首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria are crucial for numerous cellular processes, yet the regulation of mitochondrial functions is only understood in part. Recent studies indicated that the number of mitochondrial phosphoproteins is higher than expected; however, the effect of reversible phosphorylation on mitochondrial structure and function has only been defined in a few cases. It is thus crucial to determine authentic protein phosphorylation sites from highly purified mitochondria in a genetically tractable organism. The yeast Saccharomyces cerevisiae is a major model organism for the analysis of mitochondrial functions. We isolated highly pure yeast mitochondria and performed a systematic analysis of phosphorylation sites by a combination of different enrichment strategies and mass spectrometry. We identified 80 phosphorylation sites in 48 different proteins. These mitochondrial phosphoproteins are involved in critical mitochondrial functions, including energy metabolism, protein biogenesis, fatty acid metabolism, metabolite transport, and redox regulation. By combining yeast genetics and in vitro biochemical analysis, we found that phosphorylation of a serine residue in subunit g (Atp20) regulates dimerization of the mitochondrial ATP synthase. The authentic phosphoproteome of yeast mitochondria will represent a rich source to uncover novel roles of reversible protein phosphorylation.  相似文献   

2.
Plant mitochondria play central roles in cellular energy production, metabolism and stress responses. Recent phosphoproteomic studies in mammalian and yeast mitochondria have presented evidence indicating that protein phosphorylation is a likely regulatory mechanism across a broad range of important mitochondrial processes. This study investigated protein phosphorylation in purified mitochondria from cell suspensions of the model plant Arabidopsis thaliana using affinity enrichment and proteomic tools. Eighteen putative phosphoproteins consisting of mitochondrial metabolic enzymes, HSPs, a protease and several proteins of unknown function were detected on 2‐DE separations of Arabidopsis mitochondrial proteins and affinity‐enriched phosphoproteins using the Pro‐Q Diamond phospho‐specific in‐gel dye. Comparisons with mitochondrial phosphoproteomes of yeast and mouse indicate that these three species share few validated phosphoproteins. Phosphorylation sites for seven of the eighteen mitochondrial proteins were characterized by titanium dioxide enrichment and MS/MS. In the process, 71 phosphopeptides from Arabidopsis proteins which are not present in mitochondria but found as contaminants in various types of mitochondrial preparations were also identified, indicating the low level of phosphorylation of mitochondrial components compared with other cellular components in Arabidopsis. Information gained from this study provides a better understanding of protein phosphorylation at both the subcellular and the cellular level in Arabidopsis.  相似文献   

3.
The phosphorylation of mitochondrial proteins is pivotal to the regulation of respiratory activity in the cell and to signaling pathways leading to apoptosis, as well as for other vital mitochondrial processes. A number of protein kinases have been identified in mitochondria but the physiological substrates for many of these remain unknown or poorly understood. By necessity, most studies of mitochondrial phosphoproteins to date have been conducted using in vitro incorporation of 32P. However, proteins that are highly phosphorylated from in situ reactions are not necessarily detected by this approach. In this study, a new small molecule fluorophore has been employed to characterize steady-state levels of mitochondrial phosphoproteins. The dye is capable of sensitive detection of phosphorylated amino acid residues in proteins separated by gel electrophoresis. When the fluorescent dye is combined with a total protein stain in a sequential gel staining procedure, the phosphorylated proteins can be visualized in the same gel as the total proteins. To optimize resolution of the proteins in mitochondria, a previously described sucrose gradient fractionation method was employed prior to gel electrophoresis. Phosphorylated proteins, as defined by the fluorescence of the phosphosensor, were excised from the gels and identified by peptide mass fingerprinting. One novel and prominent phosphoprotein identified in this manner was determined to be the 42-kDa subunit of mitochondrial complex I.  相似文献   

4.
Protein phosphorylation in plant mitochondria   总被引:1,自引:0,他引:1  
Reversible phosphorylation of proteins is one of the most common regulatory mechanisms in eukaryotic cells and it can affect virtually any property of a protein. We predict that plant mitochondria possess 50–200 protein kinases (PKs), at least as many target proteins and 10–30 protein phosphatases although all will not be expressed at the same time in the same cell type or tissue. Presently available high-throughput methods for the identification of phosphoproteins and their phosphorylation sites are first reviewed and a number of useful databases listed. We then discuss the known phosphoproteins, PKs and phosphatases in plant mitochondria and compare with yeast and mammalian mitochondria. Three case stories—respiratory chain complex I, pyruvate dehydrogenase and formate dehydrogenase—are briefly considered before a final treatment of mitochondrial protein phosphorylation in intracellular signal transduction and programmed cell death.  相似文献   

5.
Tumour Leydig cells have been incubated in the presence or absence of lutropin (luteinizing hormone, ;LH'). Stimulation of cells with lutropin (1000ng/ml) in the presence of 1-methyl-3-isobutylxanthine (0.25mm) resulted in increased steroid production and increased protein phosphorylation. When pregnenolone metabolism was inhibited, basal pregnenolone production was 26.9+/-7.4ng/60min per 10(6) cells; stimulated production was 156.1+/-39.5ng/60min per 10(6) cells (means+/-s.d., n=4). Lutropin-dependent phosphorylated proteins of molecular mass 17000, 22000, 24000, 33000 and 57000Da were detected. A significant increase of [(32)P]P(i) incorporation into these phosphorylated proteins was observed concomitant with the increased pregnenolone production. The occurrence of the phosphoproteins in nuclei, mitochondria and postmitochondrial-supernatant was investigated. The 17000Da phosphoprotein was found in the nuclear fraction, whereas the 22000, 24000, 33000 and 57000Da phosphoproteins were localized in the postmitochondrial-supernatant fraction. Of the cholesterol-side-chain-cleavage activity, 80.3+/-6.1% (mean+/-s.d., n=5) was present in the mitochondrial fraction isolated from tumour Leydig cells, and this activity was 2.5-fold increased when cells had been preincubated with lutropin/1-methyl-3-isobutylxanthine (basal production: 194.6+/-28.6ng/30min per mg of protein; lutropinstimulated production: 498.8+/-91.5ng/30min per mg of protein; means+/-s.d., n=3). The similarities in the kinetics of the phosphorylation of proteins and the pregnenolone production after addition of lutropin/1-methyl-3-isobutylxanthine indicate that the phosphoproteins could be involved in the lutropin-dependent increase in steroidogenesis in tumour Leydig cells. It remains to be demonstrated, however, to what extent the phosphoproteins outside the mitochondria can influence the cholesterol-side-chain-cleavage activity inside the mitochondria.  相似文献   

6.
The reversible phosphorylation of proteins regulates most biological processes, while abnormal phosphorylation is a cause or consequence of many diseases including Alzheimer''s disease (AD). One of the hallmarks of AD is the formation of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau proteins. Sodium selenate has been recently found to reduce tau hyperphosphorylation and NFTs formation, and to improve spatial learning and motor performance in AD mice. In the current study, the phosphoproteomics of N2aSW cells treated with selenate were investigated. To avoid missing low-abundance phosphoproteins, both the total proteins of cells and the phosphor-enriched proteins were extracted and subjected to the two-dimensional gel electrophoresis with Pro-Q diamond staining and then LC-MS/MS analysis. A total of 65 proteins were altered in phosphorylation level, of which 39 were up-regulated and 26 were down-regulated. All identified phosphoproteins were bioinformatically annotated according to their physiochemical features, subcellular location, and biological function. Most of these significantly changed phosphoproteins are involved in crucial neural processes such as protesome activity, oxidative stress, cysteine and methionine metabolism, and energy metabolism. Furthermore, decreases were found in homocysteine, phosphor-tau and amyloid β upon selenate treatment. Our results suggest that selenate may intervene in the pathological process of AD by altering the phosphorylation of some key proteins involved in oxidative stress, energy metabolism and protein degradation, thus play important roles in maintaining redox homeostasis, generating ATP, and clearing misfolded proteins and aggregates. The present paper provides some new clues to the mechanism of selenate in AD prevention.  相似文献   

7.
Mitochondria are complex organelles essential to cardiomyocyte survival. Protein phosphorylation is emerging as a key regulator of mitochondrial function. In the study reported here, we analyzed subsarcolemmal (SSM) mitochondria harvested from rats who have received 4 weeks of aldosterone/salt treatment to simulate the neurohormonal profile of human congestive heart failure. Our objective was to obtain an initial qualitative inventory of the phosphoproteins in this biologic system. SSM mitochondria were harvested, and the phosphoproteome was analyzed with a gel-free bioanalytical platform. Mitochondrial proteins were digested with trypsin, and the digests were enriched for phosphopeptides with immobilized metal ion affinity chromatography. The phosphopeptides were analyzed by ion trap liquid chromatography–tandem mass spectrometry, and the phosphoproteins identified via database searches. Based on MS/MS and MS3 data, we characterized a set of 42 phosphopeptides that encompassed 39 phosphorylation sites. These peptides mapped to 26 proteins, for example, long-chain specific acyl-CoA dehydrogenase, Complex III subunit 6, and mitochondrial import receptor TOM70. Collectively, the characterized phosphoproteins belong to diverse functional modules, including bioenergetic pathways, protein import machinery, and calcium handling. The phosphoprotein panel discovered in this study provides a foundation for future differential phosphoproteome profiling toward an integrated understanding of the role of mitochondrial phosphorylation in heart failure.  相似文献   

8.
The incorporation of 32P into nuclear nonhistone proteins was compared in rat liver in vivo, in liver slices incubated in vitro, and in isolated nuclei incubated with gamma-[32P]ATP. The highest specific activities of nuclear phosphorproteins were obtained by incubating isolated nuclei. However, the Radioactivity profiles of polyacrylamide gel electrophoretograms of these proteins differed from those obtained in vivo or in liver slice experiments. A group of low molecular weight nonhistone proteins exhibited a very high incporation of labelled phosphate. These proteins could be obtained from the interface when the phosphoproteins were isolated by the buffered phenol extraction procedure. Phosphorylated proteins were also obtained from three cytoplasmic fractions (mitochondria, microsomes, and cytosol). The specific activities of these proteins were much lower than of the nuclear phosphoproteins.  相似文献   

9.
To identify new effectors of IgE receptor (FcepsilonRI) signaling, we purified proteins from FcepsilonRI-stimulated RBL-2H3 rat mast cells on anti-phosphotyrosine beads and generated mouse monoclonal antibodies (mAb) against these proteins. Two mAbs bound to a protein that was identified as a new isoform of phospholipid scramblase (PLSCR) after screening an RBL-2H3 cDNA expression library. This isoform differed from PLSCR1 by the absence of an exon 3-encoded sequence and by an insert coding six QGPY(P/A)GP repeats. The PLSCR family of proteins is responsible for a redistribution of phospholipids across the plasma membrane. Although rat PLSCR is a 37-kDa protein, anti-phosphotyrosine immunoblots revealed the presence of 37-49 kDa phosphoproteins in the material immunoprecipitated with either anti-PLSCR mAb but not with unrelated monoclonal or polyclonal antibodies. Depletion of PLSCR resulted in the absence of these phosphoproteins. Additional experiments led to the identification of these phosphoproteins as phospho-PLSCR itself. Stimulation of RBL-2H3 cells upon FcepsilonRI engagement resulted in a dramatic increase in PLSCR tyrosine phosphorylation. A comparison of the relative amounts of phospho-PLSCR and nonphosphorylated PLSCR demonstrated that only a tiny fraction was thus modified, indicating a finely targeted involvement of PLSCR in FcepsilonRI signaling. Thus, this study reports the cloning of a new isoform of PLSCR, as well as the first observation that a member of the PLSCR family is a target for tyrosine kinases and is involved in signaling by an immune receptor. These findings open new perspectives on the role of phospholipid scramblases and to the mechanisms involved in their regulation.  相似文献   

10.
Background information. Precise localization of proteins to specialized subcellular domains is fundamental for proper neuronal development and function. The neural microtubule‐regulatory phosphoproteins of the stathmin family are such proteins whose specific functions are controlled by subcellular localization. Whereas stathmin is cytosolic, SCG10, SCLIP and RB3/RB3′/RB3″ are localized to the Golgi and vesicle‐like structures along neurites and at growth cones. We examined the molecular determinants involved in the regulation of this specific subcellular localization in hippocampal neurons in culture. Results. We show that their conserved N‐terminal domain A carrying two palmitoylation sites is dominant over the others for Golgi and vesicle‐like localization. Using palmitoylation‐deficient GFP (green fluorescent protein) fusion mutants, we demonstrate that domains A of stathmin proteins have the particular ability to control protein targeting to either Golgi or mitochondria, depending on their palmitoylation. This regulation involves the co‐operation of two subdomains within domain A, and seems also to be under the control of its SLD (stathmin‐like domain) extension. Conclusions. Our results unravel that, in specific biological conditions, palmitoylation of stathmin proteins might be able to control their targeting to express their functional activities at appropriate subcellular sites. They, more generally, open new perspectives regarding the role of palmitoylation as a signalling mechanism orienting proteins to their functional subcellular compartments.  相似文献   

11.
Bi YD  Wang HX  Lu TC  Li XH  Shen Z  Chen YB  Wang BC 《Planta》2011,233(2):383-392
Phosphorylation is an ubiquitous regulatory mechanism governing the activity, subcellular localization, and intermolecular interactions of proteins. To identify a broad range of phosphoproteins from Zea mays, we enriched phosphopeptides from Zea mays leaves using titanium dioxide microcolumns and then extensively fractionated and identified the phosphopeptides by mass spectrometry. A total of 165 unique phosphorylation sites with a putative role in biological processes were identified in 125 phosphoproteins. Most of these proteins are involved in metabolism, including carbohydrate and protein metabolism. We identified novel phosphorylation sites on translation initiation factors, splicing factors, nucleolar RNA helicases, and chromatin-remodeling proteins such as histone deacetylases. Intriguingly, we also identified phosphorylation sites on several proteins associated with photosynthesis, and we speculate that these sites may be involved in carbohydrate metabolism or electron transport. Among these phosphoproteins, phosphoenolpyruvate carboxylase and NADH: nitrate reductase (NR) which catalyzes the rate-limiting and regulated step in the pathway of inorganic nitrogen assimilation were identified. A conserved phosphorylation site was found in the cytochrome b5 heme-binding domain of NADH: nitrate reductase, suggesting that NADH: nitrate reductase is phosphorylated by the same protein kinase or highly related kinases. These data demonstrate that the pathways that regulate diverse processes in plants are major targets of phosphorylation.  相似文献   

12.
Reversible protein phosphorylation/dephosphorylation is crucial for regulation of many cellular events, and increasing evidence indicates that this post-translational modification is also involved in the complex process of acquisition of desiccation tolerance. To analyze the phosphoproteome of the desiccation tolerant resurrection plant Craterostigma plantagineum, MOAC-enriched proteins from leaves at different stages of a de-/rehydration cycle were separated by 2-D PAGE and detected by phosphoprotein-specific staining. Using this strategy 20 putative phosphoproteins were identified by MALDI-TOF MS and MS/MS, which were not detected when total proteins were analyzed. The characterized desiccation-related phosphoproteins CDeT11-24 and CDeT6-19 were used as internal markers to validate the specificity of the analyses. For 16 of the identified proteins published evidence suggests that they are phosphoproteins. Comparative analysis of the 2-D gels showed that spot intensities of most identified putative phosphoproteins change during the de-/rehydration cycle. This suggests an involvement of these proteins in desiccation tolerance. Nearly all changes in the phosphoproteome of C. plantagineum, which are triggered by dehydration, are reversed within 4 days of rehydration, which is in agreement with physiological observations. Possible functions of selected proteins are discussed in the context of the de-/rehydration cycle.  相似文献   

13.
Two proteins, P1 and P2, which are specifically altered in mammalian cell mutants resistant to antimitotic drugs, have been identified as the homologs of two members of the class of proteins known as molecular chaperones. P1 is localized in mitochondria and P2-related proteins are involved in the translocation of proteins to mitochondria. To account for these and a number of other observations, a new model for in vivo microtubule assembly is proposed.  相似文献   

14.
Phosphoproteins in rice were detected by in vitro protein phosphorylation followed by two-dimensional polyacrylamide gel electrophoresis. Forty-four phosphoproteins were detected on a 2D-gel after in vitro protein phosphorylation of the crude extract from rice leaf sheath. Among the phosphoproteins detected, 42 were identified through analysis by Q-TOF MS/MS and/or MALDI-TOF MS. The largest percentage of the identified phosphoproteins are involved in signaling (30%), while 18% are involved in metabolism. When rice seedlings were treated with various hormones and stresses, it was observed that the phosphorylation of 13 proteins was enhanced differentially by different hormone and stress treatments. Furthermore, when the hormone/stress regulated phosphoproteins are compared in rice leaf sheath, leaf blade and root, only cytoplasmic malate dehydrogenase was found to be phosphorylated in all the tissues. Results suggest that in the phosphorylation cascade of rice, glycolytic metabolism processes and Ca(2+)-signaling seem to be important targets in response to hormones and stresses. Furthermore, the direct visualization of phosphoproteins by (32)P-labeling and their mass spectrometric identification provides an accurate and reliable method of analyzing the rice phosphoproteome.  相似文献   

15.
We demonstrate for the first time that the expression of tyrosine containing membrane phosphoproteins is elevated in estrogen-induced kidney tumors, which is evident from both the types of experiments, i.e., alkali-resistant phosphorylation of membrane proteins and immunoprecipitation of tyrosine containing phosphoproteins. Tyrosine phosphorylation of proteins or peptides was modulated by the growth factors (EGF, IGF-I) and by the inhibitors of tyrosine protein kinase(s). The kinetic analyses revealed that tumor membranes have high affinity and catalytically more efficient tyrosine phosphorylating kinase enzyme(s) compared to that of normal membranes which have low affinity and catalytically less efficient kinase enzyme(s). It is proposed that overexpression of tyrosine containing membranal phosphoproteins may be involved in the induction and growth of estrogen-induced renal neoplasm.  相似文献   

16.
Systematic identification of phosphoproteins is essential for understanding cellular signalling pathways since phosphorylation plays important roles in cellular regulation. Monoclonal antibody MPM-2 recognizes a discrete set of mitosis-specific phosphoproteins and constitutes a specific tool to investigate the significance of phosphorylation in cell cycle. However, due to the difficulties in identifying antigens revealed on immunoblot membrane, only minority of MPM-2 antigens have been identified. Here we originated proteomics approaches for large-scale identification of MPM-2 phosphoproteins. Mitotic extracts were run on several two-dimensional gel electrophoresis (2D) in parallel, and stained by Coomassie Blue. Each individual spot on one of the gels was excised, and proteins in it were further resolved by regular SDS-electrophoresis and blotted on membrane for MPM-2 stain. Counterparts of the positive proteins were selected on another parallel 2D gel and identified by mass-spectrometry. Using this strategy, 100 spots were excised from Coomassie-stained 2D gel and screened by 1D immunoblots for MPM-2 reactivity, and 22 proteins containing potential MPM-2 epitope were identified in addition to a known MPM-2 antigen, laminin-binding protein. These results were further validated by immunofluorescence, co-immunoprecipitation and in vitro phosphorylation assay. The identification of an unprecedented number of potential MPM-2 phosphoprotein antigens gives new insight into the range of proteins involved in the regulation of the early stages of cell division. Meanwhile, this strategy could be used wherever unknown antigens are explored, especially for antibodies that can recognize more than one antigen.  相似文献   

17.
We have assembled a reliable phosphoproteomic data set for budding yeast Saccharomyces cerevisiae and have investigated its properties. Twelve publicly available phosphoproteome data sets were triaged to obtain a subset of high-confidence phosphorylation sites (p-sites), free of "noisy" phosphorylations. Analysis of this combined data set suggests that the inventory of phosphoproteins in yeast is close to completion, but that these proteins may have many undiscovered p-sites. Proteins involved in budding and protein kinase activity have high numbers of p-sites and are highly over-represented in the vast majority of the yeast phosphoproteome data sets. The yeast phosphoproteome is characterized by a few proteins with many p-sites and many proteins with a few p-sites. We confirm a tendency for p-sites to cluster together and find evidence that kinases may phosphorylate off-target amino acids that are within one or two residues of their cognate target. This suggests that the precise position of the phosphorylated amino acid is not a stringent requirement for regulatory fidelity. Compared with nonphosphorylated proteins, phosphoproteins are more ancient, more abundant, have longer unstructured regions, have more genetic interactions, more protein interactions, and are under tighter post-translational regulation. It appears that phosphoproteins constitute the raw material for pathway rewiring and adaptation at various evolutionary rates.  相似文献   

18.
This study focuses on the characterization of protein phosphorylation in the gravitropic response in oat shoot pulvini through the use of inhibitors of this process, namely staurosporine, okadaic acid and sodium fluoride. These three inhibitors reduce gravitropic curvature and cause changes in the phosphorylation of 38- and 50-kDa soluble proteins which show different levels of phosphorylation between lower and upper halves of gravistimulated pulvini. A kinetic analysis of phosphorylation shows that the 38- and 50-kDa soluble proteins exhibit different levels of phosphorylation between lower and upper halves of graviresponsive pulvini at 5 min after initiation of gravistimulation of stems. In addition, the phosphorylation of 63- and 70-kDa proteins from a total membrane preparation increases in lower halves of the pulvini following gravistimulation. These phosphoproteins are not found in the plasma membrane fraction. Taken together, at least four kinds of phosphoproteins are gravi-related. Of these, the 38- and 50-kDa soluble phosphoproteins may be involved in the regulation of early stages of the gravitropic response.  相似文献   

19.
Abscisic acid (ABA) is a hormone that regulates plant development and adaptation to environmental stresses. Protein phosphorylation has been recognized as an important mechanism for ABA signaling. However, the target phosphoproteins regulated by ABA are still largely unknown. Here, we report the identification of ABA-regulated phosphoproteins in rice using proteomic approaches. Six ABA-regulated phosphoproteins were identified as G protein beta subunit-like protein, ascorbate peroxidase, manganese superoxide dismutase, triosephosphate isomerase, putative Ca2+/H+ antiporter regulator protein, and glyoxysomal malate dehydrogenase. These results provide new insight into the regulatory mechanism for some ABA signaling proteins and implicate several previously unrecognized proteins in ABA action.  相似文献   

20.
Platelet-derived growth factor (PDGF) stimulates the phosphorylation of proteins at tyrosine when added to quiescent 3T3 cells, as evidenced by the increase in the amount of phosphotyrosine, relative to phosphoserine and phosphothreonine, in cellular proteins. The increase was detected within 1 min of adding PDGF and was maximal by 5 min. This effect showed the same dependence on PDGF concentration as did association of 125I-PDGF with the cells. In different 3T3 cell lines the magnitude of the increase was approximately proportional to the number of PDGF receptors per cell. A number of proteins phosphorylated at tyrosine in response to PDGF have been detected by two-dimensional gel electrophoresis. They include a pair of related 45 kilodalton phosphoproteins, a pair of related 43 kilodalton phosphoproteins and a 42 kilodalton phosphoprotein. Similar changes were noted when quiescent 3T3 cells were incubated with epidermal growth factor. Possibly, these phosphoproteins are primary substrates of the tyrosine protein kinases activated by the receptors for PDGF and epidermal growth factor, and are involved in physiological effects common to the two growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号