首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《新西兰生态学杂志》2011,16(2):119-126
Plant species preferences of birds were determined by comparing the proportional bird use of plant species during direct observations with the proportions of plant species present on point-height intercepts in lowland rimu (Dacrydium cupressinum) forest in North Okarito, Westland. Plant species and bird use of plant species were divided into 5 m height classes, and rimu trees were divided into four age classes (sapling, pole, mature, and old). The frugivorous New Zealand pigeon (Hemiphaga novaeseelandiae) used mature and old rimu more than expected from the proportion of these age classes present, and it preferred the upper tiers of the forest. The omnivorous tui (Prosthemadera novaeseelandiae) had similar preferences to the pigeon. Other omnivorous species, viz., the bellbird (Anthornis melanura) and silvereye (Zosterops lateralis), shared preferences with both the pigeon and insectivorous species. Most insectivorous species, viz., the brown creeper (Mohoua novaeseelandiae), grey warbler (Gerygone igata), New Zealand fantail (Rhipidura fuliginosa), New Zealand tomtit (Petroica macrocephala), and rifleman (Acanthisitta chloris), used pole rimu more than expected and preferred the middle and lowest tiers. The insectivorous New Zealand robin (Petroica australis) had no preference for any plant species but had a strong preference for deadwood and the lowest tier of the forest. Of the 10 species sufficiently abundant to be monitored, the pigeon, bellbird, and tui are most likely to be detrimentally affected by selective-logging of mature and old rimu.  相似文献   

2.
We employed a chronosequence approach to evaluate patterns of bird abundance in relation to post-fire vegetation recovery in mountain big sagebrush (Artemisia tridentata vaseyana). We estimated population density for 12 species of birds within the perimeters of 4 fires that had undergone 8–20 years of vegetation recovery and on adjacent unburned areas in the northwestern Great Basin, USA. Six species showed negative responses to fire persisting up to 20 years. Two species showed positive responses with effects persisting for <20 years. Understory vegetation was similar between burned and unburned areas irrespective of recovery time, and shrub canopy cover was similar between burned and unburned sites after 20 years of recovery. Persistent reductions in bird densities lead us to conclude that shrub canopy cover alone is not a sufficient metric for predicting recovery of songbird abundances following disturbance in mountain big sagebrush. © 2013 The Wildlife Society.  相似文献   

3.
Urban fauna communities may be strongly influenced by environmental and socio‐economic factors, but the relative importance of these factors is poorly known. Most research on urban fauna has been conducted in large cities and it is unclear if the patterns found in these locations coincide with those from smaller human settlements. We examined the relative importance of environmental and socio‐economic factors in explaining variation in urban bird communities across 72 neighbourhoods in 18 regional towns in south‐eastern Australia. Native bird species richness varied from 6 to 32 across neighbourhoods and was higher in neighbourhoods with more nectar‐rich plants. Variation in bird species diversity across neighbourhoods was also strongly positively related to the density of nectar‐rich plants, but was higher also in neighbourhoods with higher socio‐economic status (reflecting higher levels of disposal income, education and home ownership). The density of native birds across neighbourhoods per season varied from 1 to 15 birds per hectare and was lower in neighbourhoods with a greater cover of impervious surfaces. The density of exotic birds (introduced to Australia) per season also varied across neighbourhoods (0–13 birds per hectare) and was lower in neighbourhoods with more nectar‐rich plants and higher in neighbourhoods with greater impervious surface cover. Our results demonstrated that the vegetation characteristics of household gardens, along streetscapes and in urban parklands had a strong influence on the richness and diversity of urban bird communities. The density of native and exotic birds varied primarily in response to changes in the built environment (measured through impervious surface cover). Socio‐economic factors had relatively little direct influence on urban birds, but neighbourhood socio‐economics may influence bird communities indirectly through the positive relationship between socio‐economic status and vegetation cover recorded in our study area.  相似文献   

4.
Aim Urbanization is a leading threat to global biodiversity, yet little is known about how the spatial arrangement and composition of biophysical elements – buildings and vegetation – within a metropolitan area influence habitat selection. Here, we ask: what is the relative importance of the structure and composition of these elements on bird species across multiple spatial scales? Location The temperate metropolitan area of Cincinnati, Ohio, USA. Methods We surveyed breeding birds on 71 plots along an urban gradient. We modelled relative density for 48 bird species in relation to local woody vegetation composition and structure and to tree cover, grass cover and building density within 50–1000 m of each plot. We used an information‐theoretic approach to compare models and variables. Results At the proximate scale, native tree and understory stem frequency were the most important vegetation variables explaining bird distributions. Species’ responses to landscape biophysical features and spatial scales varied. Most native species responded positively to vegetation measures and negatively to building density. Models combining both local vegetation and landscape information represented best or competitive models for the majority of species, while models containing only local vegetation characteristics were rarely competitive. Smaller spatial scales (≤ 500 m) were most important for 36 species, and eight species had best models at larger scales (> 500 m); however, several species had competitive models across multiple scales. Main conclusions Habitat selection by birds within the urban matrix is the result of a combination of factors operating at both proximate and broader spatial scales. Efforts to manage and design urban areas to benefit native birds require both fine‐scale (e.g., individual landowners and landscape design) and larger landscape actions (e.g., regional comprehensive planning).  相似文献   

5.
The recovery of vegetation cover is a process that has important implications for the conservation of biodiversity and ecosystem services. Generally, the recovery of vegetation cover is documented over large areas using remote sensing, and it is often assumed that ecosystem properties and processes recover along with remotely sensed canopy cover. Here we analyze and compare the structure, composition, and diversity of trees and shrubs among plots established in a stratified random sampling design over four remotely sensed canopy cover change (CCC) categories defined according to a gradient in the percent of canopy cover. Plots were located in the Lake Cuitzeo basin (Mexico), where canopy recovery associated with agricultural abandonment has occurred in recent decades (1975–2000). We found that diversity measures, basal area, tree and shrub density, ground-truthed canopy cover, and mean plant height increased with increasing CCC category. However, Shannon index (H′) was lower in the CCC category with the most closed canopy cover category than in plots apparently not affected by agriculture. Furthermore, ordination analyses showed that composition of dominant species were not associated with CCC categories. Our results suggest that canopy closure in our study area is not associated with the recovery of species diversity, and does not result in similar species dominance as in sites not affected by agriculture.  相似文献   

6.
The Sierra Madre Occidental and neighboring Madrean Sky Islands span a large and biologically diverse region of northwest Mexico and portions of the southwestern United States. Little is known about the abundance and habitat use of breeding birds in this region of Mexico, but such information is important for guiding conservation and management. We assessed densities and habitat relationships of breeding birds across Sky Island mountain ranges in Mexico and adjacent portions of the Sierra Madre from 2009 to 2012. We estimated densities at multiple spatial scales, assessed variation in densities among all major montane vegetation communities, and identified and estimated the effects of important habitat attributes on local densities. Regional density estimates of 65% of 72 focal species varied significantly among eight montane vegetation communities that ranged from oak savannah and woodland at low elevations to pine and mixed‐conifer forest at high elevations. Greater proportions of species occurred at peak densities or were relatively restricted to mixed‐conifer forest and montane riparian vegetation likely because of higher levels of structural or floristic diversity in those communities, but those species were typically rare or uncommon in the Sky Islands. Fewer species had peak densities in oak and pine‐oak woodland, and species associated with those communities were often more abundant across the region. Habitat models often included the effects of broadleaf deciduous vegetation cover (30% of species), which, together with tree density and fire severity, had positive effects on densities and suggest ways for managers to augment and conserve populations. Such patterns combined with greater threats to high‐elevation conifer forest and riparian areas underscore their value for conservation. Significant populations of many breeding bird species, including some that are of concern or were not known to occur regionally or in mountain ranges we surveyed, highlight the importance of conservation efforts in this area of Mexico.  相似文献   

7.
Biodiversity conservation and ecosystem-service provision will increasingly depend on the existence of secondary vegetation. Our success in achieving these goals will be determined by our ability to accurately estimate the structure and diversity of such communities at broad geographic scales. We examined whether the texture (the spatial variation of the image elements) of very high-resolution satellite imagery can be used for this purpose. In 14 fallows of different ages and one mature forest stand in a seasonally dry tropical forest landscape, we estimated basal area, canopy cover, stem density, species richness, Shannon index, Simpson index, and canopy height. The first six attributes were also estimated for a subset comprising the tallest plants. We calculated 40 texture variables based on the red and the near infrared bands, and EVI and NDVI, and selected the best-fit linear models describing each vegetation attribute based on them. Basal area (R 2 = 0.93), vegetation height and cover (0.89), species richness (0.87), and stand age (0.85) were the best-described attributes by two-variable models. Cross validation showed that these models had a high predictive power, and most estimated vegetation attributes were highly accurate. The success of this simple method (a single image was used and the models were linear and included very few variables) rests on the principle that image texture reflects the internal heterogeneity of successional vegetation at the proper scale. The vegetation attributes best predicted by texture are relevant in the face of two of the gravest threats to biosphere integrity: climate change and biodiversity loss. By providing reliable basal area and fallow-age estimates, image-texture analysis allows for the assessment of carbon sequestration and diversity loss rates. New and exciting research avenues open by simplifying the analysis of the extent and complexity of successional vegetation through the spatial variation of its spectral information.  相似文献   

8.
As large nature reserves occupy only a fraction of the earth’s land surface, conservation biologists are critically examining the role of private lands, habitat fragments, and plantations for conservation. This study in a biodiversity hotspot and endemic bird area, the Western Ghats mountains of India, examined the effects of habitat structure, floristics, and adjacent habitats on bird communities in shade-coffee and cardamom plantations and tropical rainforest fragments. Habitat and birds were sampled in 13 sites: six fragments (three relatively isolated and three with canopy connectivity with adjoining shade-coffee plantations and forests), six plantations differing in canopy tree species composition (five coffee and one cardamom), and one undisturbed primary rainforest control site in the Anamalai hills. Around 3300 detections of 6000 individual birds belonging to 106 species were obtained. The coffee plantations were poorer than rainforest in rainforest bird species, particularly endemic species, but the rustic cardamom plantation with diverse, native rainforest shade trees, had bird species richness and abundance comparable to primary rainforest. Plantations and fragments that adjoined habitats providing greater tree canopy connectivity supported more rainforest and fewer open-forest bird species and individuals than sites that lacked such connectivity. These effects were mediated by strong positive effects of vegetation structure, particularly woody plant variables, cane, and bamboo, on bird community structure. Bird community composition was however positively correlated only to floristic (tree species) composition of sites. The maintenance or restoration of habitat structure and (shade) tree species composition in shade-coffee and cardamom plantations and rainforest fragments can aid in rainforest bird conservation in the regional landscape.  相似文献   

9.
This study examined the effects of forest structure (tree species richness, canopy height, percent canopy cover, understory density, tree density and DBH) and avian species traits (nest type and indicator list status) on the diversity, abundance and dissimilarity of bird communities in forest remnants and reforestation areas adjacent to Costa Rican banana plantations. Bird species richness and abundance were significantly related to tree species richness, canopy height and canopy cover in multiple linear regressions, the latter two forest structure variables being the best statistical predictors. Stratification of analyses by bird species indicator categories improved fits of regressions, because correlations with environmental variables differed in sign for different guilds of birds, a result likely to hold for other avifaunas. Analysis of avifauna dissimilarities among sites demonstrated that the species composition of bird communities was highly correlated with forest structure and tree species composition. Logistic regressions indicated that birds making protected (cavity, burrow, pendant, sphere and covered) nests were 2–6 times more likely to be present in the study avifauna than birds making open (cup, saucer, platform and scrape) nests and indicators of disturbed habitats were 11 times more likely to be present than indicators of primary forest. The forest structure data used were simple and inexpensive to collect, and data on avian traits were drawn from the literature. Thus, these methods could easily be replicated at other locations and would be valuable management aids and biodiversity assessment tools for conservation planning.  相似文献   

10.
An important question for tropical forest restoration is whether degraded lands can be actively managed to attract birds. We censused birds and measured vegetation structure at 27 stations in young (6–9‐yr old) actively and passively restored pasture and old growth forest at Las Cruces Biological Station in southern Costa Rica. During 481 10‐min point counts, we detected a high diversity—186 species—of birds using the restoration area. Surprisingly, species richness and detection frequency did not differ among habitats, and proportional similarity of bird assemblages to old growth forest did not differ between restoration treatments. Bird detection frequency was instead explained by exotic grass cover and understory stem density—vegetation structures that were not strongly impacted by active restoration. The similarity of bird assemblages in actively and passively restored forest may be attributed to differential habitat preferences within and among feeding guilds, low structural contrast between treatments, or the effect of nucleation from actively restored plots into passively restored areas. Rapid recovery of vegetation in this recently restored site is likely due to its proximity to old growth forest and the lack of barriers to effective seed dispersal. Previous restoration studies in highly binary environments (i.e., open pasture vs. tree plantation) have found strong differences in bird abundance and richness. Our data contradict this trend, and suggest that tropical restoration ecologists should carefully consider: (1) when the benefits of active restoration outweigh the cost of implementation; and (2) which avian guilds should be used to measure restoration success given differential responses to habitat structure.  相似文献   

11.
Forest restoration by planting trees often accelerates succession, but the trajectories toward reference ecosystems have rarely been evaluated. Using a chronosequence (4–53 years) of 26 riparian forest undergoing restoration in the Brazilian Atlantic Forest, we modeled how the variables representing forest structure, tree species richness and composition, and the proportion of plant functional guilds change through time. We also estimated the time required for these variables to reach different types of reference ecosystems: old‐growth forest (OGF), degraded forest, and secondary forest. Among the attributes which follow a predictable trajectory over time are: the basal area, canopy cover, density and tree species richness, as well as proportions of shade tolerant and slow growing species or individuals. Most of the variation in density of pteridophythes, lianas, shrubs and phorophythes, proportion of animal‐dispersed individuals, rarefied richness and floristic similarity with reference ecosystems remain unexplained. Estimated time to reach the reference ecosystems is, in general, shorter for structural attributes than for species composition or proportion of functional guilds. The length of this time varies among the three types of reference ecosystems for most attributes. For instance, tree species richness and proportion of shade tolerant or slow growing individuals become similar to secondary forests in about 40 years, but is estimated to take 70 years or more to reach the OGF. Of all the variables considered, canopy cover, basal area, density, and richness of the understory—by their ecological relevance and predictability—are recommended as ecological indicators for monitoring tropical forest restoration success.  相似文献   

12.
环境因子对上海城市园林春季鸟类群落结构特征的影响   总被引:7,自引:0,他引:7  
2004年3—5月,对上海8个园林绿地的春季鸟类做了研究。在调查中共观察到55种鸟类,其中留鸟31种,候鸟24种。运用回归与相关统计分析方法分析了鸟类群落结构和分布特征与8个园林绿地的公园面积、水体比例、植被种数、乔木层盖度、灌木层盖度、草本层盖度、地形坡度异质性、临主干道状况、人流量、行道宽度10项环境指标的关系。结果表明:(1)公园面积、植被种数、灌木层盖度、草本层盖度、地形坡度异质性、临主干道状况、行道宽度等7个因子在影响园林鸟类群落结构和分布中起关键性作用;(2)上海城市鸟类数量、多样性呈单一化趋势,而且公园绿地内大面积水体等建设方案并不利于鸟类的栖息。  相似文献   

13.
Teruaki Hino 《Oecologia》1985,65(3):442-448
Summary The relationship between the bird community and habitat structure in wind shelterbelts of Ishikari district was examined.Breeding birds were classified into nesting guilds (hole, canopy, and bush) and also into foraging guilds (outside, canopy, and bush) Both density and species richness in the outside-foraging guild were positively related to forest age variables. On the other hand, bird density in all three nesting guilds and the other two foraging guilds (canopy and bush) was correlated with the vegetation cover of their nesting or foraging sites, and species richness was positively correlated with tree species complexity variables.Bird species diversity (BSD) was closely related to tree species complexity, but not to foliage height diversity (FHD) within woods. However, if woods were re-classified into two groups such as natural and artificial and these were separately analysed, the correlation between BSD and FHD was significant.From these results, it is concluded that both FHD and tree species complexity should be considered together in order to predict BSD within forests. A new index is proposed for this purpose, and its usefulness discussed.  相似文献   

14.
Riparian habitats in the western United States are imperiled, yet they support the highest bird diversity in arid regions, making them a conservation priority. Riparian restoration efforts can be enhanced by information on species response to variation in habitat features. We examined the habitat selection of four riparian birds known as management indicators at restoration and reference sites along the Trinity River, California. We compared vegetation structure and composition at nest sites, territories, and random points to quantify used versus available habitat from 2012 to 2015. Vegetation in focal species' territories differed between site types, and from available habitat, indicating nonrandom site choice. Birds selected aspects of more structurally complex habitats, such as greater canopy cover, canopy height, and tree species richness. Yellow‐breasted Chats preferred greater shrub cover, and Yellow Warblers preferred greater cover by non‐native Himalayan blackberry. Territory preferences on restoration sites were often a subset of those on reference sites. One exception was canopy height, which was taller on restoration site territories than random points for all species, suggesting that birds preferentially used patches of remnant habitat. Few variables were significant in nest site selection. Restoration plantings along the Trinity River were only 3–10 years old during this study, and have not developed many of the characteristics of mature riparian habitat preferred by birds, but may improve in habitat value over time. Understanding habitat selection is especially important in recently human‐modified environments, where indirect cues used to assess habitat quality may become disassociated from actual habitat quality, potentially creating ecological traps.  相似文献   

15.
ABSTRACT Effects of silvicultural activities on birds are of increasing interest because of documented national declines in breeding bird populations for some species and the potential that these declines are in part due to changes in forest habitat. Silviculturally induced disturbances have been advocated as a means to achieve suitable forest conditions for priority wildlife species in bottomland hardwood forests. We evaluated how silvicultural activities on conservation lands in bottomland hardwood forests of Louisiana, USA, influenced species-specific densities of breeding birds. Our data were from independent studies, which used standardized point-count surveys for breeding birds in 124 bottomland hardwood forest stands on 12 management areas. We used Program DISTANCE 5.0, Release 2.0 (Thomas et al. 2006) to estimate density for 43 species with >50 detections. For 36 of those species we compared density estimates among harvest regimes (individual selection, group selection, extensive harvest, and no harvest). We observed 10 species with similar densities in those harvest regimes compared with densities in stands not harvested. However, we observed 10 species that were negatively impacted by harvest with greater densities in stands not harvested, 9 species with greater densities in individual selection stands, 4 species with greater densities in group selection stands, and 4 species with greater densities in stands receiving an extensive harvest (e.g., >40% canopy removal). Differences in intensity of harvest influenced densities of breeding birds. Moreover, community-wide avian conservation values of stands subjected to individual and group selection, and stands not harvested, were similar to each other and greater than that of stands subjected to extensive harvest that removed >40% canopy cover. These results have implications for managers estimating breeding bird populations, in addition to predicting changes in bird communities as a result of prescribed and future forest management practices.  相似文献   

16.
ABSTRACT To clarify the underlying causes of the species‐area relationship in marsh‐nesting birds, I studied eight freshwater tidal marshes of the Connecticut River that differed in area, degree of isolation, mudflat cover, water cover, tidal regime, and extent of individual plant communities. I measured these habitat variables on aerial infrared photos, and surveyed bird populations by mapping the distribution of all birds in marshes under 5 ha in area and establishing 50‐m radius plots in marshes over 5 ha. From surveys, I determined species richness, population densities, and total populations. Analysis revealed a positive relationship between species richness and area, but no correlation between area and habitat heterogeneity. Other habitat variables were poor predictors of species richness. The lack of a relationship between habitat and species richness appeared to be a consequence of most vegetation types present not being sufficiently distinct for birds to differentially associate with them. I also found no relationship between bird population density and area, suggesting that habitat quality in marshes did not improve with increasing size, and species evenness declined with increasing richness because greater richness was associated with the presence of more rare species. Larger marshes had more rare species, species with larger populations, and species with a minimum threshold area for occurrence. Thus, my results are consistent with theoretical predictions that larger populations are less prone to local extinction and, as individuals are added to a community, more rare species are present.  相似文献   

17.
Abstract: Lowland riparian vegetation in the southwestern United States is critically important for maintaining a high richness and density of breeding birds. Further investigation is needed within riparian corridors, however, to evaluate the relative importance of vegetation type and hydrologic regime for avian density and nest survival as targets for regional conservation or restoration efforts. We estimated the densities of 40 bird species and for species grouped on the basis of nest height and dependence on surface water in gallery cottonwood–willow (Populus spp.–Salix spp.) forests, saltcedar (Tamarix spp.) shrub lands, and terrace vegetation types along a gradient in the hydrologic regime of the San Pedro River, Arizona, USA. We also assessed nest survival for shrub-nesting insectivores and herbivores. Canopy-nesting birds as a group and 14 individual bird species reached their greatest densities in cottonwood forests regardless of the hydrologic regime. Water-dependent birds as a group reached their highest density in both intermittent- and perennial-flow cottonwood stands, but certain species occurred almost exclusively in perennial-flow sites. Two shrub-nesting species and the brown-headed cowbird (Molothrus ater) were most abundant in saltcedar shrub lands, and the brown-headed cowbird was most abundant in saltcedar stands with intermittent flows. Mesquite (Prosopis spp.) and big sacaton (Sporobolus wrightii) grassland each maintained the highest densities of certain species within ≥1 hydrologic regime. Shrub-nesting insectivores had the greatest nest survival in cottonwood, including Arizona Bell's vireo (Vireo bellii arizonae), and also had lower proportions of nests parasitized and preyed upon, although 95% confidence intervals among vegetation types overlapped. Nest survival for both shrub-nesting insectivores and herbivores was lowest in intermittent-flow saltcedar, although, again, confidence intervals overlapped. Nest survival was lower in parasitized than nonparasitized nests in mesquite and across vegetation types for Arizona Bell's vireo and in cottonwood for Abert's towhee (Pipilo aberti). Riparian management that maintains heterogeneous riparian vegetation types, including floodplain vegetation comprising cottonwood–willow gallery riparian forests with some stretches of perennial flow, are important for maintaining the high diversity and abundance of breeding birds on the San Pedro River and probably across the region. Cottonwood stands also appear to maintain highest nest survival for some shrub-nesting birds.  相似文献   

18.
Studies comparing different bird censusing methods are useful for assessing relative biases, synthesizing data across studies, and designing bird population monitoring programmes. A field study was carried out in mid-elevation tropical rainforest in the Western Ghats to compare bird density estimates from line transect, point count and territory spot-mapping methods. Interspecific comparisons were made using data for 13 common resident bird species, including two endemics. Variable-width line transect density estimates were highly correlated with, but slightly (17%) higher than, those produced by territory spot-mapping. Although densities from variable-width point counts and spot-mapping were highly positively correlated, the estimates were 95% higher on average in the former. Higher density estimates relative to spot-mapping were produced mainly for the most abundant species, probably due to their mobility and the inclusion of additional individuals that enter the count area during the count period. Fixed-width strip transects and point counts produced density estimates that were highly correlated with, but significantly lower than, variable-width estimates. Wherever possible, territory spot-mapping and line transects are recommended for density estimates; the former may yield additional information on spatial distribution of birds. Fixed-width transects or point counts, being easier to apply, may be used for large-scale monitoring programmes. Interspecific variation in flocking systems and the poor visibility in dense rainforest vegetation indicate the need for care in collection of data on flock size and its variation, which is necessary for estimating the density of individuals. The variation across methods suggests the need for further research using multiple methods across years and marked individuals to verify territoriality and accuracy.  相似文献   

19.
刘旭  张文慧  李咏红  高鹏杰  李黎  王彤 《生态学报》2018,38(12):4404-4411
北京地区处于全球候鸟东亚-澳大利西亚的迁徙路线上,是候鸟重要的迁徙路线,近些年,随着人为活动的影响,该区生境破碎化问题愈发突出,直接威胁着本地鸟种和过境迁徙鸟类的生存。为达到保护鸟类多样性的目的,需开展相应的栖息地恢复工作。不同生态类群的鸟类对栖息地有着不同的要求,相同鸟种在不同空间、季节和生活期对栖息地的选择也有着不同的特点。因而,鸟类栖息地恢复应针对目标鸟种根据其繁殖特点、巢位空间分布、食性特点、活动空间特点等进行规划营造。以北京房山琉璃河湿地公园为例,针对项目所在区域的鸟类分布特征,确定目标恢复鸟种,结合项目区现场条件,围绕目标鸟种对于栖息地水系、植被等方面的需求,从岸线重塑、水深设计、植物配置、生态鸟岛等方面规划设计鸟类栖息地修复措施。  相似文献   

20.
Aim To describe species–area relationships in human settlements and compare them with those from a non‐urban habitat. Location West‐central Mexico. Methods We surveyed breeding birds in 13 human settlements and five shrubland patches. We estimated bird species richness using an abundance‐based coverage estimator with equal sample sizes to eliminate biases related to sampling effort differences. To assess species–area relationships, we performed log–log linear regressions between the size of the studied patches and their estimated bird richness. We also used a logarithmic approach to determine how the species–area relationship asymptoted and made use of the Michaelis–Menten model to identify the size at which the studied patches reached their maximum species richness. We also investigated (1) possible relationships among the estimated bird richness and other variables known to affect urban‐dwelling birds (built cover, plant species richness, tree cover or human population density) and (2) changes in bird community composition related to the size of the studied human settlements. Results Species–area relationships exhibited different patterns among the studied habitats. The log–log regression slope was steeper in human settlements, while the intercept was higher in shrublands. The maximum number of species was more than twofold higher in shrublands. Human settlement patch size was the only variable significantly related to bird richness. Our community composition results show that two main bird groups are related to human settlement size, and that as the size of human settlements increases, bird community similarity in relation to the largest city increases. Main conclusions Human settlements act as ecological islands, with pronounced species–area relationships. Our results suggest that an important threshold for bird species richness and community composition is reached in human settlements > 10.2 km2. This threshold is unlikely to be generalizable among bio‐regions, and thus should be quantified and considered when studying, managing and/or planning urban systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号