the native receptor for a related peptide, insulin-like peptide 3. In order to understand the basis of this cross-reactivity, it is important to elucidate both binding and activation mechanisms of this peptide. The primary binding mechanism of this hormone has been extensively studied and well defined. H2 relaxin binds to the leucine-rich repeats of RXFP1 and RXFP2 using B-chain-specific residues. However, little is known about the secondary interaction that involves the A-chain of H2 relaxin and transmembrane exoloops of the receptors. We demonstrate here through extensive mutation of the A-chain that the secondary interaction between H2 relaxin and RXFP1 is not driven by any single amino acid, although residues Tyr-3, Leu-20, and Phe-23 appear to contribute. Interestingly, these same three residues are important drivers of the affinity and activity of H2 relaxin for RXFP2 with additional minor contributions from Lys-9, His-12, Lys-17, Arg-18, and Arg-22. Our results provide new insights into the mechanism of secondary activation interaction of RXFP1 and RXFP2 by H2 relaxin, leading to a potent and RXFP1-selective analog, H2:A(4–24)(F23A), which was tested in vitro and in vivo and found to significantly inhibit collagen deposition similar to native H2 relaxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号