首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in soil profiles, nutrient and organic matter dynamics, other soil organisms or plant communities. Most of these cases are in areas that have been disturbed (e.g., agricultural systems) or were previously devoid of earthworms (e.g., north of Pleistocene glacial margins). It is not clear that such effects are common in ecosystems inhabited by native earthworms, especially where soils are undisturbed. We explore the idea that indigenous earthworm fauna and/or characteristics of their native habitats may resist invasion by exotic earthworms and thereby reduce the impact of exotic species on soil processes. We review data and case studies from temperate and tropical regions to test this idea. Specifically, we address the following questions: Is disturbance a prerequisite to invasion by exotic earthworms? What are the mechanisms by which exotic earthworms may succeed or fail to invade habitats occupied by native earthworms? Potential mechanisms could include (1) intensity of propagule pressure (how frequently and at what densities have exotic species been introduced and has there been adequate time for proliferation?); (2) degree of habitat matching (once introduced, are exotic species faced with unsuitable habitat conditions, unavailable resources, or unsuited feeding strategies?); and (3) degree of biotic resistance (after introduction into an otherwise suitable habitat, are exotic species exposed to biological barriers such as predation or parasitism, “unfamiliar” microflora, or competition by resident native species?). Once established, do exotic species co-exist with native species, or are the natives eventually excluded? Do exotic species impact soil processes differently in the presence or absence of native species? We conclude that (1) exotic earthworms do invade ecosystems inhabited by indigenous earthworms, even in the absence of obvious disturbance; (2) competitive exclusion of native earthworms by exotic earthworms is not easily demonstrated and, in fact, co-existence of native and exotic species appears to be common, even if transient; and (3) resistance to exotic earthworm invasions, if it occurs, may be more a function of physical and chemical characteristics of a habitat than of biological interactions between native and exotic earthworms.  相似文献   

2.
The flatworm Platydemus manokwari (Tricladida: Rhynchodemidae) preys on various species of land snail, and its introduction to areas outside of its native range is thought to have caused the extinction of native land snails on several Pacific islands. Platydemus manokwari occurs in areas where land snails have been absent since its invasion, suggesting that the flatworm can prey on animals other than land snails. To identify the alternative prey and prey preferences of P. manokwari, I examined the feeding ecology of P. manokwari under field and laboratory conditions. Individuals were observed attacking live earthworms in a forest where land snails are already extinct, on Chichijima, Ogasawara (Bonin) Islands, Japan. I also observed them attacking earthworms and a species of isopod and land snail in the lab. To prey on the worm, similar to other earthworm-eating flatworms, P. manokwari wrapped itself around the prey and fed on it by inserting its pharynx into the earthworm’s body. Large earthworms were able to escape P. manokwari attacks by autotomy, but the autotomized body parts were eaten. Several P. manokwari individuals together attacked earthworms that were larger than themselves. The laboratory experiments showed that such gregarious attacks increased predation success on both large earthworms and land snails. The flatworms also attacked the isopods, although the predation rate was low. These results demonstrate that P. manokwari is a polyphagous predator of slow-moving soil invertebrates (land snails, slugs, earthworms, and isopods) and that invasion by P. manokwari may directly and indirectly impact native soil fauna.  相似文献   

3.
The effects and implications of invasive species in belowground terrestrial ecosystems are not well known in comparison with above-ground terrestrial and marine environments. The study of earthworm invasions in the tropics is limited by a lack of taxonomic knowledge and the potential for loss of species in native habitats due to anthropogenic land use change. Alteration of land use plays a major role in determining the abundance and community structure of earthworms and the establishment of exotic earthworms in areas previously inhabited by worms. Once an exotic species has become established into a new place, site and species characteristics seem to be key factors determining their spread. We reviewed the literature on the distribution and effects of exotic earthworms to understand the interactions of earthworm invasion and land use history in the tropics. Patterns in the abundance, effects and mechanisms of earthworm invasions on ecosystem processes in the tropics are elucidated using Pontoscolex corethrurus as a case study.  相似文献   

4.
The introduction, establishment and spread of non-native earthworm species in North America have been ongoing for centuries. These introductions have occurred across the continent and in some ecosystems have resulted in considerable modifications to ecosystem processes and functions associated with above- and belowground foodwebs. However, many areas of North America have either never been colonized by introduced earthworms, or have soils that are still inhabited exclusively by native earthworm fauna. Although several modes of transport and subsequent proliferation of non-native earthworms have been identified, little effort has been made to interrupt the flow of new species into new areas. Examples of major avenues for introduction of earthworms are the fish-bait, horticulture, and vermicomposting industries. In this paper we examine land management practices that influence the establishment of introduced species in several ecosystem types, and identify situations where land management may be useful in limiting the spread of introduced earthworm species. Finally, we discuss methods to regulate the importation of earthworms and earthworm-containing media so that introduction of new exotic species can be minimized or avoided. Although our focus in this paper is necessarily North American, many of the management and policy options presented here could be applicable to the problem of earthworm invasions in other parts of the world.  相似文献   

5.
Intensive agriculture reduces soil biodiversity across Europe   总被引:3,自引:0,他引:3       下载免费PDF全文
Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land‐use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community‐weighted mean body mass of soil fauna. We also elucidate land‐use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land‐use intensity caused highly consistent responses. In particular, land‐use intensification reduced the complexity in the soil food webs, as well as the community‐weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land‐use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land‐use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land‐use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land‐use intensification may threaten the functioning of soil in agricultural production systems.  相似文献   

6.
Agricultural activities represent a global threat to biodiversity, yet little is known about the relative importance of different agricultural land uses in relation to their wildlife communities. We explored bird community structure, diversity, and composition in a landscape dominated by primary tropical dry forest, and in three agricultural systems (i.e., tree orchards, herbaceous cropfields, cattle pastures) to evaluate the way in which birds use different habitats within the landscape. Tropical dry forests had the highest species richness and community evenness, although the bird community in tree orchards was also relatively species rich and even. Cattle pastures had more bird species than cropfields but both habitats were comparatively species poor with low evenness. Our results are related to habitat structure and the spatial location of sites within the landscape matrix. Based on our observations, we recommend including native tree species within agricultural systems and surrounding areas to provide additional resources for birds. Finally, we suggest promoting natural recruitment of native trees and shrubs within cattle pastures to provide suitable habitat for species that use tropical dry forest plants. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

7.
Two major components of global change: land‐use changes and intentional or accidental species introduction are threatening the conservation of native species worldwide. In particular, Mediterranean coastal areas are highly susceptible to the invasion of alien species and they also have experienced major changes in land use such as agricultural abandonment and urbanization. However, there has been little research done which quantitatively links biological invasions and the components of land‐use changes (i.e. number, trajectory and direction of the changes). We analysed the current distribution and abundance of Cortaderia selloana (Schultes et Schultes fil.) Asch. et Graebner, an alien ornamental species, in 332 fields in Aiguamolls de l'Empordà (Catalonia, NE Spain) and related the patterns of invasion to spatiotemporal data on land‐use changes from 1956 to 2003. Our aim was to determine which land uses had been more susceptible to C. selloana invasion during the last 5 years and to find out which components of land‐use changes triggered invasion. We found that 22.30% of the fields are currently invaded. In the last 5 years, fields have triplicated the total density of C. selloana. The presence of C. selloana decreases with the distance from urban areas. Invasion is over‐represented in pastures and old‐fields, and it has increased with time since abandonment. The presence of C. selloana was also associated to fields that had experienced many changes in land use in the last 46 years. The most heavily invaded fields were those that were pastures in 1956 and are now old fields in 2003. On average, the largest plants are found in agricultural field margins and in fields that had a disturbed land use both in 1956 and in 2003. Furthermore, pastures had the lowest proportion of reproductive plants. Overall, current C. selloana patterns of invasion can be explained by the historical legacy of land‐use changes.  相似文献   

8.
土壤动物多样性地理分布及其生态功能研究已成为地学和生态学等领域共同关注的科学前沿。本文在介绍相关研究最新进展的基础上, 讨论已有研究的局限性或不确定性, 展望未来研究的重点方向。近10年来, 代表性土壤动物类群的全球分布研究取得突破性进展; 国内土壤动物研究的尺度和采样区域也有明显拓展, 尤其在蚯蚓和线虫相关研究上取得了系列成果。结果表明, 土壤动物多样性随纬度的变化模式主要有两种, 即在低纬度的热带最高或在中纬度的温带最高; 而土壤动物多度与多样性可能同步变化、无明显关系、截然不同甚至相反; 降水、植物生产力和土壤有机质是土壤动物分布格局的关键驱动力, 但它们的影响力因土壤动物类群不同而异。土壤动物具有改善土壤物理结构、促进养分循环和有机碳稳定、提高作物健康水平等多重功能; 土壤动物的多功能性评估方兴未艾, 但仍面临诸多挑战。简单分析土壤动物随经纬度等的变化规律存在较大局限性, 考虑在基于地质-生态历史及“经纬度-海拔-离海岸距离”等构建的多维时空框架内, 探究土壤动物分布特征及其驱动力。土壤动物分布格局对其潜在的生态功能有关键影响, 但是目前对土壤动物分布格局的预测和模拟仍主要依靠经验模型; 代谢生态学等理论在土壤动物群落研究中的应用值得关注。探究分类多样性的冗余机制, 突出功能多样性, 可以将生物多样性与生态功能更好地联系起来; 同时, 需要在特定条件和时空下, 从整个土壤食物网及其与植物的联系中理解土壤动物多样性与多功能性的联系。建议未来关注两个研究方向: (1)量化人类活动和气候变化给土壤动物多样性和生态功能带来的巨大不确定性; (2)完善土壤动物群落特征预测的理论框架和开展土壤动物群落的精准调控, 综合评价其多功能性, 进而将土壤动物与人类福祉更紧密地联系起来。  相似文献   

9.
In northern North America, invasive earthworms (including the nightcrawler Lumbricus terrestris) have been dispersing from points of introduction and dramatically affecting soil structure, soil food webs, and forest floor dynamics. However, little is known about the factors influencing the local distribution of invasive earthworms south of the Wisconsinan glaciation. Earthworms were sampled at suspected sites of introduction near Mountain Lake Biological Field Station, Virginia, USA. The density of invasive earthworms decreased as distance from suspected sites of introduction increased; native earthworms displayed the opposite relationship. However, the distance that L. terrestris was found into the forest was less than expected given dispersal rates calculated from more northern invasions. We also found correlations among population densities of L. terrestris and physical–chemical properties of the soil, and differences between field and forest soils in terms of temperature, moisture, and soil chemical properties. We conducted two experiments to analyze some factors possibly responsible for the observed distribution: (1) temperature and moisture, and (2) soil type (field vs. forest) and food resources. Our results suggest that L. terrestris may not disperse as far into forested habitats of the Southern Appalachians compared to northern forests due to local physical‐chemical soil characteristics.  相似文献   

10.
Changes in land use strongly influence habitat attributes (e.g., herbaceous ground cover and tree richness) and can consequently affect ecological functions. Most studies have focused on the response of these ecological functions to land‐use changes within only a single vegetation type. These studies have often focused solely on agricultural conversion of forests, making it nearly impossible to draw general conclusions across other vegetation types or with other land‐use changes (e.g., afforestation). We examined the consequences of agricultural conversion for seed removal by ants in native grassland, savanna, and savanna‐forest habitats that had been transformed to planted pastures (Brachiaria decumbens) and tree plantations (Eucalyptus spp.) and explored if changes in seed removal were correlated with differences in habitat attributes between habitat types. We found that land‐use changes affected seed removal across the tree cover gradient and that the magnitude of impact was influenced by similarity in habitat attributes between native and converted habitats, being greater where there was afforestation (Eucalyptus spp in grassland and savanna). Herbaceous ground cover, soil hardness, and tree richness were the most important habitat attributes that correlated with differences in seed removal. Our results reveal that the magnitude of impact of land‐use changes on seed removal varies depending on native vegetation type and is associated with the type of habitat attribute change. Our findings have implications for biodiversity in tropical grassy systems: afforestation can have a greater detrimental impact on ecological function than tree loss.  相似文献   

11.
The distribution of the indigenous New Zealand megascolecid earthworm Octochaetus multiporus (Beddard) in hill pastures of different fertilities in the southern North Island of New Zealand, and the population density throughout a year are described. Octochaetus multiporus was most numerous in soils of low to moderate fertility. High fertility soils had a similar population density to that of an adjacent area of native forest, indicating that the exotic pasture environment can favour Octochaetus multiporus in some circumstances. Population density of Octochaetus multiporus was best correlated with soils which were moist in summer. There was no well defined breeding season for this species, mature and recently hatched individuals being found in most months of the year. Octochaetus multiporus is a deeper burrowing indigenous earthworm species which is successful in an exotic environment. In pastures which have moist soils in summer, this species may be improving soil structure and root penetration in the absence of deep burrowing introduced lumbricid earthworms.  相似文献   

12.
13.
Soil health is key for sustainable productivity and adaptation to climate change. Agricultural practice can significantly impact on soil health. The aim of this study was to examine the effect of two land management regimes on organisms (earthworms) that may be used as indicators for soil health via NMR metabolomics. Earthworms are important in the soil decomposition process and viewed as a sentinel species in soil. The presence/absence of earthworm species and their relative abundances provide a gross indication of the health of the soil and it is expected that land use would affect earthworm metabolism as the populations rose or declined in response to changing soil health parameters. In order to test this hypothesis metabolomics approaches were employed to determine if biological indicators of soil change can be detected. Two species of earthworms, an unidentified native species and the European species Aporrectodea caliginosa, were collected from properties in Victoria, Australia where the land was treated with either biological (organic) or conventional (chemical) treatment regimes. Both lipid and aqueous NMR metabolomics for earthworms was employed, demonstrating that class classifications can be achieved with both datasets and provide orthogonal, complementary, chemical information. The study indicates that land-use has a measurable effect on the biochemistry of worm populations. Potential biomarkers of land use and worm stress were found, including elevated levels of glucose, maltose, alanine and triacylglycerides. This study demonstrates the utility of NMR metabolomics approaches in detecting biomarkers related to land treatment regimes and potentially soil health attributes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The Pilliga forest in northern inland New South Wales, Australia, is one of the largest surviving remnants of native forest on the western slopes of the Great Dividing Range. The Pilliga landscape is a challenging environment for molluscs, dominated by dry sclerophyll forest and with limited and largely ephemeral aquatic habitats. A field survey of the area in 2006–2012 identified a surprisingly rich and relatively intact aquatic native molluscan fauna with five species of bivalves in three families and nine species of freshwater gastropods (four families), including some rare species and range extensions. The native land snail fauna comprised 18 species (six families), including an unusually rich pupillid fauna with nine species. Some range extensions are recorded and some species are narrow-range endemics. The distributions of many aquatic and terrestrial species were correlated with geology or soil type. Introduced molluscs were predominantly found in anthropogenic habitats and include two freshwater gastropods (two families) and nine terrestrial snails and slugs (eight families). This study provides insight into the original molluscan fauna of the western slopes prior to landscape-scale agricultural development and provides a benchmark for future reference.  相似文献   

15.
Bird communities of natural and modified habitats in Panama   总被引:7,自引:0,他引:7  
Only a small proportion of land can realistically be protected as nature reserves and thus conservation efforts also must focus on the ecological value of agroecosystems and developed areas surrounding nature reserves. In this study, avian communities were surveyed in 11 habitat types in central Panama, across a gradient from extensive forest to intensive agricultural land uses, to examine patterns of species richness and abundance and community composition. Wooded habitats, including extensive and fragmented forests, shade coffee plantations, and residential areas supported the most species and individuals. Nearctic-Neotropical migratory species were most numerous in lowland forest fragments, shade coffee, and residential areas. Introduced Pinus caribbea and sugar cane plantations supported the fewest species compared to all other habitats. Cattle pastures left fallow for less than two years supported more than twice as many total species as actively grazed pastures, such that species richness in fallow pastures was similar to that found in wooded habitats. Community similarities were relatively low among all habitat types (none exceeding the observed 65% similarity between extensive and fragmented lowland forests), but communities in shade coffee and residential areas were 43% and 54′% similar to lowland forest fragments, respectively. Fallow pastures and residential areas shared 60% of their species. Bird communities in shade coffee and residential areas were characterized by higher proportions of frugivorous and nectarivorous species than in native forests. These same guilds also were better represented in fallow than in grazed pastures. Raptors and piscivorous species were most prevalent in cattle pastures and rice fields. These results, though based upon only species richness and abundance, demonstrate that many human-altered habitats have potential ecological value for birds, and conservation efforts in tropical areas should focus greater attention on enhancement of agricultural and developed lands as wildlife habitat. To understand the true conservation value of these modified lands will require examination not only of numbers but also of the types of species supported by these habitats, their reproductive output and survival rates.  相似文献   

16.
Traditional approaches to the study of species persistence in fragmented landscapes generally consider a binary classification of habitat being suitable or unsuitable; however, the range of human‐modified habitats within a region may offer a gradient of habitat suitability (or conservation value) for species. We identified such a gradient by comparing bird assemblages among contrasting land uses (pine plantations of different age, annual crops, clear cuts and cattle pastures) in the Upper Parana Atlantic forest. Bird assemblages and vegetation structure were characterized in an extensive area of 4400 km2 in Argentina and Paraguay during the breeding seasons of 2005–2010. Similarity of bird assemblages between anthropogenic habitats and the native forest and the proportion of forest species increased with vegetation vertical structure, while the proportion of open‐area species decreased. As a consequence, mature tree plantations were the most suitable habitats for forest species and were mainly used by frugivores and bark insectivores. In contrast, open habitats were the least suitable habitat for forest species and were used primarily by insectivores. Human‐created habitats that are structurally complex can be used by a subset of forest species, and may improve functional connectivity and mitigate edge effects. The conservation of large tracks of native forests, however, is critical for the long‐term persistence of the entire bird assemblage, especially for native forest dependent species.  相似文献   

17.
The replacement of native vegetation by pastures or tree plantations is increasing worldwide. Contradictory effects of these land use transitions on the direction of changes in soil organic carbon (SOC) stocks, quality, and vertical distribution have been reported, which could be explained by the characteristics of the new or prior vegetation, time since vegetation replacement, and environmental conditions. We used a series of paired‐field experiments and a literature synthesis to evaluate how these factors affect SOC contents in transitions between tree‐ and grass‐dominated (grazed) ecosystems in South America. Both our field and literature approaches showed that SOC changes (0–20 cm of depth) were independent of the initial native vegetation (forest, grassland, or savanna) but strongly dependent on the characteristics of the new vegetation (tree plantations or pastures), its age, and precipitation. Pasture establishment increased SOC contents across all our precipitation gradient and C gains were greater as pastures aged. In contrast, tree plantations increased SOC stocks in arid sites but decreased them in humid ones. However, SOC losses in humid sites were counterbalanced by the effect of plantation age, as plantations increased their SOC stocks as plantations aged. A multiple regression model including age and precipitation explained more than 50% (p < 0.01) of SOC changes observed after sowing pastures or planting trees. The only clear shift observed in the vertical distribution of SOC occurred when pastures replaced native forests, with SOC gains in the surface soil but losses at greater depths. The changes in SOC stocks occurred mainly in the silt+clay soil size fraction (MAOM), while SOC stocks in labile (POM) fraction remained relatively constant. Our results can be considered in designing strategies to increase SOC storage and soil fertility and highlight the importance of precipitation, soil depth, and age in determining SOC changes across a range of environments and land‐use transitions.  相似文献   

18.
Avermectins and their metabolites are excreted mainly in the faeces; they do not readily move from the site of dung deposition because of their low solubility in water and their tight binding to organic matter. Avermectins degrade in the environment through photodegradation and aerobic breakdown by soil organisms. The dung mesofauna potentially exposed to avermectin residues includes insects, earthworms, springtails, mites and nematodes. These organisms occupy a variety of different niches within the ecosystem and the faunal composition changes as the pats age. Some members of this fauna act in concert with soil microbial flora and assist in the breakdown of dung and consequent nutrient re-cycling on pasture. There are marked seasonal patterns of faunal abundance and behaviour which affect their relative importance in the decomposer community. Some species of the coprophagous insect fauna, particularly in the larval stages, can be adversely affected by the presence of avermectin residues in the faeces. Veterinary use patterns of avermectins in temperate regions indicate that peak periods of insect activity and peak times of avermectin use are often asynchronous. When avermectin usage and insect activity do coincide, the heterogeneous patterns of administration to livestock and the focus of treatment on young animals result in the deposition on pasture of faeces which are predominantly free of avermectin residues. Results of large scale, long term studies indicate that, even under conditions of relatively high levels of avermectin use in cattle, the impact on non-target insect populations and their function is limited.  相似文献   

19.
Recent studies on earthworm invasion of North American soils report dramatic changes in soil structure, nutrient dynamics and plant communities in ecosystems historically free of earthworms. However, the direct and indirect impacts of earthworm invasions on animals have been largely ignored. This paper summarizes the current knowledge on the impact of earthworm invasion on other soil fauna, vertebrates as well as invertebrates.Earthworm invasions can have positive effects on the abundance of other soil invertebrates, but such effects are often small, transient, and restricted to habitats with harsh climates or a long history of earthworm co-occurrence with other soil invertebrates. Middens and burrows can increase soil heterogeneity and create microhabitats with a larger pore size, high microbial biomass, and microclimates that are attractive to micro- and mesofauna. Under harsh climatic conditions, the aggregates formed by earthworms may increase the stability of soil microclimates. Positive effects can also be seen when comminution and mucus secretion increase the palatability of unpalatable organic material for microorganisms which are the main food of most micro- and mesofaunal groups. For larger invertebrates or small vertebrates, invasive earthworms may become important prey, with the potential to increase resource availability. In the longer-term, the activity of invading earthworms can have a strong negative impact on indigenous faunal groups across multiple trophic levels. Evidence from field and laboratory studies indicates that the restructuring of soil layers, particularly the loss of organic horizons, physical disturbance to the soil, alteration of understory vegetation, and direct competition for food resources, lead directly and indirectly to significant declines in the abundance of soil micro- and mesofauna. Though studies of invasive earthworm impacts on the abundance of larger invertebrates or vertebrates are generally lacking, recent evidence suggests that reduced abundance of small soil fauna and alteration of soil microclimates may be contributing to declines in vertebrate fauna such as terrestrial salamanders. Preliminary evidence also suggests the potential for earthworm invasions to interact with other factors such as soil pollution, to negatively affect vertebrate populations.  相似文献   

20.
This research was designed to compare allergenic flora of various cities of central Italy. Because the data on this problem are rather scant, we wanted to highlight the relationships among the ecological conditions of the urban habitats, and the plants whose pollens cause allergic manifestations in the human population. Our results pointed out that the structural design of the urban land use types play an important role in the distribution of allergophytes. The compact structure of the historic city center does not impede the establishment of allergophytes. Actually, it promotes some species that come from the dry pastures and rocky walls of the surrounding ecosystems. Allergenicity was revealed throughout the urban area, with a prevalence of species with monoporate pollens characteristic of the Poaceae. Highly allergenic plants are present in the central zone (within the city walls) and in some peripheral land use models (urban road verges). The particular abundance of Urticaceae with small triporate pollen grains and of various cultivated species, introduced by man for aesthetic reasons, contributes to the increase of allergophytism. The study points out the role of the interactions between the allergenic flora, human impact through the land use patterns, urban fauna, and the meso- and microclimatic conditions of the cities studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号