首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of angiogenesis by extracellular matrix   总被引:23,自引:0,他引:23  
During angiogenesis, endothelial cell growth, migration, and tube formation are regulated by pro- and anti-angiogenic factors, matrix-degrading proteases, and cell-extracellular matrix interactions. Temporal and spatial regulation of extracellular matrix remodeling events allows for local changes in net matrix deposition or degradation, which in turn contributes to control of cell growth, migration, and differentiation during different stages of angiogenesis. Remodeling of the extracellular matrix can have either pro- or anti-angiogenic effects. Extracellular matrix remodeling by proteases promotes cell migration, a critical event in the formation of new vessels. Matrix-bound growth factors released by proteases and/or by angiogenic factors promote angiogenesis by enhancing endothelial migration and growth. Extracellular matrix molecules, such as thrombospondin-1 and -2, and proteolytic fragments of matrix molecules, such as endostatin, can exert anti-angiogenic effects by inhibiting endothelial cell proliferation, migration and tube formation. In contrast, other matrix molecules promote endothelial cell growth and morphogenesis, and/or stabilize nascent blood vessels. Hence, extracellular matrix molecules and extracellular matrix remodelling events play a key role in regulating angiogenesis.  相似文献   

2.
High levels of homocysteine induce a sustained injury on arterial endothelial cells which accelerates the development of thrombosis and atherosclerosis. Some of the described effects of homocysteine on endothelial cells are features shared with an anti-angiogenic response. Therefore, we studied the effects of homocysteine on key steps of angiogenesis using bovine aorta endothelial cells as a model. Homocysteine decreased proliferation and induced differentiation. Furthermore, 5 mM homocysteine produced strong inhibitions of matrix metalloproteinase-2 and urokinase, two proteolytic activities that play a key role in extracellular matrix re-modeling, and decreased migration and invasion, other two key steps of angiogenesis. This study demonstrates that homocysteine can inhibit several steps of the angiogenic process.  相似文献   

3.
Calcitonin (CT) is one of the factors affecting the embryo implantation, but its effects on the implantation window have not been fully investigated. The current study investigated the effects of CT on the endometrium receptivity by morphological study and evaluation of leukemia inhibitory factor (LIF), mucin 1 (Muc-1), and microRNA (miRNA) Let-7a in the ovarian stimulation and the normal ovarian cycle. Then the mechanism of the CT effects through the mammalian target of rapamycin (mTOR) signaling pathway was studied by using PP242. A total of 64 BALB/c mice were divided into the normal ovarian cycle and ovarian stimulation groups. Each group consisted of four subgroups: control, calcitonin, PP242, and calcitonin+PP242. CT and PP242 were injected on the fourth of pregnancy into the mice and 24 hr later all the mice were killed. The uterine tissue samples were used for morphological analysis, and endometrial cells were mechanically isolated for evaluation of gene and protein expression. The results showed that ovarian stimulation induced mTOR phosphorylation as well as increased expression of the Let-7a miRNA. In addition, CT injection increased the expression of LIF and miRNA Let-7a in ovarian stimulation similar to that in normal ovarian cycles. However, injection of PP242 reduced expression of miRNA Let-7a and increased Muc-1 expression in ovarian stimulation group. In conclusion, the administration of CT improved endometrial receptivity in mice. This phenomenon occurred by upregulation of LIF, miRNA Let-7a and downregulation of Muc-1 via mTOR signaling pathway.  相似文献   

4.
Angiogenesis, a key step in many physiological and pathological processes, involves proteolysis of the extracellular matrix. To study the role of two enzymatic families, serine-proteases and matrix metalloproteases in angiogenesis, we have adapted to the mouse, the aortic ring assay initially developed in the rat. The use of deficient mice allowed us to demonstrate that PAI-1 is essential for angiogenesis while the absence of an MMP, MMP-11, did not affect vessel sprouting. We report here that this model is attractive to elucidate the cellular and molecular mechanisms of angiogenesis, to identify, characterise or screen “pro- or anti-angiogenic agents that could be used for the treatment of angiogenesis-dependent diseases. Approaches include using recombinant proteins, synthetic molecules and adenovirus-mediated gene transfer. Published: October 28, 2002  相似文献   

5.
Protein kinase C (PKC) was implicated as an important positive regulator of angio-genesis by studies showing that tumor promoting phorbol esters, which activate PKC, stimulate angiogenesis both in vitro and in vivo. Therefore, inhibitors of PKC might be expected to block angiogenesis. MDL 27032 [4-propyl-5-(4-pyridinyl)-2(3H)-oxazolone], an inhibitor of cellular protein kinases, prevented capillary-like tube formation by human umbilical vein endothelial cells (HUVEC) on basement membrane preparations, an in vitro model for angiogenic activity. MDL 27032 had an IC50 = 50 microM, whereas MDL 27044, the 4-methyl analog of MDL 27032, was less effective (IC50 greater than 100 microM). This selectivity was reflected in the relative abilities of the two compounds to inhibit PKC and protein kinase A (PKA) activity prepared from HUVEC, and also to inhibit the basic fibroblast growth factor stimulated proliferation of HUVEC. MDL 27032 (0.3 microgram/egg) also significantly inhibited neovascularization in yolk sac membranes of developing chick embryos, whereas MDL 27044 added at concentrations up to 3 micrograms/egg was not inhibitory when compared with vehicle treated controls. Adhesion of HUVEC to individual extracellular matrix proteins, including laminin, fibronectin, and fibrinogen, but not to the mixture of matrix components or collagen type I and IV, was inhibited after treatment with MDL 27032. These studies suggest that MDL 27032, may have potential as an anti-angiogenic agent because it disrupts both formation of tube-like structures by HUVEC on Matrigel and normal neovascularization in ovo. This inhibition may in part be due to altered cellular interactions with the extracellular matrix.  相似文献   

6.
Type V collagen (ColV) is a component of the endothelial basement membrane zone. During angiogenesis, extracellular matrix remodelling results in the release of active protein fragments that display pro- or anti-angiogenic properties. The latter often exert their activity through their heparin-binding site. We previously characterized a ColVα1-derived fragment called HEPV that contains a high affinity-binding site for heparin and heparan sulphate chains. Here we show that HEPV binds to FGF2 through its heparin-binding site. Using in vitro and in vivo angiogenesis assays, we show that HEPV but not the HEPV mutant at the heparin-binding site, inhibits FGF2-dependant angiogenesis. On the opposite, HEPV does not bind to VEGFA and has no effect on VEGFA-mediated angiogenesis. In 3D collagen gels, the addition of HEPV abrogates endothelial cell invasion and sprouting induced by FGF2. Interestingly, in vivo experiments reveal that HEPV anti-angiogenic activity is associated with the appearance of endothelial to mesenchymal transition (EndMT) markers. Together, these findings indicate that the ColVα1-derived fragment HEPV functions as an anti-angiogenic factor that represses FGF2-mediated angiogenesis through the regulation of endothelial cell plasticity. Previous observations showing that ColV overexpression negatively regulates pathological angiogenesis were left unexplained. Our data provide insights into the possible molecular mechanisms.  相似文献   

7.
The extracellular matrix plays a critical role in orchestrating the events necessary for wound healing, muscle repair, morphogenesis, new blood vessel growth, and cancer invasion. In this study, we investigate the influence of extracellular matrix topography on the coordination of multi-cellular interactions in the context of angiogenesis. To do this, we validate our spatio-temporal mathematical model of angiogenesis against empirical data, and within this framework, we vary the density of the matrix fibers to simulate different tissue environments and to explore the possibility of manipulating the extracellular matrix to achieve pro- and anti-angiogenic effects. The model predicts specific ranges of matrix fiber densities that maximize sprout extension speed, induce branching, or interrupt normal angiogenesis, which are independently confirmed by experiment. We then explore matrix fiber alignment as a key factor contributing to peak sprout velocities and in mediating cell shape and orientation. We also quantify the effects of proteolytic matrix degradation by the tip cell on sprout velocity and demonstrate that degradation promotes sprout growth at high matrix densities, but has an inhibitory effect at lower densities. Our results are discussed in the context of ECM targeted pro- and anti-angiogenic therapies that can be tested empirically.  相似文献   

8.
The present study was undertaken to observe the inhibition of angiogenesis by decursin. It was the first time to show that decursin offered strong anti-angiogenic activities under the biologically relevant growth (with serum) conditions. Decursin significantly inhibited human umbilical vein endothelial cell (HUVEC) proliferation concomitant with G1 phase cell cycle arrest. Decursin also inhibited HUVEC-capillary tube formation and invasion/migration in a dose-dependant manner which was associated with the suppression of matrix metalloproteinase (MMP) -2 and -9 activities. Decursin suppressed angiogenesis in ex vivo rat aortic ring angiogenesis model where it significantly inhibited blood capillary-network sprouting from rat aortic sections. Taken together, these findings suggested anti-angiogenic activity of decursin in biologically relevant condition, and warrants further pre-clinical studies for its potential clinical usefulness.  相似文献   

9.
Boundary membranes were recovered from glyoxysomes, transition peroxisomes, and leaf-type peroxisomes purified from cotyledons of sunflower (Helianthus annuus L.) at three stages of postgerminative growth. After membranes were washed in 100 mM Na2CO3 (pH 11.5), integral peroxisome membrane proteins (PMPs) were solubilized in buffered aminocaproic acid/dodecyl maltoside (0.63 M/1.5%) and analyzed by nondenaturing and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Six prominent nondenatured PMP complexes and 10 prominent SDS-denatured polypeptides were identified in the membranes of the three types of peroxisomes. A nondenatured complex of approximately 140 kD, composed mainly of 24.5-kD polypeptides, decreased temporally, independently of seedling exposure to white, blue, or red light; only far-red light seemed to prevent its decrease. PMP complexes of approximately 120 and 70 kD, in contrast, were present at all stages and changed in polypeptide content. It remains to be determined whether these data reflect changes within in vivo complexes or within complexes formed following/during detergent solubilization. Conversion of glyoxysomes to leaf-type peroxisomes in white or red light after a 2-d dark period was accompanied by the appearance of three SDS-denatured PMPs: 27.5, 28, and 47 kD. The former two became part of the PMP120 and 70 complexes, as well as part of a new PMP130 complex that also possessed the PMP47. Growth of seedlings in blue or far-red light did not promote the appearance of PMPs 27.5 or 28. Blue light promoted the appearance of PMP47, and far-red light seemed to prevent its appearance. Chlorophyll likely is not the photoreceptor involved in accumulation of PMPs because the PMP composition is distinctly different in seedlings irradiated with red or blue light of comparable fluence rates. Several lines of evidence indicate that the synthesis and acquisition of membrane and all matrix proteins are not coupled. The data provide evidence for a change in PMP composition when sunflower or any other oilseed glyoxysomes are converted to leaf-type peroxisomes and suggest that the change is regulated by both photobiological and temporal mechanisms.  相似文献   

10.
Myocardium consists of diverse cell types suggesting a role for cell-cell interaction in maintaining the structural and functional integrity of the heart. Cardiac fibroblasts are the source of extracellular matrix, growth factors and cytokines in the heart and their interactions with cardiac myocytes are recognized. Their effects on biological responses of endothelial cells, however, are vastly unexplored. Proliferation of endothelial cells is an essential stage of angiogenesis and contributes to development of coronary collaterals. This study was designed to evaluate the effect of soluble factors produced by cardiac fibroblasts on endothelial cell proliferation. Human cardiac fibroblast-conditioned medium (CF-CM) caused a significant increase (47%, P < 0.0001) in DNA synthesis in human umbilical vein endothelial cells (HUVEC), as determined by [(3)H]thymidine incorporation. This effect was dependent on de novo protein synthesis and activation of MAP kinases. Consistently, CF-CM induced the expression and activation of ERK2 in HUVEC. The CF-CM from which heparin-binding proteins were removed, had a significantly enhanced stimulatory effect on DNA synthesis in HUVEC compared to that of 'whole CF-CM'. Western analysis showed the presence of VEGF, bFGF, PDGF, TGF-beta(1), fibronectin and thrombospondin-1 in whole CF-CM. The individual immunodepletion of each factor from whole CF-CM showed that all were necessary for full activity of CF-CM. CF-CM caused a significant reversal of hypoxia-induced inhibition of DNA synthesis and enhanced expression of survival-associated protein, Bcl(2), in HUVEC. Together, these data show that cardiac fibroblasts release inhibitory and stimulatory factors, the net effect of which is an enhancement of DNA synthesis in endothelial cells. These results point to the role that cardiac fibroblasts may play in angiogenesis in the heart.  相似文献   

11.
Effects of ursolic acid on different steps of the angiogenic process   总被引:9,自引:0,他引:9  
Ursolic acid is a triterpenoid with pleiotropic biological effects. In this report, we study the effects of ursolic acid on different key steps of angiogenesis. Our results show that ursolic acid is able to inhibit key steps of angiogenesis in vitro, including endothelial cell proliferation, migration, and differentiation. At the same time, it seems to stimulate other key steps of angiogenesis, such as extracellular matrix degradation by MMP-2 and urokinase. Although ursolic acid can inhibit in vivo angiogenesis in the CAM assay, the different signs of the effects it causes on different steps of angiogenesis force one to be cautious concerning its anti-angiogenic potential.  相似文献   

12.
The activity of N-hexanoyl-D-erythro-sphingosine, a C6-ceramide against angiogenesis was tested in vitro and in vivo. The effect of ceramide in inhibiting MCF-7 cancer cells was also determined. The aim of this study was to potentiate the effect of ceramide as anti-angiogenic compound that can regulate tumor induced angiogenesis.C6-ceramide inhibited vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cells (HUVEC) tube formation in a dose-dependent manner within 24 hours. Ceramide at concentrations between 12.5 and 25 μM inhibited the viability of MCF-7 cells and reduced VEGF-induced cell migration in 24 hours. At 50 μM, ceramide induced MCF-7 cell death via autophagy as demonstrated by accumulation of MDC in ceramide-treated MCF-7 vacuoles. The expression of VEGF was reduced and the levels of cathepsin D in MCF-7 increased. In vivo, 50 μM ceramide caused a 40% reduction of new vessel formation in the CAM assay within 24 hours. Zebrafish exposed to 100 - 400 μM ceramide had a distinct disruption of blood vessel development at 48 hours post-fertilization. Ceramide-exposed embryos also had primary motoneurons exhibiting abnormal axonal trajectories and ectopic branching. Ceramide induced cell-death was not detected in the zebrafish assay. Collectively, these data indicate that ceramide is a potent anti-angiogenic compound and that the mechanism underlying its anti-angiogenic capabilities does not rely upon the induction of apoptosis.  相似文献   

13.
The formation of a microvasculature is regulated in large part by cell-cell interactions. Ephrins and their Eph receptors mediate cell adhesion, repulsion, and migration, all critical processes in angiogenesis. (1) Here we use a covalently immobilized ephrinA1, conjugated to poly(ethylene glycol), to induce vessel formation both in vitro and in vivo in poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Human umbilical vein endothelial cell (HUVEC) tubulogenesis in matrix metalloproteinase-sensitive hydrogels was visualized from 6 h to 7 days in response to three different concentrations of PEG-ephrinA1. The deposition of extracellular matrix proteins collagen IV and laminin that stabilize tubule formation were imaged, quantified, and found to be dependent on PEG-ephrinA1 concentration. To confirm the importance of the EphA2-ephrinA1 interaction in tubule formation, soluble EphA2 was used to disrupt the EphA2-ephrinA1 interaction between a coculture of HUVEC and human brain vascular pericyte cells. HUVECs seeded onto PEGDA hydrogels displayed a dose-dependent reduction in tubule formation in response to the soluble EphA2. Finally, hydrogels with releasable platelet-derived growth factor (PDGF), immobilized RGDS, and covalently immobilized PEG-ephrinA1 were implanted into the mouse cornea micropocket. These hydrogels induced a more robust vascular response with an increase in vessel density as compared with hydrogels with releasable PDGF alone. As such, PEG-ephrinA1 may represent a promising molecule to regulate cell adhesion and migration for formation of a microvasculature in tissue-engineered constructs.  相似文献   

14.
A previous study of prokaryotic genomes identified large reservoirs of putative mobile promoters (PMPs), that is, homologous promoter sequences associated with nonhomologous coding sequences. Here we extend this data set to identify the full complement of mobile promoters in sequenced prokaryotic genomes. The expanded search identifies nearly 40,000 PMP sequences, 90% of which occur in noncoding regions of the genome. To gain further insight from this data set, we develop a birth–death–diversification model for mobile genetic elements subject to sequence diversification; applying the model to PMPs we are able to quantify the relative importance of duplication, loss, horizontal gene transfer (HGT), and diversification to the maintenance of the PMP reservoir. The model predicts low rates of HGT relative to the duplication and loss of PMP copies, rapid dynamics of PMP families, and a pool of PMPs that exist as a single copy in a genome at any given time, despite their mobility. We report evidence of these “singletons” at high frequencies in prokaryotic genomes. We also demonstrate that including selection, either for or against PMPs, was not necessary to describe the observed data.  相似文献   

15.
Peroxisomes are massively induced when methylotrophic yeasts are cultured on methanol as the sole carbon and energy source. An analysis of the protein composition of the peroxisomal membrane and the generation of probes against two peroxisomal membrane proteins (PMPs) have been undertaken. Peroxisomes from Candida boidinii were obtained from sucrose gradients as previously described or from a novel one-step purification of the organelle on a Percoll gradient. The protein composition of the membranes from these two preparations was virtually identical. About 10 proteins comprise nearly all of its protein mass. The most prominent proteins have molecular masses of 120, 100, 47, 31-32 (a triplet), and 20 kDa; significant amounts of alcohol oxidase and dihydroxyacetone synthase, the two abundant matrix proteins, also remain associated with the membrane. Glycosylation of the membrane proteins could not be detected. Exposure of the membrane to chaotropes shows that PMPs 100 and 20 are the most easily removable, whereas PMP 47 appears to be the most tightly associated. Mice were injected with peroxisomal membrane, and hybridoma lines were isolated that produced antibody against PMP 20, PMP 47, and dihydroxyacetone synthase. Indirect immunofluorescence with these monoclonal antibodies confirmed that all three proteins are localized to the peroxisomal cluster. Immunoblotting experiments demonstrated that peroxisomal membrane as well as matrix proteins are induced by methanol.  相似文献   

16.
17.
18.
In contrast to the molecular mechanisms underlying import of peroxisomal matrix proteins, those involving the transport of membrane proteins remain rather elusive. At present, two targeting routes for peroxisomal membrane proteins (PMPs) have been depicted: class I PMPs are targeted from the cytoplasm directly to the peroxisome membrane, and class II PMPs are sorted indirectly to peroxisomes via the endoplasmic reticulum (ER). In addition, three peroxins--Pex3p, Pex16p, and Pex19p - have been identified as essential factors for PMP assembly in several species including humans: Pex19p is a predominantly cytoplasmic protein that shows a broad PMP-binding specificity; Pex3p serves as the membrane-anchoring site for Pex19p; and Pex16p - a protein absent in most yeasts--is thought to provide the initial scaffold for recruiting the protein import machinery required for peroxisome membrane biogenesis. Remarkably, the function of Pex16p does not appear to be conserved between different species. In addition, significant disagreement exists about whether Pex19p has a chaperone-like role in the cytosol or at the peroxisome membrane and/or functions as a cycling import receptor for newly synthesized PMPs. Here we review the recent progress made in our understanding of the role of two key players in PMP biogenesis, Pex3p and Pex19p.  相似文献   

19.
20.
TNF-alpha impairs endothelial cell growth and angiogenesis. The anti-angiogenic effects of TNF-alpha have mainly been explained by its modulating vascular endothelial growth factor (VEGF)-specific angiogenic pathway. Hepatocyte growth factor (HGF) also promotes the growth of vascular endothelial cells and the development of new blood vessels through interaction with its specific receptor, c-met. However, it is little known whether TNF-alpha interacts with the HGF system or not. In this study, we examined the effect of TNF-alpha on HGF receptor function. In human umbilical venous endothelial cells (HUVEC), TNF-alpha acutely inhibited the phosphorylation and activation of c-met induced by HGF. The ability of TNF-alpha to inhibit HGF-induced c-met activity was impaired by sodium orthovanadate, suggesting that the inhibitory effect of TNF-alpha was mediated by a protein-tyrosine phosphatase. Treatment of HUVEC with TNF-alpha impairs the ability of HGF to activate MAPK and Akt, and this effect was blocked by SOV. HGF-induced c-met responses specifically associated with endothelial cell proliferation and mitogen-activated protein kinase activation were also inhibited by TNF-alpha, and these were reversed by sodium orthovanadate. HGF-induced SHP-1 (a cytoplasmic protein-tyrosine phosphatase) and pretreatment of HUVEC with TNF-alpha prior to HGF treatment resulted in substantial increase in the amount of SHP-1. These data suggest that TNF-alpha employs a protein-tyrosine phosphatase and may exert its anti-angiogenic function in part by modulating the HGF-specific angiogenic pathway in pathological settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号