首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desensitization of the cardiac muscarinic K+ channel was studied in cultured neonatal rat atrial cells and in Chinese hamster ovary (CHO) cells transfected with muscarinic receptor (HM(2)), G protein-coupled inward rectifying K+ channels 1 and 4, and G protein-coupled receptor kinase 2. In atrial cells incubated in 10 microM carbachol for 24 h, channel activity in cell-attached patches was substantially reduced as a result of long-term desensitization. The long-term desensitization was also observed in CHO cells transfected with the wild-type receptor and receptor kinase (as well as the channel). However, long-term desensitization was greatly reduced or abolished if the cells were 1) not transfected with the receptor kinase, 2) transfected with a mutant receptor lacking phosphorylation sites (rather than the wild-type receptor), or 3) transfected with a mutant receptor kinase lacking kinase activity (rather than the wild-type receptor kinase). We suggest that long-term desensitization of the cardiac muscarinic receptor-K+ channel system to muscarinic agonist may involve phosphorylation of the receptor by receptor kinase.  相似文献   

2.
3.
gamma-Aminobutyric acid (GABA) receptor/channel rho 1 subunits are important components in inhibitory pathways in the central nervous system. However, the precise locations and roles of these receptors in the central nervous system are unknown. We studied the expression localization of GABA receptor/channel rho 1 subunit in mouse spinal cord and dorsal root ganglia (DRG). The immunohistochemistry results indicated that GABA receptor/channel rho 1 subunits were expressed in mouse spinal cord superficial dorsal horn (lamina I and lamina II) and in DRG. To understand the functions of the GABA receptor/channel rho 1 subunit in these crucial sites of sensory transmission in vivo, we generated GABA receptor/channel rho 1 subunit mutant mice (rho 1-/-). GABA receptor/channel rho 1 subunit expression in the rho 1-/- mice was eliminated completely, whereas the gross neuroanatomical structures of the rho 1-/- mice spinal cord and DRG were unchanged. Electrophysiological recording showed that GABA-mediated spinal cord response was altered in the rho 1-/- mice. A decreased threshold for mechanical pain in the rho 1-/- mice compared with control mice was observed with the von Frey filament test. These findings indicate that the GABA receptor/channel rho 1 subunit plays an important role in modulating spinal cord pain transmission functions in vivo.  相似文献   

4.
Traditionally the consequences of activation of G-protein-coupled receptors (GPCRs) by an agonist are studied using biochemical assays. In this study we use live cells and take advantage of a G-protein-gated inwardly rectifying potassium channel (Kir3.1+3.2A) that is activated by the direct binding of Gbetagamma subunit to the channel complex to report, in real-time, using the patch clamp technique the activity of the "ternary complex" of agonist/receptor/G-protein. This analysis is further facilitated by the use of pertussis toxin-resistant fluorescent and non-fluorescent Galpha(i/o) subunits and a series of HEK293 cell lines stably expressing both channel and receptors (including the adenosine A(1) receptor, the adrenergic alpha(2A) receptor, the dopamine D(2S) receptor, the M4 muscarinic receptor, and the dimeric GABA-B(1b/2) receptor). We systematically analyzed the contribution of the various inputs to the observed kinetic response of channel activation. Our studies indicate that the combination of agonist, GPCR, and G-protein isoform uniquely specify the behavior of these channels and thus support the importance of the whole ternary complex at a kinetic level.  相似文献   

5.
The cardiac M2 muscarinic receptor/G protein/K+ channel system was studied in neonatal rat atrial cells cultured with and without 10 microM carbachol (CCh) for 24 h. Channel activity in CCh-pretreated cells was substantially reduced as a result of long-term desensitization regardless of whether the channel was activated by ACh in cell-attached patches or GTP in inside-out patches. Channel activity in CCh-pretreated cells was also low when the receptor was bypassed and the G protein and channel were directly activated by [gamma-S]GTP or both the receptor and G protein were bypassed and the channel was directly activated by trypsin. Finally, in CCh-pretreated cells, the whole cell K+ current was low when the channel was activated via the independent adenosine receptor. This suggests that the channel is involved in long-term desensitization. However, in CCh-pretreated cells, although the receptor was internalized, there was no internalization of the channel. We suggest that the function of the muscarinic K+ channel declines in long-term desensitization of the cardiac M2 muscarinic receptor/G protein/K+ channel system.  相似文献   

6.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg and a binding affinity (Kd) of 9.0 nM. [3H]Ryanodine binding to the purified receptor was stimulated by ATP and Ca2+ with a half-maximal stimulation at 1 mM and 8-9 microM, respectively. [3H]Ryanodine binding to the purified receptor was inhibited by ruthenium red and high concentrations of Ca2+ with an IC50 of 2.5 microM and greater than 1 mM, respectively. Reconstitution of the purified receptor in planar lipid bilayers revealed the Ca2+ channel activity of the purified receptor. Like the native sarcoplasmic reticulum Ca2+ channels treated with ryanodine, the purified receptor channels were characterized by (i) the predominance of long open states insensitive to Mg2+ and ruthenium red, (ii) a main slope conductance of approximately 35 pS and a less frequent 22 pS substate in 54 mM trans-Ca2+ or Ba2+, and (iii) a permeability ratio PBa or PCa/PTris = 8.7. The approximately 450,000-Da ryanodine receptor channel thus represents the long-term open "ryanodine-altered" state of the Ca2+ release channel from sarcoplasmic reticulum. We propose that the ryanodine receptor constitutes the physical pore that mediates Ca2+ release from the sarcoplasmic reticulum of skeletal muscle.  相似文献   

7.
The primary structure of a novel subunit of the mouse NMDA (N-methyl-D-aspartate) receptor channel, designated epsilon 4, has been revealed by cloning and sequencing the cDNA. The epsilon 4 subunit shares high amino acid sequence identity with the epsilon 1, epsilon 2 and epsilon 3 subunits of the mouse NMDA receptor channel, thus constituting the epsilon subfamily of the glutamate receptor channel. Expression from cloned cDNAs of the epsilon 4 subunit together with the zeta 1 subunit in Xenopus oocytes yields functional NMDA receptor channels. The epsilon 4/zeta 1 heteromeric channel exhibits high apparent affinities for agonists and low sensitivities to competitive antagonists. The epsilon 4 subunit is thus distinct in functional properties from the epsilon 1, epsilon 2 and epsilon 3 subunits, and contributes further diversity of the NMDA receptor channel.  相似文献   

8.
The postsynaptic glycine receptor (GlyR) is a major inhibitory chloride channel protein in the central nervous system. The affinity-purified receptor contains polypeptides of 48 kDa, 58 kDa, and 93 kDa. The 48-kDa (alpha) and 58 kDa (beta) subunits span the postsynaptic membrane in a pentameric arrangement to form the anion channel of the receptor. The 93-kDa polypeptide is cytoplasmically localized and may have an anchoring function. Molecular cloning revealed that different structural characteristics are shared by the membrane-spanning subunits of the GlyR and those of other ligand-gated ion channel proteins. Developmental regulation of the GlyR is characterized by alterations in antagonist binding, heterogeneity of alpha subunits, and increased levels of the 93-kDa polypeptide. Glycine receptor function can be reconstituted by expression of cloned alpha subunits in heterologous cell systems. Positive charges found at the presumed mouths of the GlyR channel appear to be important determinants of ion selectivity. These data establish the anion-conducting GlyR as a homolog of other ligand-gated ion channel proteins and suggest that the diversity of these channels originates from divergent evolution of a primordial channel protein early in phylogeny.  相似文献   

9.
We have studied the interaction of the reversible acetylcholine esterase inhibitor (-)physostigmine (D-eserine) with the nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata electric tissue by means of ligand-induced ion flux into nAChR-rich membrane vesicles and of equilibrium binding. We find that (-) physostigmine induces cation flux (and also binds to the receptor) even in the presence of saturating concentrations of antagonists of acetylcholine, such as D-tubocurarine, alpha-bungarotoxin or antibody WF6. The direct action on the acetylcholine receptor is not affected by removal of the methylcarbamate function from the drug and thus is not due to carbamylation of the receptor. Antibodies FK1 and benzoquinonium antagonize channel activation (and binding) of eserine, suggesting that the eserine binding site(s) is separate from, but adjacent to, the acetylcholine binding site at the receptor. In addition to the channel activating site(s) with an affinity of binding in the 50 microM range, there exists a further class of low-affinity (Kd approximately mM) sites from which eserine acts as a direct blocker of the acetylcholine-activated channel. Our results suggest the existence of a second pathway of activation of the nAChR channel.  相似文献   

10.
Channel activity of the calcium release channel from skeletal muscle, ryanodine receptor type 1, was measured in the presence and absence of protamine sulfate on the cytoplasmic side of the channel. Single-channel activity was measured after incorporating channels into planar lipid bilayers. Optimally and suboptimally calcium-activated calcium release channels were inactivated by the application of protamine to the cytoplasmic side of the channel. Recovery of channel activity was not observed while protamine was present. The addition of protamine bound to agarose beads did not change channel activity, implying that the mechanism of action involves an interaction with the ryanodine receptor rather than changes in the bulk calcium concentration of the medium. The block of channel activity by protamine could be reversed either by removal by perfusion with buffer or by the addition of heparin to the cytoplasmic side of the channel. Microinjection of protamine into differentiated C(2)C(12) mouse muscle cells prevented caffeine-induced intracellular calcium release. The results suggest that protamine acts on the ryanodine receptor in a similar but opposite manner from heparin and that protamine can be used as a potent, reversible inhibitor of ryanodine receptor activity.  相似文献   

11.
An inositol polyphosphate receptor has been purified from bovine cerebellum which consists of three different polypeptides with Mr of 111,000, 102,000, and 52,000. Negative staining electron microscopy reveals globular-like structures 10-13 nm in diameter. The receptor has a Stokes radius of 400,000 daltons as determined by molecular sieve high performance liquid chromatography. The receptor preparation binds inositol 1,3,4,5-tetrakisphosphate, inositol hexaphosphate (or phytol), and inositol 1,4,5-trisphosphate (IP4, IP6, and IP3, respectively) with submicromolar affinity (0.19, 0.15, and 0.54 microM, respectively) at conditions approximating physiological ionic strength and pH. The purified receptor preparation, when reconstituted into planar bilayers, displays ion channel activity, preferentially permeable to K+. Permeability ratios of the channel are PK+/PNa+ approximately 5 and PK+/PCl approximately 19. In symmetrical 100 mM KCl, the channel is characterized by long open times (minutes) with a conductance of 7.2 picosiemens. The channel is selectively modulated by IP4. That is, at 1 microM IP4, the mean open time decreased substantially to rapid flicker behavior and the channel is completely closed at 10 microM IP4. IP6 and IP3 did not modulate the channel under similar conditions. Thus, the channel appears to be an IP4-modulated K+ channel.  相似文献   

12.
Ca(2+) within intracellular stores (luminal Ca(2+)) is believed to play a role in regulating Ca(2+) release into the cytosol via the inositol (1,4,5)-trisphosphate (Ins(1,4,5)P(3))-gated Ca(2+) channel (or Ins(1,4,5)P(3) receptor). To investigate this, we incorporated purified Type 1 Ins(1,4,5)P(3) receptor from rat cerebellum into planar lipid bilayers and monitored effects at altered luminal [Ca(2+)] using K(+) as the current carrier. At a high luminal [Ca(2+)] and in the presence of optimal [Ins(1,4,5)P(3)] and cytosolic [Ca(2+)], a short burst of Ins(1,4,5)P(3) receptor channel activity was followed by complete inactivation. Lowering the luminal [Ca(2+)] caused the channel to reactivate indefinitely. At luminal [Ca(2+)], reflecting a partially empty store, channel activity did not inactivate. The addition of cytosolic ATP to a channel inactivated by high luminal [Ca(2+)] caused reactivation. We provide evidence that luminal Ca(2+) is exerting its effects via a direct interaction with the luminal face of the receptor. Activation of the receptor by ATP may act as a device by which cytosolic Ca(2+) overload is prevented when the energy state of the cell is compromised.  相似文献   

13.
The P2X7 receptor is a frequently studied member of the purinergic receptor family signalling via channel opening and membrane pore formation. Fluorescent imaging is an important molecular method for studying cellular receptor expression and localization. Fusion of receptors to fluorescent proteins might cause major functional changes and requires careful functional evaluation such as has been done for the rat P2X7 receptor. This study examines fusion constructs of the human P2X7 receptor. We assessed surface expression, channel opening with calcium influx, and pore formation using YO-PRO-1 dye uptake in response to BzATP stimulation in transfected cells. We found that tagging at the N-terminal of the human P2X7 receptor with the enhanced green fluorescent protein (eGFP) disturbed channel opening and pore formation despite intact surface expression. A triple hemagglutinin (3HA) fused to the N-terminal also disrupted pore formation but not channel opening showing that even a small tag alters the normal function of the receptor. Together, this suggests that in contrast to what has been observed for the rat P2X7 receptor, the human P2X7 receptor contains N-terminal motifs important for signalling that prevent the construction of a functionally active fusion protein.  相似文献   

14.
Solubilized and Purified gamma-aminobutyric acid (GABA)A receptors from membrane vesicles of the bovine cerebral cortex were reconstituted into phospholipid vesicles and 36Cl- influx into the vesicles was examined. GABA induced a significant stimulation of the 36Cl- influx into reconstituted vesicles with 1.5% CHAPS/0.15% asolectin solubilized receptor and flunitrazepam further enhanced the GABA-stimulated influx. The purification of GABAA/benzodiazepine receptor complex and Cl- channel solubilized by 1.5% CHAPS/0.15% asolectin from membrane vesicles was achieved by 1012-S affinity column chromatography. The reconstituted vesicles with the purified receptor complex and Cl- channel also exhibited GABA-stimulated 36Cl- influx. This GABA-stimulated influx of 36Cl- was also enhanced by flunitrazepam, while suppressed by bicuculline, a GABAA receptor antagonist. These results strongly suggest that GABAA receptor is directly coupled with Cl- channel, whereas benzodiazepine receptor may be functionally coupled with GABAA receptor and modulates the GABA-stimulated Cl- influx through GABAA receptor. The present results also indicate that the purified GABAA receptor complex is coupled with Cl- channel and possesses functional characteristics as GABAA receptor.  相似文献   

15.
The effect of gamma-aminobutyric acid (GABA) on the bull sperm acrosome reaction was evaluated, and the interaction of progesterone, a physiologic inducer of the acrosome reaction, with the GABA receptor was explored. The acrosome reaction was stimulated by GABA in a dose-dependent manner. This effect was inhibited completely by bicuculline, a GABA A receptor antagonist, but GABA B and C receptor antagonists had no effect. Accordingly, muscimol, a GABA A receptor agonist, stimulated the acrosome reaction to the same extent as GABA, whereas baclofen (GABA B receptor agonist) and CACA (GABA C receptor agonist), had no effect. Preincubation with progesterone followed by the addition of GABA resulted in a significant increase in the percentage of acrosome reacted spermatozoa compared with progesterone or GABA alone. Taking into account that this increase was less than a simple addition of effects, it might be suggested that GABA and progesterone act through the same receptor and/or use the same mechanism of action. To test this hypothesis, the abilities of GABA and progesterone to induce acrosome reaction were tested in the presence of bicuculline, which suppressed both stimulatory effects. Given that the GABA A receptor is linked to the Cl(-) channel, we tested whether picrotoxin, a blocker of this channel, could modulate the effects of progesterone or GABA. Cl(-) channel blocker picrotoxin dramatically reduced the GABA and progesterone-initiated AR. In conclusion: GABA and progesterone stimulate the acrosome reaction in bull spermatozoa acting through a classical GABA A receptor. The mechanism of action requires the functional integrity of the Ca(2+) Cl(-) channel.  相似文献   

16.
Nicotinic acetylcholine receptor of the electric ray Torpedo is the most comprehensively characterized neurotransmitter receptor. It consists of five subunits (alpha2beta gammadelta) amino acid sequences of which were determined by cDNA cloning and sequencing. The shape and size of the receptor were determined by electron cryomicroscopy. It has two agonist/competitive antagonist binding sites which are located between subunits near the membrane surface. The receptor ion channel is formed by five transmembrane helices (M2) of all five subunits. The position of the binding site for noncompetitive ion channel blockers was found by photoaffinity labelling and site-directed mutagenesis. The intrinsic feature of the receptor structure is the position of the agonist/competitive antagonist binding sites in close vicinity to the ion channel spanning the bilayer membrane. This peculiarity may substantially enhance allosteric transitions transforming the ligand binding into the channel opening and physiological response. Muscle nicotinic acetylcholine receptors from birds and mammals are also pentaoligomers consisting of four different subunits (alpha2beta gammadelta or alpha2beta epsilondelta) with high homology to the Torpedo receptor. Apparently, the pentaoligomeric structure is the main feature of all nicotinic, both muscle and neuronal, receptors. However, the neuronal receptors are formed only by two subunit types (alpha and beta) or are even pentahomomers (alpha7 neuronal receptors). All nicotinic receptors are ligand-gated ion channel, the properties of the channels being essentially determined by amino acid residues forming M2 transmembrane fragments.  相似文献   

17.
Molecular models of the M2 segments of the GluR1 channel have been elaborated using a molecular mechanics approach. The models are based on the homology between pore-lining segments of AMPA receptor channels and the KcsA K+ channel and on cyclic H bonds at the Q/R site of the AMPA receptor channel. The N-terminal region of an M2 segment of the channel is assumed, like that of the K+ channel, to adopt a helical conformation. Due to a deletion, the C-terminal end of the M2 segment of the AMPA receptor is more stretched than that of the K+ channel. As a result, only a single oxygen ring may be exposed to the AMPA receptor channel pore. Data on the block of AMPA receptor channels by dicationic adamantane derivatives have been used to select the most relevant model. The model with the oxygen of a Gly residue (position +2 from the Q/R site) exposed to the pore best fits the experimental data. This model also fits experimental data for another class of AMPA receptor antagonists, the polyamine amides. According to the model, the side-chains of the C-terminal residues are involved in intra-receptor interactions that stabilize the structure of the channel rather than in interactions with ions in the pore.  相似文献   

18.
P2X(7) receptors are ATP-gated cation channels composed of three identical subunits, each having intracellular amino and carboxyl termini and two transmembrane segments connected by a large ectodomain. Within the P2X family, P2X(7) subunits are unique in possessing an extended carboxyl tail. We expressed the human P2X(7) subunit as two complementary fragments, a carboxyl tail-truncated receptor channel core (residues 1-436 or 1-505) and a tail extension (residues 434-595) in Xenopus laevis oocytes. P2X(7) channel core subunits efficiently assembled as homotrimers that appeared abundantly at the oocyte surface, yet produced only approximately 5% of the full-length P2X(7) receptor current. Co-assembly of channel core subunits with full-length P2X(7) subunits inhibited channel current, indicating that the lack of a single carboxyl tail domain is dominant-negative for P2X(7) receptor activity. Co-expression of the tail extension as a discrete protein increased ATP-gated current amplitudes of P2X(7) channel cores 10-20-fold, fully reconstituting the wild type electrophysiological phenotype of the P2X(7) receptor. Chemical cross-linking revealed that the discrete tail extension bound with unity stoichiometry to the carboxyl tail of the P2X(7) channel core. We conclude that a non-covalent association of crucial functional importance exists between the carboxyl tail of the channel core and the tail extension. Using a slightly shorter P2X(7) subunit core and subfragments of the tail extension, this association could be narrowed down to include residues 409-436 and 434-494 of the split receptor. Together, these results identify the tail extension as a regulatory gating module, potentially making P2X(7) channel gating sensitive to intracellular regulation.  相似文献   

19.
Ion Channel-Coupled Receptors (ICCRs) are artificial proteins comprised of a G protein-coupled receptor and a fused ion channel, engineered to couple channel gating to ligand binding. These novel biological objects have potential use in drug screening and functional characterization, in addition to providing new tools in the synthetic biology repertoire as synthetic K(+)-selective ligand-gated channels. The ICCR concept was previously validated with fusion proteins between the K(+) channel Kir6.2 and muscarinic M(2) or dopaminergic D(2) receptors. Here, we extend the concept to the distinct, longer β(2)-adrenergic receptor which, unlike M(2) and D(2) receptors, displayed barely detectable surface expression in our Xenopus oocyte expression system and did not couple to Kir6.2 when unmodified. Here, we show that a Kir6.2-binding protein, the N-terminal transmembrane domain of the sulfonylurea receptor, can greatly increase plasma membrane expression of β(2) constructs. We then demonstrate how engineering of both receptor and channel can produce β(2)-Kir6.2 ICCRs. Specifically, removal of 62-72 residues from the cytoplasmic C-terminus of the receptor was required to enable coupling, suggesting that ligand-dependent conformational changes do not efficiently propagate to the distal C-terminus. Characterization of the β(2) ICCRs demonstrated that full and partial agonists had the same coupling efficacy, that an inverse agonist had no effect and that the stabilizing mutation E122 W reduced agonist-induced coupling efficacy without affecting affinity. Because the ICCRs are expected to report motions of the receptor C-terminus, these results provide novel insights into the conformational dynamics of the β(2) receptor.  相似文献   

20.
Veresov VG  Konev SV 《Biofizika》2005,50(3):480-487
The dynamics of the inositol-1,4,5-triphosphate-sensitive calcium channel after binding of inositol-1,4,5-triphosphate and Ca2+ was analyzed by the Monte Carlo minimization technique. It was shown that the binding of Ca2+ with the unliganded receptor (channel) leads to a turning of the beta-sheet domain relative to the alpha-helical domain with the formation of the receptor conformation that is open for the entry of ions into the cytoplasmic channel vestibule, sterically closed for their passage through the vestibule in the part adjacent to the alpha-helical domains, and unfavourable for subsequent binding of inositol-1,4,5-triphosphate with the receptor. When both co-agonists bind to the receptor, the structure rearrangements induced eliminate both these steric obstacles for the passage of ions through the IP3-binding domain: one at the entrance of the channel cytoplasmic vestibule and the other that is placed deeper in the vestibule near the alpha-domains. The role of the dynamics of the receptor binding core in the IP3-sensitive channel gating is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号