首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of the host contact network over which a pathogen is transmitted affect both epidemic spread and the projected effectiveness of control strategies. Given the importance of understanding these contact networks, it is unfortunate that they are very difficult to measure directly. This challenge has led to an interest in methods to infer information about host contact networks from pathogen phylogenies, because in shaping a pathogen''s opportunities for reproduction, contact networks also shape pathogen evolution. Host networks influence pathogen phylogenies both directly, through governing opportunities for evolution, and indirectly by changing the prevalence and incidence. Here, we aim to separate these two effects by comparing pathogen evolution on different host networks that share similar epidemic trajectories. This approach allows use to examine the direct effects of network structure on pathogen phylogenies, largely controlling for confounding differences arising from population dynamics. We find that networks with more heterogeneous degree distributions yield pathogen phylogenies with more variable cluster numbers, smaller mean cluster sizes, shorter mean branch lengths, and somewhat higher tree imbalance than networks with relatively homogeneous degree distributions. However, in particular for dynamic networks, we find that these direct effects are relatively modest. These findings suggest that the role of the epidemic trajectory, the dynamics of the network and the inherent variability of metrics such as cluster size must each be taken into account when trying to use pathogen phylogenies to understand characteristics about the underlying host contact network.  相似文献   

2.
The spatial-temporal dynamics of farm animal diseases depend both on disease specific processes and the underlying contact network between farms. Indirect transmission via free-living bacteria in the environment is an important transmission route and contributes significantly to the dynamics. The pair-wise model has been developed to include both direct transmission and indirect transmission via free stages. The model is compared with stochastic simulations of epidemics on contact networks. The network framework is applied to the investigation of the epidemiological dynamics of between-herd transmission of Salmonella spp. The main results help to explain differences in observed epidemiological patterns and to identify possible causes for different strains of Salmonella developing so much variation in their infection dynamics in UK dairy herds. Numerical results show that shorter infectious period, more persistent immune response and more rapid removal of faeces result in a lower prevalence of infection and a greater tendency for (damped) oscillation. A possible control strategy is consequently suggested. Furthermore, the effect of network structure on long-term dynamics is examined.  相似文献   

3.
Species interaction networks, which play an important role in determining pathogen transmission and spread in ecological communities, can shift in response to agricultural landscape simplification. However, we know surprisingly little about how landscape simplification‐driven changes in network structure impact epidemiological patterns. Here, we combine mathematical modelling and data from eleven bipartite plant‐pollinator networks observed along a landscape simplification gradient to elucidate how changes in network structure shape disease dynamics. Our empirical data show that landscape simplification reduces pathogen prevalence in bee communities via increased diet breadth of the dominant species. Furthermore, our empirical data and theoretical model indicate that increased connectance reduces the likelihood of a disease outbreak and decreases variance in prevalence among bee species in the community, resulting in a dilution effect. Because infectious diseases are implicated in pollinator declines worldwide, a better understanding of how land use change impacts species interactions is therefore critical for conserving pollinator health.  相似文献   

4.
Sexually transmitted pathogens persist in populations despite the availability of biomedical interventions and knowledge of behavioural changes that would reduce individual-level risk. While behavioural risk factors are shared between many sexually transmitted infections, the prevalence of these diseases across different risk groups varies. Understanding this heterogeneity and identifying better control strategies depends on an improved understanding of the complex social contact networks over which pathogens spread. To date, most efforts to study the impact of sexual network structure on disease dynamics have focused on static networks. However, the interaction between the dynamics of partnership formation and dissolution and the dynamics of transmission plays a role, both in restricting the effective network accessible to the pathogen, and in modulating the transmission dynamics. We present a simple method to simulate dynamical networks of sexual partnerships. We inform the model using survey data on sexual attitudes and lifestyles, and investigate how the duration of infectiousness changes the effective contact network over which disease may spread. We then simulate several control strategies: screening, vaccination and behavioural interventions. Previous theory and research has advanced the importance of core groups for spread and control of STD. Our work is consistent with the importance of core groups, but extends this idea to consider how the duration of infectiousness associated with a particular pathogen interacts with host behaviours to define these high risk subpopulations. Characteristics of the parts of the network accessible to the pathogen, which represent the network structure of sexual contacts from the “point of view” of the pathogen, are substantially different from those of the network as a whole. The pathogen itself plays an important role in determining this effective network structure; specifically, we find that if the pathogen’s duration of infectiousness is short, infection is more concentrated in high-activity, high-concurrency individuals even when all other factors are held constant. Widespread screening programmes would be enhanced by follow-up interventions targeting higher-risk individuals, because screening shortens the expected duration of infectiousness and causes a greater relative decrease in prevalence among lower-activity than in higher-activity individuals. Even for pathogens with longer durations of infectiousness, our findings suggest that targeting vaccination and behavioural interventions towards high-activity individuals provides comparable benefits to population-wide interventions.  相似文献   

5.
Boolean networks and, more generally, probabilistic Boolean networks, as one class of gene regulatory networks, model biological processes with the network dynamics determined by the logic-rule regulatory functions in conjunction with probabilistic parameters involved in network transitions. While there has been significant research on applying different control policies to alter network dynamics as future gene therapeutic intervention, we have seen less work on understanding the sensitivity of network dynamics with respect to perturbations to networks, including regulatory rules and the involved parameters, which is particularly critical for the design of intervention strategies. This paper studies this less investigated issue of network sensitivity in the long run. As the underlying model of probabilistic Boolean networks is a finite Markov chain, we define the network sensitivity based on the steady-state distributions of probabilistic Boolean networks and call it long-run sensitivity. The steady-state distribution reflects the long-run behavior of the network and it can give insight into the dynamics or momentum existing in a system. The change of steady-state distribution caused by possible perturbations is the key measure for intervention. This newly defined long-run sensitivity can provide insight on both network inference and intervention. We show the results for probabilistic Boolean networks generated from random Boolean networks and the results from two real biological networks illustrate preliminary applications of sensitivity in intervention for practical problems.  相似文献   

6.
We present a thorough inspection of the dynamical behavior of epidemic phenomena in populations with complex and heterogeneous connectivity patterns. We show that the growth of the epidemic prevalence is virtually instantaneous in all networks characterized by diverging degree fluctuations, independently of the structure of the connectivity correlation functions characterizing the population network. By means of analytical and numerical results, we show that the outbreak time evolution follows a precise hierarchical dynamics. Once reached the most highly connected hubs, the infection pervades the network in a progressive cascade across smaller degree classes. Finally, we show the influence of the initial conditions and the relevance of statistical results in single case studies concerning heterogeneous networks. The emerging theoretical framework appears of general interest in view of the recently observed abundance of natural networks with complex topological features and might provide useful insights for the development of adaptive strategies aimed at epidemic containment.  相似文献   

7.
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits.  相似文献   

8.
The problem of reliability of the dynamics in biological regulatory networks is studied in the framework of a generalized Boolean network model with continuous timing and noise. Using well-known artificial genetic networks such as the repressilator, we discuss concepts of reliability of rhythmic attractors. In a simple evolution process we investigate how overall network structure affects the reliability of the dynamics. In the course of the evolution, networks are selected for reliable dynamics. We find that most networks can be easily evolved towards reliable functioning while preserving the original function.  相似文献   

9.
Recent years have witnessed a rapid development of network reconstruction approaches, especially for a series of methods based on compressed sensing. Although compressed-sensing based methods require much less data than conventional approaches, the compressed sensing for reconstructing heterogeneous networks has not been fully exploited because of hubs. Hub neighbors require much more data to be inferred than small-degree nodes, inducing a cask effect for the reconstruction of heterogeneous networks. Here, a conflict-based method is proposed to overcome the cast effect to considerably reduce data amounts for achieving accurate reconstruction. Moreover, an element elimination method is presented to use the partially available structural information to reduce data requirements. The integration of both methods can further improve the reconstruction performance than separately using each technique. These methods are validated by exploring two evolutionary games taking place in scale-free networks, where individual information is accessible and an attempt to decode the network structure from measurable data is made. The results demonstrate that for all of the cases, much data are saved compared to that in the absence of these two methods. Due to the prevalence of heterogeneous networks in nature and society and the high cost of data acquisition in large-scale networks, these approaches have wide applications in many fields and are valuable for understanding and controlling the collective dynamics of a variety of heterogeneous networked systems.  相似文献   

10.
Reconstructing biological networks, such as metabolic and signaling networks, is at the heart of systems biology. Although many approaches exist for reconstructing network structure, few approaches recover the full dynamic behavior of a network. We survey such approaches that originate from computational scientific discovery, a subfield of machine learning. These take as input measured time course data, as well as existing domain knowledge, such as partial knowledge of the network structure. We demonstrate the use of these approaches on illustrative tasks of finding the complete dynamics of biological networks, which include examples of rediscovering known networks and their dynamics, as well as examples of proposing models for unknown networks.  相似文献   

11.
A preceding study analysed how the topology of network motifs affects the overall rate of the underlying biochemical processes. Surprisingly, it was shown that topologically non-isomorphic motifs can still be isodynamic in the sense that they exhibit the exact same performance rate. Because of the high prevalence of feed-forward functional modules in biological networks, one may hypothesize that evolution tends to favour motifs with faster dynamics. As a step towards ranking the efficiency of feed-forward network motifs, we use a linear flow model to prove theorems establishing that certain classes of motifs are isodynamic. In partitioning the class of all motifs on n nodes into equivalence classes based upon their dynamics, we establish a basis for comparing the efficiency/performance rates of different motifs. The potential biological importance of the theorems is briefly discussed and is the subject of an ongoing large-scale project.  相似文献   

12.
Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters) that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.  相似文献   

13.
Habitat network connectivity influences colonization dynamics, species invasions, and biodiversity patterns. Recent theoretical work suggests dendritic networks, such as those found in rivers, alter expectations regarding colonization and dispersal dynamics compared with other network types. As many native and non‐native species are spreading along river networks, this may have important ecological implications. However, experimental studies testing the effects of network structure on colonization and diversity patterns are scarce. Up to now, experimental studies have only considered networks where sites are connected with small corridors, or dispersal was experimentally controlled, which eliminates possible effects of species interactions on colonization dynamics. Here, we tested the effect of network connectivity and species interactions on colonization dynamics using continuous linear and dendritic (i.e., river‐like) networks, which allow for active dispersal. We used a set of six protist species and one rotifer species in linear and dendritic microcosm networks. At the start of the experiment, we introduced species, either singularly or as a community within the networks. Species subsequently actively colonized the networks. We periodically measured densities of species throughout the networks over 2 weeks to track community dynamics, colonization, and diversity patterns. We found that colonization of dendritic networks was faster compared with colonization of linear networks, which resulted in higher local mean species richness in dendritic networks. Initially, community similarity was also greater in dendritic networks compared with linear networks, but this effect vanished over time. The presence of species interactions increased community evenness over time, compared with extrapolations from single‐species setups. Our experimental findings confirm previous theoretical work and show that network connectivity, species‐specific dispersal ability, and species interactions greatly influence the dispersal and colonization of dendritic networks. We argue that these factors need to be considered in empirical studies, where effects of network connectivity on colonization patterns have been largely underestimated.  相似文献   

14.
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.  相似文献   

15.
Dynamics and Control of Diseases in Networks with Community Structure   总被引:1,自引:0,他引:1  
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.  相似文献   

16.
The influence of the topology on the asymptotic states of a network of interacting chemical species has been studied by simulating its time evolution. Random and scale-free networks have been designed to support relevant features of activation-deactivation reactions networks (mapping signal transduction networks) and the system of ordinary differential equations associated to the dynamics has been numerically solved. We analysed stationary states of the dynamics as a function of the network's connectivity and of the distribution of the chemical species on the network; we found important differences between the two topologies in the regime of low connectivity. In particular, only for low connected scale-free networks it is possible to find zero activity patterns as stationary states of the dynamics which work as signal off-states. Asymptotic features of random and scale-free networks become similar as the connectivity increases.  相似文献   

17.
Francis MR  Fertig EJ 《PloS one》2012,7(1):e29497
Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems.  相似文献   

18.
MOTIVATION: Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this article we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. RESULTS: We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our method first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation-inhibition networks to match the discretized data. Finally, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

19.
Ecological complex networks are common in the study of patched ecological systems where evolving populations interact within and among the patches. The loss of the dispersal connections between patches due to reasons such as erosion of migration corridors and road construction can cause an undesirable partitioning of such networks resulting in instability or negative impact on the metapopulations. A partitioning or spatial cut that is aware of the stability of the dynamics in the resulting daughter sub-networks can be an effective tool in dealing with the situation like proposing road alignment through a metapopulations network. This paper provides some mathematical conditions along with an heuristic graph partitioning algorithm that can help in finding ecologically suitable partitions of the metapopulations networks. Our study noted the crucial role of network connectivity (measured by Fiedler value) in stabilizing the metapopulations. That is, a sufficiently connected metapopulations network along with constrained internal patch dynamics has stable dynamics around its homogeneous co-existential equilibrium solution. With the considered mathematical model in this paper, network partitioning does not alter the internal patch dynamics around its homogeneous equilibrium point, but it can change the connectivity levels in the partitioned subnetworks. Thus, the proposed partitioning problem for an already stable metapopulations network is reduced to finding its subnetworks with desirable connectivity levels.  相似文献   

20.
Considering a preferential selection mechanism of load destination, we introduce a new method to quantify initial load distribution and subsequently construct a simple cascading model. By attacking the node with the highest load, we investigate the cascading dynamics in some synthetic networks. Surprisingly, we observe that for several networks of different structural patterns, a counterintuitive phenomenon emerges if the highest load attack is applied to the system, i.e., investing more resources to protect every node in a network inversely makes the whole network more vulnerable. We explain this ability paradox by analyzing the micro-structural components of the underlying network and therefore reveals how specific structural patterns may influence the cascading dynamics. We discover that the robustness of the network oscillates as the capacity of each node increases. The conclusion of the paper may shed lights on future investigations to avoid the demonstrated ability paradox and subsequent cascading failures in real-world networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号