首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To develop adsorbents for the specific removal of tumor necrosis factor-alpha (TNF) in extracorporeal blood purification, cellulose microparticles were functionalized either with a monoclonal anti-TNF antibody (mAb) or with recombinant human antibody fragments (Fab). The TNF binding capacity of the adsorbents was determined with in vitro batch experiments using spiked human plasma (spike: 1200 pg TNF/mL; 1 mg particles in 250 muL plasma). Random immobilization of the full-sized monoclonal antibody to periodate-activated cellulose yielded particles with excellent adsorption capacity (258.1 +/- 48.6 pg TNF per mg adsorbent wet weight). No leaching of antibody was detectable, and the adsorbents retained their activity for at least 12 months at 4 degrees C. We found that the conditions used during immobilization of the antibody (pH, nature of the reducing agent) profoundly influenced the biocompatibility of the resulting adsorbents, especially with respect to activation of the complement system. Particles obtained by random immobilization of the monovalent Fab fragments on periodate-activated cellulose using the same conditions as for immobilization of the mAb exhibited only low adsorption capacity (44 +/- 7 pg/mg adsorbent wet weight). Oriented coupling of the Fab fragments on chelate-epoxy cellulose via a C-terminal histidine tag, however, increased the adsorption capacity to 178.3 +/- 8.6 pg TNF/mg adsorbent wet weight. Thus, in the case of small, monovalent ligands, the orientation on the carrier is critical to retain full binding activity.  相似文献   

2.
Removal of endotoxins from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of the bacterial expression systems widely used to manufacture therapeutic proteins. In this study we investigated various parameters affecting anion exchange chromatography to selectively remove endotoxins from therapeutic proteins. NY-ESO-1, Melan-A, and SSX-2 are different recombinant proteins used in this study, all of them are cancer antigens currently developed as potential immunotherapeutic agents. We found that by using a commercially available Q XL resin in a flow-through mode, endotoxin could be effectively removed from these proteins while maintaining very acceptable protein yields. The ratio of resin volume to endotoxin load was analyzed to determine the endotoxin binding capacity of the resin. In our hands at least 900,000 endotoxin units (EU) could be loaded per ml of Q XL resin. Solution conductivity could be increased to 20 mS/cm to minimize protein loss by weakening protein-resin attraction, and pH could be increased to enhance endotoxin removal by weakening endotoxin-protein attraction. Endotoxin levels were ultimately decreased to below 0.5 EU per microg of protein, an over 2000-fold reduction in this single step. A successful scale-up of these processes in which column volume was increased 100-fold was performed under cGMP conditions with over 80% protein recovery.  相似文献   

3.
This contribution reports on a study using Purexa™-MQ multimodal anion-exchange (AEX) membranes for protein polishing at elevated solution conductivities. Dynamic binding capacities (DBC10) of bovine serum albumin (BSA), human immunoglobulins, and salmon sperm DNA (ss-DNA) are reported for various salt types, salt concentrations, flowrates, and pH. Using 1 mg/ml BSA, DBC10 values for Purexa™-MQ were >90 mg/ml at conductivities up to 15 mS/cm. The membranes maintained a high, salt-tolerant BSA DBC10 of 89.8 ± 2.7 (SD) over the course of 100 bind-elute cycles. Polishing studies with acidic and basic monoclonal antibodies at >2 kg/L loads showed that Purexa™-MQ had higher clearance of host cell proteins and aggregate species at high conductivity (13 mS/cm) and in the presence of phosphate than other commercial AEX media. Purexa™-MQ also had a high ss-DNA DBC10 of 50 mg/ml at conductivities up to 15 mS/cm, markedly outperforming other commercial products. In addition to the effectiveness of Purexa™-MQ for protein polishing at elevated solution conductivities, its unusually high binding capacity for ss-DNA indicates potential applications for plasmid DNA purification.  相似文献   

4.
为了提高谷氨酰胺转胺酶的纯度和扩展在医药领域的应用,探索了一种适合工业化生产的、安全高效的微生物谷氨酰胺转胺酶纯化方法。轮枝链霉菌发酵后,经离心10 000 r/min 4℃除去菌体,调节发酵液电导率至4.1mS/cm和pH6.0后,以直线流速60cm/h通过SP Sepharose FF阳离子交换层析柱对目的蛋白高 选择性和高载量地捕获,再通过phenyl sepharose 6 FF(high sub)疏水层析柱进行精细纯化。纯化后经SDS-PAGE鉴定纯度达到95%以上,HPLC分析纯度> 99%。鲎试剂测定内毒素含量为0.013EU/ml,达到中国药典中血制品要求的低于0.15EU/ml标准。  相似文献   

5.
Mixed matrix membranes (MMMs), which incorporate adsorptive particles during membrane casting, can be prepared simply and have performances that are competitive with other membrane chromatography materials. The application of MMM chromatography for fractionation of β‐Lactoglobulin from bovine whey is described in this article. MMM chromatography was prepared using ethylene vinyl alcohol polymer and lewatit anion exchange resin to form a flat sheet membrane. The membrane was characterized in terms of structure and its static and dynamic binding capacities were measured. The optimum binding for β‐Lactoglobulin was found to be at pH 6.0 using 20 mM sodium phosphate buffer. The MMM had a static binding capacity of 120 mg/g membrane (36 mg/mL membrane) and 90 mg/g membrane (27 mg/mL membrane) for β‐Lactoglobulin and α‐Lactalbumin, respectively. In batch fractionation of whey, the MMM showed selective binding towards β‐Lactoglobulin compared to other proteins. The dynamic binding capacity of β‐Lactoglobulin in whey solution was about 80 mg/g membrane (24 mg β‐Lac/mL of MMM), which is promising for whey fractionation using this technology. This is the first reported application of MMM chromatography to a dairy feed stream. Biotechnol. Bioeng. 2009;103: 138–147. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7‐fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins.  相似文献   

7.
Methanol limited fed-batch cultivation was applied for production of a plant derived beta-glucosidase by Pichia pastoris. The beta-glucosidase was recovered by expanded bed adsorption chromatography applied to the whole culture broth. The new Streamline Direct HST1 adsorbent was compared with Streamline SP. Higher bead density made it possible to operate at two times higher feedstock concentration and at two times higher flow velocity. The higher binding capacity in the conductivity range 0-48 mS cm(-1) of Streamline Direct HST1 might be caused by the more complex interaction of multi-modal ligand in Streamline Direct HST1 compared to the single sulphonyl group in Streamline SP. Harsher elution condition had to be applied for dissociation of beta-glucosidase from Streamline Direct HST1 due to stronger binding interaction. The 5% dynamic binding capacity was 160 times higher for Streamline Direct HST1 compared to Streamline SP. The yield of beta-glucosidase on Streamline Direct HST1 (74%) was significantly higher than on Streamline SP (48%). Furthermore, beta-glucosidase was purified with a factor of 4.1 and concentrated with a factor of 17 on Streamline Direct HST1 while corresponding parameters were half of these values for Streamline SP. Thus, for all investigated parameters Streamline Direct HST1 was a more suitable adsorbent for recovery of recombinant beta-glucosidase from unclarified P. pastoris high-cell-density cultivation broth.  相似文献   

8.
The apparent membrane capacity of tubular rabbit oocytes increases from 1.7-2.0 microF/cm2 before fertilisation to 3.7-4.0 microF/cm2 after fertilisation. The membrane conductivity measured on single cells was also increased by fertilisation from less than 1 mS/cm2 to 14 mS/cm2. Cells obtained from 2-, 4- or 8-cell embryos exhibited intermediate values of membrane capacity (2.3-2.8 microF/cm2) and conductivity (5-22 mS/cm2). The values quoted are those effective between 1 and 10 kHz, the frequency of the rotating field used. The large apparent capacities are probably due to the presence of structures such as microvilli which cause the actual membrane area to exceed the smooth sphere area. It must be assumed that these structures change in form or number on fertilisation, and that they persist in embryos, at least up to the 8-cell stage. No difference was apparent between cells fertilised in vitro or in vivo. Comparison of the above zona-free data with measurements on zona-complete oocytes indicate how fertilised and unfertilised rabbit eggs may be distinguished from one another, even in the presence of the zona pellucida.  相似文献   

9.
The binding capacity of protein A Sepharose 4 Fast Flow for mouse IgG1 monoclonal antibodies (mabs) appears to be highly dependent on the buffer composition with respect to both concentration and ion type. Depending on the particular mab dynamic binding capacities up to 20 mg mab per ml gel could be obtained, when these mabs were isolated from supernatants of protein free hollow fibre cell culture systems. Variation of linear flow rate from 10 up to 300 cm/h and temperature (4 degrees C versus 25 degrees C) had a slight effect on the dynamic binding capacity, when a high ionic strength buffer was used during adsorption. Applying optimum binding conditions, final IgG fractions with a purity of more than 95% monomeric IgG were obtained. However, as side effect of the use of binding buffers with high ionic strength, the binding of acid proteases was also promoted.  相似文献   

10.
The aim of the investigations was to estimate the scale up properties of an efficient chromatographic first capture step for the recovery of murine IgG1 from undiluted and unclarified hybridoma cell culture broth using an ion exchange matrix in expanded bed mode. The tested new sulfopropyl-based ion exchange matrix (StreamlineTM SP XL, Amersham Pharmacia Biotech) stands out due to its enhanced capacity compared to its precursor (StreamlineTM SP). Defining the working pH in preliminary electrophoretic analyses (titration curve, SDS-PAGE) and small-scaled chromatographic binding studies showed, that the optimal value for the IgG purification was pH 4.6, where a co-chromatography of the medium supplement albumin (500 mg l-1, pI = 4.8) could not be avoided. Further scouting experiments dealt with the dynamic capacity of the matrix, which was evaluated by frontal adsorption analysis. In packed bed mode no break-through of the target protein was achieved even after 6.5 mg IgG per ml matrix were applied. These results could not be reproduced in expanded bed mode with cell-free supernatant, where the dynamic capacity was found to be only 1.5 mg IgG/ml SP XL. Processing cell-containing broth resulted in an additional decrease of the value down to 0.5 mg ml-1, presumably caused by the remarkable biomass adsorption to the matrix. The search for the reasons led to the examination of the hydrodynamic conditions. Buffer experiments with a tracer substance (acetone) pointed out, that the flow in expanded bed was significantly more influenced by back-mixing effects and channel formations than in packed bed. These effects could be compensated with an enhanced viscosity of the liquid phase, which was achieved by the addition of glucose. As a result of the improved hydrodynamic conditions in the expanded bed, the dynamic capacity could be increased from 0.5 to more than 4.5 mg IgG/ml matrix for the processing of cell culture broth with 400 mM glucose. Finally, the scale up from a StreamlineTM 25 to a StreamlineTM 200 column was performed under conditions, which proved to be optimal: 100 L of unclarified hybridoma broth were concentrated with a binding rate of 95% in less than 3.5 hours. Loading the column no break-through of the target protein was achieved. However, the eluate still contained debris and cells, which points out the major disadvantage of the method: the biomass attachment to the matrix.  相似文献   

11.
Bovine hemoglobin (bHb) was purified from bovine red blood cells (bRBCs) via anion exchange chromatography preceded by dialysis. This is a fast and effective way to obtain bHb from bRBCs using Q Sepharose XL, a strong anion exchange resin. This resin had double the binding capacity for bHb compared to three other anion exchange resins that were studied in this work. Methemoglobin levels remained below 2% with bHb concentrations between 0.7 and 1.7 mM. The high purity of bHb was confirmed via SDS-PAGE and size exclusion chromatography (SEC).  相似文献   

12.
This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps.  相似文献   

13.
Protein dynamic binding capacities on ion exchange resins are typically expected to decrease with increasing conductivity and decreasing protein charge. There are, however, conditions where capacity increases with increasing conductivity and decreasing protein charge. Capacity measurements on two different commercial ion exchange resins with three different monoclonal antibodies at various pH and conductivities exhibited two domains. In the first domain, the capacity unexpectedly increased with increasing conductivity and decreasing protein charge. The second domain exhibited traditional behavior. A mechanism to explain the first domain is postulated; proteins initially bind to the outer pore regions and electrostatically hinder subsequent protein transport. Such a mechanism is supported by protein capacity and confocal microscopy studies whose results suggest how knowledge of the two types of IEX behavior can be leveraged in optimizing resins and processes.  相似文献   

14.
We report a rapid, large-scale process for the purification of a recombinant Fab fragment specific for the tobacco mosaic virus coat protein (Fab57P). The fragment is expressed periplasmically in Escherichia coli. The expression level was optimized in 0.3-L fermentors. The highest levels were obtained using the following conditions: (1) low postinduction temperature (21 degrees C), (2) combined use of two beta-lactam antibiotics (carbenicillin and ampicillin), (3) IPTG concentration 0.1 mM, (4) regulated pH 7.2, (5) 17-h induction time, and (6) conditions that reduce mechanical stress. Optimized large-scale fermentations were done in 15- and 300-L capacity fermentors. The recombinant Fab fragment was purified by two chromatographic steps. After disruption of the bacteria using an APV Gaulin homogenizer, the crude E. coli homogenate was directly applied, without centrifugation, to an SP Sepharose Big Beads column. The recombinant Fab fragment was eluted as a single peak in a sodium chloride gradient. The fragment was further purified by affinity adsorption to a column packed with Epoxy-activated Sepharose 6B to which the antigen peptide NH(2)-CGS YNR GSF SQS SGLV-CONH(2) had been coupled through its N-terminal cysteine. The purified Fab57P fragment showed one band in SDS-PAGE. The overall purification yield was 35%.  相似文献   

15.
The use of confocal scanning laser microscopy (CSLM) has recently been described for the visualization of intraparticle protein profiles during single-protein finite bath uptake experiments. By coupling of fluorescent molecules to proteins the penetration of porous media by labeled macromolecules could be detected by scanning single adsorbent particles for fluorescence emission after laser excitation. Thus the internal protein distribution profile, which is a central element in modeling of protein transport in porous adsorbents, became experimentally accessible. Results from the simultaneous visualization of two proteins by this technology are shown here. The use of two different fluorescent dyes for protein labeling and two independent detectors in the CSLM allowed for the first time ever the direct observation of a two-component diffusion process within a porous stationary phase. The finite bath uptake of human immunoglobulin G (hIgG) and bovine serum albumin (BSA) to two different ion exchange adsorbents (SP Sepharose Fast Flow and Source 30S) and to an affinity adsorbent (Protein A Sepharose) was measured using Cy5 and Oregon Green as labels. Single adsorbent particles were scanned for intensity distribution of fluorescence emission from the two fluorophors. The intraparticle profiles obtained from the confocal images were translated into a relative protein concentration thus allowing the calculation of protein uptake kinetics from direct measurement in the stationary phase. The confocal technique may prove to be a very powerful means of data generation for modeling of multi-component mass transfer phenomena in protein adsorption.  相似文献   

16.
Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process‐related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ‐650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6–8), conductivity (2–15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a “size exclusion qPCR assay.” Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141–149, 2018  相似文献   

17.
Human lysozyme and hen egg-white lysozyme have antibacterial, antiviral, and antifungal properties with numerous potential commercial applications. Currently, hen egg-white lysozyme dominates low cost applications but the recent high-level expression of human lysozyme in rice could provide an economical source of lysozyme. This work compares human lysozyme and hen egg-white lysozyme adsorption to the cation exchange resin, SP-Sepharose FF, and the effect of rice extract components on lysozyme purification. With one exception, the dynamic binding capacities of human lysozyme were lower than those of hen egg-white at pH 4.5, 6, and 7.5 with ionic strengths ranging from 0 to 100 mM (5-20 mS). Ionic strength and pH had a similar effect on the adsorption capacities, but human lysozyme was more sensitive to these two factors than hen egg-white lysozyme. In the presence of rice extract, the dynamic binding capacities of human and hen egg-white lysozymes were reduced by 20-30% and by 32-39% at pH 6. Hen egg-white lysozyme was used as a benchmark to compare the effectiveness of human lysozyme purification from transgenic rice extract. Process simulation and cost analyses for human lysozyme purification from rice and hen egg-white lysozyme purification from egg-white resulted in similar unit production costs at 1 ton per year scale.  相似文献   

18.
Dynamic binding capacity (DBC) decreases with increasing conductivity in the equilibrium regime for ion exchange chromatography. An exclusion regime has been demonstrated in ion exchange resins where DBC increases with increasing conductivity and decreasing protein charge. The purpose of this work was to examine the impact of the exclusion regime on impurity removal. Resin performance was evaluated based on dynamic binding capacities and purity within the exclusion and equilibrium regimes. The results revealed that Chinese hamster ovary proteins (CHOP), a major impurity, exhibit similar exclusion trends as the MAb proteins. The results further the understanding of the exclusion regime and its impact on product purity, a critical area for IEX development and optimization.  相似文献   

19.
High-capacity surfaces can enhance analyte-binding kinetics and be beneficial for rapid immunoassays. Site-specifically immobilized, oriented recombinant single-chain Fv (scFv) and Fab antibody fragments were compared with a conventional, nonoriented monoclonal antibody (Mab) to capture antigen from serum to solid surface in a one-step, two-site thyroid-stimulating hormone (TSH) immunoassay with a 5-min incubation time. The assay used a ready-to-use dry reagent-based concept and time-resolved fluorescent measurement. TSH binding capacities were 3.0-fold (Fab) and at least 4.1-fold (scFv) higher when recombinant antibodies were used instead of Mab. Recombinant antibody fragments also produced faster kinetics (5 vs. 45-min saturation level) than Mab: 21-25% (Mab) versus 72-83% (scFv and Fab). Analytical sensitivities of the 5-min assay were 0.09 mIU/L TSH (Fab), 0.16 mIU/L TSH (scFv), and 0.26 mIU/L TSH (Mab). Between-run variabilities were 4.2-7.9% (Fab), 4.6-17.7% (scFv), and 5.5-7.2% (Mab). The assays correlated well with the AutoDELFIA hTSH (human TSH) Ultra assay (r = 0.99, n = 109). Fab was good in all aspects of immunoassay—capacity, kinetics, sensitivity, and analytical performance. As a homogeneous, stable, and small-sized binding molecule with optimized surface-coating properties as well as reduced risk for interference by heterophilic antibodies, Fab fragment is a promising and realistic immunoreagent for the future.  相似文献   

20.
A method of Fab fragments preparation by enzymatic splitting of antibodies bound to specific antigen immobilized on an insoluble support is described. The complex of rat muscle glyceraldehyde-3-phosphate dehydrogenase (GAPD), immobilized on Sepharose 4B, with anti-rat GAPD rabbit antibodies was digested with papain. The antigen was inaccessible to proteolysis under conditions employed. After 4 hrs of incubation with papain the antibody was completely split into non-precipitating fragments. The products of proteolysis not bound to Sepharose, were eluted with 0.1 M givcine buffer pH 2.5, and shown to correspond to Fab fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号