首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac inflammation and oxidative stress play a key role in the pathogenesis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho has been found to protect cells from inflammation and oxidative stress. The current study aimed to explore the cardioprotective effects of Klotho on DCM and the underlying mechanisms. H9c2 cells and neonatal cardiomyocytes were incubated with 33 mM glucose in the presence or absence of Klotho. Klotho pretreatment effectively inhibited high glucose-induced inflammation, ROS generation, apoptosis, mitochondrial dysfunction, fibrosis and hypertrophy in both H9c2 cells and neonatal cardiomyocytes. In STZ-induced type 1 diabetic mice, intraperitoneal injection of Klotho at 0.01 mg/kg per 48 h for 3 months completely suppressed cardiac inflammatory cytokines and oxidative stress and prevented cardiac cell death and remodeling, which subsequently improved cardiac dysfunction without affecting hyperglycemia. This study revealed that Klotho may exert its protective effects by augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression and inactivating nuclear factor κB (NF-κB) activation both in vitro and in vivo. Thus, this work demonstrated for the first time that the anti-aging protein Klotho may be a potential therapeutic agent to treat DCM by inhibiting oxidative stress and inflammation. We also demonstrated the critical roles of the Nrf2 and NF-κB pathways in diabetes-stimulated cardiac injuries and indicated that they may be key therapeutic targets for diabetic complications.  相似文献   

2.
Vascular complications, a major cause of morbidity and mortality in diabetic patients, are related to hyperglycemia-induced oxidative stress. Previously, we reported that rosiglitazone (RSG) attenuated vascular expression and activity of NADPH oxidases in diabetic mice. The mechanisms underlying these effects remain to be elucidated. We hypothesized that RSG acts directly on endothelial cells to modulate vascular responses in diabetes. To test this hypothesis, human aortic endothelial cells (HAECs) were exposed to normal glucose (NG; 5.6 mmol/l) or high glucose (HG; 30 mmol/l) concentrations. Select HAEC monolayers were treated with RSG, caffeic acid phenethyl ester (CAPE), diphenyleneiodonium (DPI), small interfering (si)RNA (to NF-κB/p65 or Nox4), or Tempol. HG increased the expression and activity of the NADPH oxidase catalytic subunit Nox4 but not Nox1 or Nox2. RSG attenuated HG-induced NF-κB/p65 phosphorylation, nuclear translocation, and binding to the Nox4 promoter. Inhibiting NF-κB with CAPE or siNF-κB/p65 also reduced HG-induced Nox4 expression and activity. HG-induced H(2)O(2) production was attenuated by siRNA-mediated knockdown of Nox4, and HG-induced HAEC monocyte adhesion was attenuated by treatment with RSG, DPI, CAPE, or Tempol. These results indicate that HG exposure stimulates HAEC NF-κB activation, Nox4 expression, and H(2)O(2) production and that RSG attenuates HG-induced oxidative stress and subsequent monocyte-endothelial interactions by attenuating NF-κB/p65 activation and Nox4 expression. This study provides novel insights into mechanisms by which the thiazolidinedione peroxisome proliferator-activated receptor-γ ligand RSG favorably modulates endothelial responses in the diabetic vasculature.  相似文献   

3.
4.
5.
Viral myocarditis is an important cause of heart failure for which no specific treatments are available. Direct viral injury to cardiac cells provokes an inflammatory response that significantly contributes to cardiac damage and ensuing morbidity. Despite the central pathogenic role of autoimmune injury, broad inhibition of the inflammatory response does not result in patient benefit. Many preclinical studies collectively emphasize that modulating distinct inflammatory signaling pathways may yield effective viral clearance while preserving cardiac structure. This review aims to provide an overview of the sometimes contrasting observations from experimental viral myocarditis models and to translate the lessons learned into opportunities for future investigations and therapies.  相似文献   

6.
Inflammation is a self-protection mechanism that can be triggered when innate immune cells detect infection. Eradication of pathogen infection requires appropriate immune and inflammatory responses, but excessive inflammatory responses can cause uncontrolled inflammation, autoimmune diseases, or pathogen dissemination. Mounting evidence has shown that microRNAs(miRNAs) in mammals act as important and versatile regulators of innate immunity and inflammation. However, miRNAmediated regulation networks are largely unknown in inflammatory responses in lower vertebrates. Here, miR-144 and miR-217 are identified as negative regulators in teleost inflammatory responses. We find that Vibrio harveyi and lipopolysaccharide(LPS)treatment significantly upregulate the expression of fish miR-144 and miR-217. Upregulated miR-144 and miR-217 suppress LPS-induced inflammatory cytokine expression by targeting nucleotide-binding oligomerization domain-containing protein 1(NOD1), thereby avoiding excessive inflammatory responses. In addition, miR-144 and miR-217 regulate inflammatory responses through NOD1-induced nuclear factor kappa(NF-κB) signaling pathways. These findings demonstrate that miR-144 and miR-217 play regulatory roles in inflammatory responses by modulating the NOD1-induced NF-κB signaling pathway.  相似文献   

7.
Novack DV 《Cell research》2011,21(1):169-182
Since the discovery that deletion of the NF-κB subunits p50 and p52 causes osteopetrosis in mice, there has been considerable interest in the role of NF-κB signaling in bone. NF-κB controls the differentiation or activity of the major skeletal cell types - osteoclasts, osteoblasts, osteocytes and chondrocytes. However, with five NF-κB subunits and two distinct activation pathways, not all NF-κB signals lead to the same physiologic responses. In this review, we will describe the roles of various NF-κB proteins in basal bone homeostasis and disease states, and explore how NF-κB inhibition might be utilized therapeutically.  相似文献   

8.
9.
Recent studies have indicated that the regulation of innate immunity and energy metabolism are connected together through an antagonistic crosstalk between NF-κB and SIRT1 signaling pathways. NF-κB signaling has a major role in innate immunity defense while SIRT1 regulates the oxidative respiration and cellular survival. However, NF-κB signaling can stimulate glycolytic energy flux during acute inflammation, whereas SIRT1 activation inhibits NF-κB signaling and enhances oxidative metabolism and the resolution of inflammation. SIRT1 inhibits NF-κB signaling directly by deacetylating the p65 subunit of NF-κB complex. SIRT1 stimulates oxidative energy production via the activation of AMPK, PPARα and PGC-1α and simultaneously, these factors inhibit NF-κB signaling and suppress inflammation. On the other hand, NF-κB signaling down-regulates SIRT1 activity through the expression of miR-34a, IFNγ, and reactive oxygen species. The inhibition of SIRT1 disrupts oxidative energy metabolism and stimulates the NF-κB-induced inflammatory responses present in many chronic metabolic and age-related diseases. We will examine the molecular mechanisms of the antagonistic signaling between NF-κB and SIRT1 and describe how this crosstalk controls inflammatory process and energy metabolism. In addition, we will discuss how disturbances in this signaling crosstalk induce the appearance of chronic inflammation in metabolic diseases.  相似文献   

10.
11.
  1. Download : Download high-res image (67KB)
  2. Download : Download full-size image
  相似文献   

12.
The signaling adapter protein CRK is an indispensable molecule involved in regulating the malignant potential of human cancers. CRK-like (CRKL) is a hematopoietic cell-dominant homologue of CRK that is reported to be phosphorylated by BCR-ABL tyrosine kinase in chronic myelogenous leukemia patients, but its biological function in non-hematopoietic tumors remains unclear. In this study, we explored the tumorigenic role of CRKL in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. Immunoprecipitation analysis of HNSCC cell line, HSC-3 cells, showed that the dominant binding partner for C3G was CRKL, not CRK. To clarify the molecular function of CRKL, we established lentiviral shRNA-mediated CRKL-knockdown HNSCC cell lines. In CRKL-knockdown HSC-3 and HSC-4 cells, cell growth and motility were diminished compared to control cells. Cell adhesion assays showed that cell attachment onto both fibronectin- and collagen-coated dishes was significantly suppressed in CRKL-knockdown HSC-3 cells, while no significant change was observed for poly-l-lysine-coated dishes. Immunofluorescence staining revealed that focal adhesion was reduced in CRKL-knockdown HSC-3 cells. With a pulldown assay, CRKL-knockdown HSC-3 cells showed decreased amounts of active Rap1 compared to control cells. Moreover, in an in vivo assay, tumor formation of CRKL-knockdown HSC-3 cells in nude mice was significantly abrogated. Our results indicate that CRKL regulates HNSCC-cell growth, motility, and integrin-dependent cell adhesion, suggesting that CRKL plays a principal role in HNSCC tumorigenicity.  相似文献   

13.
Nuclear factor-kappa B (NF-κB) is a critical regulator of multiple biological functions including innate and adaptive immunity and cell survival. Activation of NF-κB is tightly regulated to preclude chronic signaling that may lead to persistent inflammation and cancer. Ubiquitination of key signaling molecules by E3 ubiquitin ligases has emerged as an important regulatory mechanism for NF-κB signaling. Deubiquitinases (DUBs) counteract E3 ligases and therefore play a prominent role in the downregulation of NF-κB signaling and homeostasis. Understanding the mechanisms of NF-κB downregulation by specific DUBs such as A20 and CYLD may provide therapeutic opportunities for the treatment of chronic inflammatory diseases and cancer.  相似文献   

14.
NF-κB in immunobiology   总被引:2,自引:0,他引:2  
Hayden MS  Ghosh S 《Cell research》2011,21(2):223-244
  相似文献   

15.
It is well documented that the Toll-like receptor 4 (TLR4)/NF-κB signaling mediates early inflammation during myocardial ischemia and reperfusion. Our previous study has demonstrated that κ-opioid receptor stimulation with U50,488H produces cardioprotective and anti-inflammatory effects. The aim of the present study was to investigate whether κ-opioid receptor stimulation could modulate the TLR4/NF-κB signaling and reduce neutrophil accumulation and TNF-α induction in an ischemia–reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia and reperfusion (MI/R), and MI/R + U50,488H in the absence or presence of Nor-BNI, a selective κ-opioid receptor antagonist. The results demonstrated that after MI/R, the expressions of myocardial TLR4 and NF-κB increased significantly both in ischemia area and risking area. Compared with MI/R, κ-opioid receptor stimulation with U50,488H significantly attenuated the expressions of TLR4 and NF-κB. At the mean time, it also reduced myeloperoxidase (MPO) levels, both serum and myocardial TNF-α production, myocardial infarct sizes (INF/AAR%) and myocardial apoptosis induced by MI/R, all the effects of U50,488H were abolished by Nor-BNI. These data provide evidence for the first time that κ-opioid receptor stimulation inhibits TLR4/NF-κB signaling in the rat heart subjected to MI/R.  相似文献   

16.
NF-κB, a critical cytokine of inflammatory bowel diseases (IBD), is a viable marker to reflect the inflammatory activity of the intestine. We aimed to develop NF-κB-targeted microbubbles (MBs) and perform molecular contrast-enhanced ultrasound (CEUS) to quantify NF-κB expressions on the intestinal wall in IBD mice in vivo. In this study, NF-κB-targeted MBs were fabricated by connecting biotin-loaded NF-κB antibodies and avidin-loaded MBs. NF-κB-targeted MBs presented as transparent and round bubbles with an average diameter of 1.03/μm±0.01. The specific binding of targeted MBs and inflammatory cells was validated by in vitro experiments, including flow cytometry, Western blot and immunofluorescence, which revealed the specific binding of targeted MBs and inflammatory cells. Subsequently, NF-κB-targeted CEUS imaging was performed on mice with chemical-induced colitis, and the peak intensity (PI) and time-to-peak (TTP) were quantified. Pathological and immunohistochemical (IHC) examinations were further implemented. For the target CEUS group, fast enhancement followed by slow subsiding was observed. The PI of target CEUS of the IBD mice was significantly higher than that of non-target CEUS of the IBD mice, healthy controls and target CEUS of the treated IBD mice (34835%[13379–73492%] VS 437%[236–901%], 130%[79–231%], 528%[274–779%], p <0.0001), in accordance with the IHC results of NF-κB expressions. The TTP of target CEUS of the treated mice was significantly higher than that of untreated mice (35.7s [18.1–49.5s] VS 8.3s [4.2–12.5s], p<0.0001). Therefore, we suggested that NF-κB-targeted CEUS could accurately detect and quantify NF-κB expressions on the intestinal walls of IBD, enabling the evaluation of intestinal inflammation.  相似文献   

17.
18.
Accumulating evidence suggests that inflammatory processes are involved in the development of diabetic nephropathy (DN). However, there are no effective interventions for inflammation in the diabetic kidneys. Here, we tested the hypothesis that Astragaloside IV(AS-IV), a novel saponin purified from Astragalus membranaceus (Fisch) Bge, ameliorates DN in streptozotocin (STZ)-induced diabetic rats through anti-inflammatory mechanisms. Diabetes was induced with STZ (65 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats were divided into three groups (n = 8/each group), namely, diabetic rats, diabetic rats treated with AS-IV at 5 and 10 mg kg?1 d?1, p.o., for 8 weeks. The normal rats were chosen as nondiabetic control group (n = 8). The rats were sacrificed 10 weeks after induction of diabetes. AS-IV ameliorated albuminuria, renal histopathology and podocyte foot process effacement in diabetic rats. Renal NF-κB activity, as wells as protein and mRNA expression were increased in diabetic kidneys, accompanied by an increase in mRNA expression and protein content of TNF-α, MCP-1 and ICAM-1 in kidney tissues. The α1-chain type IV collagen mRNA was elevated in the kidneys of diabetic rats. All of these abnormalities were partially restored by AS-IV. AS-IV also decreased the serum levels of TNF-α, MCP-1 and ICAM-1 in diabetic rats. These findings suggest that AS-IV, a novel anti-inflammatory agent, attenuated DN in rats through inhibiting NF-κB mediated inflammatory genes expression.  相似文献   

19.

Background

Monoacylglycerol lipase (MAGL), a critical lipolytic enzyme, has emerged as a key regulator of tumor progression, yet its biological function and clinical significance in hepatocellular carcinoma (HCC) is still unknown.

Methods

In this study, we used a tissue microarray containing samples from 170 HCC patients to evaluate the expression of MAGL and its correlation with other clinicopathologic characteristics. In addition, we investigated the regulating effects of MAGL on various HCC lines. Finally, we identified the NF-κB signaling pathway participated in MAGL-mediated epithelial-mesenchymal transition (EMT) using HCC cell lines with different metastatic potentials.

Results

The expression of MAGL was significantly higher in HCC tumors than in matched peritumor tissues. Specifically, high MAGL expression was found in tumors with larger tumor size, microvascular invasion, poor differentiation, or advanced TNM stage. In addition, the clinical prognosis for the MAGLhigh group was markedly poorer than that for the MAGLlow group in the 1-, 3-, and 5-year overall survival times and recurrence rates of HCC patients. MAGL expression was an independent prognostic factor for both survival and recurrence after curative resection. Furthermore, the upregulation of MAGL in HCC cells promoted cell growth and invasiveness abilities, and accompanied by EMT. In contrast, downregulation of MAGL obviously inhibited these characteristics. Moreover, further investigations verified that MAGL facilitates HCC progression via NF-κB-mediated EMT process.

Conclusions

Our findings demonstrate MAGL could promote HCC progression by the induction of EMT and suggest a potential therapeutic target, as well as a biomarker for prognosis, in patients with HCC.
  相似文献   

20.
NF-κB in the Survival and Plasticity of Neurons   总被引:6,自引:0,他引:6  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号