首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intensive beekeeping to mitigate crop pollination deficits and habitat loss may cause interspecific competition between bees. Studies show negative correlations between flower visitation of honey bees (Apis mellifera) and wild bees, but effects on the reproduction of wild bees were not proven. Likely reasons are that honey bees can hardly be excluded from controls and wild bee nests are generally difficult to detect in field experiments. The goal of this study was to investigate whether red mason bees (Osmia bicornis) compete with honey bees in cages in order to compare the reproduction of red mason bees under different honey bee densities. Three treatments were applied, each replicated in four cages of 18 m³ with 38 red mason bees in all treatments and 0, 100, and 300 honey bees per treatment with 10–20% being foragers. Within the cages, the flower visitation and interspecific displacements from flowers were observed. Niche breadths and resource overlaps of both bee species were calculated, and the reproduction of red mason bees was measured. Red mason bees visited fewer flowers when honey bees were present. Niche breadth of red mason bees decreased with increasing honey bee density while resource overlaps remained constant. The reproduction of red mason bees decreased in cages with honey bees. In conclusion, our experimental results show that in small and isolated flower patches, wild bees can temporarily suffer from competition with honey bees. Further research should aim to test for competition on small and isolated flower patches in real landscapes.  相似文献   

2.
Greenhouse tomatoes, Lycopersicon esculentum Miller (Solanaceae), are autogamous, but facilitated pollination results in increased fruit size and set. Previous research examining honey bee pollination in greenhouse tomato crops established that fruit quality resulting from honey bee visitation is often comparable to bumble bees (Bombus spp.) and significantly better than in flowers that receive no facilitated pollination. However, management alternatives have not been studied to improve tomato fruit quality when honey bees are the only pollination option available for the high-value greenhouse industry. We investigated whether the quantity of brood (eggs, larvae, and pupae) in a honey bee colony in the winter and screening on greenhouse vents in the summer would encourage honey bee foraging on tomato flowers. We also established the influence of time of year on the potential for honey bees to be effective pollinating agents. We constructed small honey bee colonies full of naive forager bees with either two frames of brood ("brood colonies") or two empty frames ("no-brood") and compared total fruit set and the number of tomato seeds resulting from fruit potentially visited by honey bees in each of these treatments to bagged flowers that received no facilitated pollination. There was no significant difference in the quality of fruit resulting from honey bees from "brood" and "no-brood" colonies. However, these fruits produced significantly more seeds than bagged flowers restricted from facilitated pollination. Honey bees from brood and no-brood colonies also resulted in 98% fruit set compared with 80% fruit set in bagged flowers that received no facilitated pollination. During the summer, the number of seeds per fruit did not differ significantly between unbagged flowers potentially visited by honey bees in screened greenhouses and unscreened greenhouses and bagged flowers that received no facilitated pollination. However, time of year did have a significant influence on the quality of fruit produced by honey bees compared with flowers that received no facilitated pollination, because no difference in seed number was observed between the treatments after mid-April. The results from this study demonstrate that the management of brood levels and vent screening cannot be used to improve the quality of fruit resulting from honey bee pollination and that honey bees can be a feasible greenhouse pollination alternative only during the winter.  相似文献   

3.
生态条件的多样性变化对蜜蜂生存的影响   总被引:1,自引:0,他引:1  
侯春生  张学锋 《生态学报》2011,31(17):5061-5070
蜜蜂在整个生态系统中起着重要的传花授粉作用,是生态链中不可或缺的物种。随着现代农业的发展,蜜蜂赖以生存的环境遭到破坏,继而引发蜜蜂数量大幅减少,影响了蜂种的生存与可持续发展。总结了近年来生态条件的变化,归纳了影响蜜蜂生存的主要因素,分析了蜜蜂生存艰难的原因,提出了蜜蜂生存的关键问题,并展望了未来维持蜜蜂强群的主要研究方向。  相似文献   

4.
  1. Crop pollination generally increases with pollinator diversity and wild pollinator visitation. To optimize crop pollination, it is necessary to investigate the pollination contribution of different pollinator species. In the present study, we examined this contribution of honey bees and non‐Apis bees (bumble bees, mason bees and other solitary bees) in sweet cherry.
  2. We assessed the pollination efficiency (fruit set of flowers receiving only one visit) and foraging behaviour (flower visitation rate, probability of tree change, probability of row change and contact with the stigma) of honey bees and different types of non‐Apis bees.
  3. Single visit pollination efficiency on sweet cherry was higher for both mason bees and solitary bees compared with bumble bees and honey bees. The different measures of foraging behaviour were variable among non‐Apis bees and honey bees. Adding to their high single visit efficiency, mason bees also visited significantly more flower per minute, and they had a high probability of tree change and a high probability to contact the stigma.
  4. The results of the present study highlight the higher pollination performance of solitary bees and especially mason bees compared with bumble bees and honey bees. Management to support species with high pollination efficiency and effective foraging behaviour will promote crop pollination.
  相似文献   

5.
We investigated the reproductive biology, including the floral biology, pollination biology, breeding system and reproductive success, of Pachira aquatica, a native and dominant tropical tree of fresh water wetlands, throughout the coastal plain of the Gulf of Mexico. The flowers present nocturnal anthesis, copious nectar production and sugar concentration (range 18–23%) suitable for nocturnal visitors such as bats and sphingid moths. The main nocturnal visitors were bats and sphingid moths while bees were the main diurnal visitors. There were no differences in legitimate visitation rates among bats, moths and honey bees. Bats and honey bees fed mainly on pollen while moths fed on nectar, suggesting resource partitioning. Eight species of bats carried pollen but Leptonycteris yerbabuenae is probably the most effective pollinator due to its higher pollen loads. The sphingid moths Manduca rustica, Cocytius duponchel and Eumorpha satellitia were recorded visiting flowers. Hand pollination experiments indicated a predominant outcrossing breeding system. Open pollination experiments resulted in a null fruit set, indicating pollen limitation; however, mean reproductive success, according to a seasonal census, was 17 ± 3%; these contrasting results could be explained by the seasonal availability of pollinators. We conclude that P. aquatica is an outcrossing species with a pollination system originally specialized for bats and sphingid moths, which could be driven to a multimodal pollination system due to the introduction of honey bees to tropical America.  相似文献   

6.
Reproductive investment is a central life history variable that influences all aspects of life. Hormones coordinate reproduction in multicellular organisms, but the mechanisms controlling the collective reproductive investment of social insects are largely unexplored. One important aspect of honey bee (Apis mellifera) reproductive investment consists of raising female‐destined larvae into new queens by alloparental care of nurse bees in form of royal jelly provisioning. Artificial selection for commercial royal jelly production over 40 years has increased this reproductive investment by an order of magnitude. In a cross‐fostering experiment, we establish that this shift in social phenotype is caused by nurse bees. We find no evidence for changes in larval signalling. Instead, the antennae of the nurse bees of the selected stock are more responsive to brood pheromones than control bees. Correspondingly, the selected royal jelly bee nurses are more attracted to brood pheromones than unselected control nurses. Comparative proteomics of the antennae from the selected and unselected stocks indicate putative molecular mechanisms, primarily changes in chemosensation and energy metabolism. We report expression differences of several candidate genes that correlate with the differences in reproductive investment. The functional relevance of these genes is supported by demonstrating that the corresponding proteins can competitively bind one previously described and one newly discovered brood pheromone. Thus, we suggest several chemosensory genes, most prominently OBP16 and CSP4, as candidate mechanisms controlling queen rearing, a key reproductive investment, in honey bees. These findings reveal novel aspects of pheromonal communication in honey bees and explain how sensory changes affect communication and lead to a drastic shift in colony‐level resource allocation to sexual reproduction. Thus, pheromonal and hormonal communication may play similar roles for reproductive investment in superorganisms and multicellular organisms, respectively.  相似文献   

7.
Flowers of most plant species are visited by a variety of animals. Some of these visitors are effective pollinators while others remove resources without transferring pollen. Studies comparing the effectiveness of different visitors as pollinators often compare taxa without considering variation in behavior within a taxon. Wilson and Thomson (Ecology 72: 1503-1507, 1991) documented the effects of honey bees and bumble bees on the pollination dynamics of Impatiens capensis. They found that pollen-collecting honey bees removed large numbers of pollen grains from anthers but deposited little of it on stigmas; bumble bees, which sought nectar, removed less pollen but deposited more of it on stigmas. It is unclear whether the low pollen transfer efficiencies of honey bees are explained by their morphology or by their pollen-collecting behavior. We repeated the work of Wilson and Thomson at a site where honey bees were foraging for nectar, not pollen. We measured the quantity of pollen remaining in anthers, the number of pollen grains deposited on stigmas, and seed production after single visits by honey bees and bumble bees. The differences between the taxa disappeared when they were foraging in a similar manner. Our results clearly demonstrate the importance of foraging behavior on the pollination effectiveness of floral visitors.  相似文献   

8.
M. W. Ramsey 《Oecologia》1988,76(1):119-124
Summary The effectiveness of nectarivorous birds, introduced honey bees and staphylined beetles as pollinators of Banksia menziesii was assessed. Staphylinids removed substantial amounts of pollen but did not deposit any onto stigmata. Abundance of beetles on inflorescences was related to the mean number of florets opening per day. Honey bees collecting pollen were more likely to effect pollination than those collecting nectar which only contacted stigmata when arriving or leaving an inflorescence. Nectar-foraging birds probed between florets 10.2±0.8 (±SE) times, contacting 8–16 stigmata during each probe. Bees visited inflorescences ten times more frequently than birds although they deposited only 25% of the pollen that birds did on stigmata. Fruit set was ten times greater on inflorescences visited by birds than on inflorescences visited by bees. Bees were capable of removing as much pollen as birds but, because of direct pollen transfer to birds when florets opened during foraging, actual removal was probably much less. Selection for floret opening during nectar foraging by birds may have resulted from pollen removal by non-pollinating animals, such as staphylinids.  相似文献   

9.
Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.  相似文献   

10.
Biodiversity buffers pollination from changes in environmental conditions   总被引:1,自引:0,他引:1  
A hypothesized underlying principle of the diversity‐functioning relationship is that functional groups respond differently to environmental change. Over 3 years, we investigated how pollinator diversity contributes to the magnitude of pollination service through spatial complementarity and differential response to high winds in California almond orchards. We found honey bees preferentially visited the top sections of the tree. Where wild pollinators were present, they showed spatial complementarity to honey bees and visited the bottom tree sections more frequently. As wind speed increased, honey bees' spatial preference shifted toward the bottom tree sections. In high winds (>2.5 m s?1), orchards with low pollinator diversity (honey bees only) received almost no flower visits. In orchards with high pollinator diversity, visitation decreased to a lesser extent as wild bee visitation was unaffected by high winds. Our results demonstrate how spatial complementarity in diverse communities can help buffer pollination services to environmental changes like wind speed.  相似文献   

11.
The flora of New Caledonia is characterized by remarkably high species diversity, high endemicity, and an unusual abundance of archaic plant taxa. To investigate community-level pollination mutualism in this endemic ecosystem, we observed flower visitors on 99 plant species in 42 families of various types of vegetation. Among the 95 native plant species, the most dominant pollination system was melittophily (bee-pollinated, 46.3%), followed by phalaenophily (moth-pollinated, 20.0%), ornithophily (bird-pollinated, 11.6%), cantharophily (beetle-pollinated, 8.4%), myophily (fly-pollinated, 3.2%), chiropterophily (bat-pollinated, 3.2%), and anemophily (wind-pollinated, 3.2%). The prevalence of ornithophily by honeyeaters shows an ecological link to pollination mutualism in Australia. The relative dominance of phalaenophily is unique to New Caledonia, and is proposed to be related to the low diversity of the original bee fauna and the absence of long-tongued bees. Although some archaic plants maintain archaic plant-pollinator interactions, e.g., Zygogynum pollinated by micropterigid moths, or Hedycarya pollinated by thrips and staphylinid beetles, the most dominant organism observed on flowers was the introduced honey bee, Apis mellifera. The plant species now visited by honey bees are thought to have originally been pollinated by native solitary short-tongued bees. Our data suggest that the unique systems of pollination mutualism in New Caledonia are now endangered by the establishment of highly invasive honey bees.  相似文献   

12.
The European honey bee exploits floral resources efficiently and may therefore compete with solitary wild bees. Hence, conservationists and bee keepers are debating about the consequences of beekeeping for the conservation of wild bees in nature reserves. We observed flower-visiting bees on flowers of Calluna vulgaris in sites differing in the distance to the next honey-bee hive and in sites with hives present and absent in the Lüneburger Heath, Germany. Additionally, we counted wild bee ground nests in sites that differ in their distance to the next hive and wild bee stem nests and stem-nesting bee species in sites with hives present and absent. We did not observe fewer honey bees or higher wild bee flower visits in sites with different distances to the next hive (up to 1,229 m). However, wild bees visited fewer flowers and honey bee visits increased in sites containing honey-bee hives and in sites containing honey-bee hives we found fewer stem-nesting bee species. The reproductive success, measured as number of nests, was not affected by distance to honey-bee hives or their presence but by availability and characteristics of nesting resources. Our results suggest that beekeeping in the Lüneburg Heath can affect the conservation of stem-nesting bee species richness but not the overall reproduction either of stem-nesting or of ground-nesting bees. Future experiments need control sites with larger distances than 500 m to hives. Until more information is available, conservation efforts should forgo to enhance honey bee stocking rates but enhance the availability of nesting resources.  相似文献   

13.
Capitol Reef National Park in central Utah, USA surrounds 22 managed fruit orchards started over a century ago by Mormon pioneers. Honey bees are imported for pollination, although the area in which the Park is embedded has over 700 species of native bees, many of which are potential orchard pollinators. We studied the visitation of native bees to apple, pear, apricot, and sweet cherry over 2 years. Thirty species of bees visited the flowers but, except for pear flowers, most were uncommon compared to honey bees. Evidence that honey bees prevented native bees from foraging on orchard crop flowers was equivocal: generally, honey bee and native bee visitation rates to the flowers were not negatively correlated, nor were native bee visitation rates positively correlated with distance of orchards from honey bee hives. Conversely, competition was tentatively suggested by much larger numbers of honey bees than natives on the flowers of apples, apricots and cherry; and by the large increase of native bees on pears, where honey bee numbers were low. At least one-third of the native bee species visiting the flowers are potential pollinators, including cavity-nesting species such as Osmia lignaria propinqua, currently managed for small orchard pollination in the US, plus several fossorial species, including one rosaceous flower specialist (Andrena milwaukiensis). We suggest that gradual withdrawal of honey bees from the Park would help conserve native bee populations without decreasing orchard crop productivity, and would serve as a demonstration of the commercial value of native pollinators.  相似文献   

14.
The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies.  相似文献   

15.
Native bees provide insurance against ongoing honey bee losses   总被引:2,自引:0,他引:2  
One of the values of biodiversity is that it may provide 'biological insurance' for services currently rendered by domesticated species or technology. We used crop pollination as a model system, and investigated whether the loss of a domesticated pollinator (the honey bee) could be compensated for by native, wild bee species. We measured pollination provided to watermelon crops at 23 farms in New Jersey and Pennsylvania, USA, and used a simulation model to separate the pollen provided by honey bees and native bees. Simulation results predict that native bees alone provide sufficient pollination at > 90% of the farms studied. Furthermore, empirical total pollen deposition at flowers was strongly, significantly correlated with native bee visitation but not with honey bee visitation. The honey bee is currently undergoing extensive die-offs because of Colony Collapse Disorder. We predict that in our region native bees will buffer potential declines in agricultural production because of honey bee losses.  相似文献   

16.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

17.
Recent declines in managed honey bee, Apis mellifera L., colonies have increased interest in the current and potential contribution of wild bee populations to the pollination of agricultural crops. Because wild bees often live in agricultural fields, their population density and contribution to crop pollination may be influenced by farming practices, especially those used to reduce the populations of other insects. We took a census of pollinators of squash and pumpkin at 25 farms in Virginia, West Virginia, and Maryland to see whether pollinator abundance was related to farming practices. The main pollinators were Peponapis pruinosa Say; honey bees, and bumble bees (Bombus spp.). The squash bee was the most abundant pollinator on squash and pumpkin, occurring at 23 of 25 farms in population densities that were commonly several times higher than that of other pollinators. Squash bee density was related to tillage practices: no-tillage farms hosted three times as great a density of squash bees as tilled farms. Pollinator density was not related to pesticide use. Honey bee density on squash and pumpkin was not related to the presence of managed honey bee colonies on farms. Farms with colonies did not have more honey bees per flower than farms that did not keep honey bees, probably reflecting the lack of affinity of honey bees for these crops. Future research should examine the economic impacts of managing farms in ways that promote pollinators, particularly pollinators of crops that are not well served by managed honey bee colonies.  相似文献   

18.
TracyS. Feldman 《Oikos》2006,115(1):128-140
Plant reproduction is often reduced at low densities, due to reduced pollinator visitation rates. Recent theory suggests that a disproportionate increase in pollinator visits to patches of plants as heterospecific plant density increases (i.e. if visitation is a sigmoid function of patch density) can rescue sparse populations of a focal plant species from reduced reproductive success or population decline. A field experiment was performed to determine the shape of the pollinator visitation response to patches of differing density of the common weed Brassica rapa . Both the aggregative and functional response for the entire pollinator community were saturating rather than sigmoid, indicating that pollinator response does not accelerate when density increases. The results for the entire pollinator community were consistent among temporal and spatial replicates. Aggregative response curves for specific pollinator taxa were either linear (bombyliid flies) or saturating (syrphid flies, solitary bees, and Lepidoptera). Functional responses for these taxa were saturating (syrphid flies and solitary bees) or flat (bombyliid flies and Lepidoptera). Individual pollinators visited more plants during foraging bouts in high-density patches, but visits per plant decreased. Seeds per fruit and seeds per flower increased with increasing density. There is no evidence that pollinators disproportionately visit denser patches, or that the conditions for this mechanism of pollination facilitation are likely to be met in this generalist pollinator system.  相似文献   

19.
Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.  相似文献   

20.
Inadequate bee pollination limits rabbiteye blueberry, Vaccinium ashei Reade, production in the some areas of the southeastern United States. Honey bees, Apis mellifera L., are currently the only manageable pollinators available for pollinating V. ashei. However, a new adaptable pollinator for rabbiteye blueberry, Osmia ribifloris Cockerell, was successfully reared and flown in captivity. The bee nested successfully in wooden shelters and conferred superior fruit set to 2-yr-old potted, rabbiteye blueberry bushes. Pollination efficiency or the percentage of blueberry flowers to set fruit after being visited once by a female O. ribifloris was comparable to that of the female blueberry bee Habropoda laboriosa (F.) and worker honey bees. Interestingly, honey bees once thought to be inefficient pollinators of rabbiteye blueberry were found to be very efficient, especially for 'Climax' and 'Premier' flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号