首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Although a mutation (R553H) in the forkhead box (FOX)P2 gene is associated with speech/language disorder, little is known about the function of FOXP2 or its relevance to this disorder. In the present study, we identify the forkhead nuclear localization domains that contribute to the cellular distribution of FOXP2. Nuclear localization of FOXP2 depended on two distally separated nuclear localization signals in the forkhead domain. A truncated version of FOXP2 lacking the leu-zip, Zn2+ finger, and forkhead domains that was observed in another patient with speech abnormalities demonstrated an aggregated cytoplasmic localization. Furthermore, FOXP2 (R553H) mainly exhibited a cytoplasmic localization despite retaining interactions with nuclear transport proteins (importin alpha and beta). Interestingly, wild type FOXP2 promoted the transport of FOXP2 (R553H) into the nucleus. Mutant and wild type FOXP2 heterodimers in the nucleus or FOXP2 R553H in the cytoplasm may underlie the pathogenesis of the autosomal dominant speech/language disorder.  相似文献   

4.
5.
Hemochromatosis (HC) is a common inherited disorder of iron metabolism for which neither the gene nor biochemical defect have yet been identified. The aim of this study was to look for clinical evidence that the predominant ancestral haplotype in Australian patients is associated with a common mutation in the gene. We compared indices of iron metabolism and storage in three groups of HC patients categorized according to the presence of the ancestral haplotype (i.e., patients with two copies, one copy, and no copies of the ancestral haplotype). We also examined iron indices in two groups of HC heterozygotes (those with the ancestral haplotype and those without) and in age-matched controls. These analyses indicate that (i) HC patients with two copies of the ancestral haplotype show significantly more severe expression of the disorder than those with one copy or those without, (ii) HC heterozygotes have partial clinical expression, which may be influenced by the presence of the ancestral haplotype in females but not in males, and (iii) the high population frequency of the HC gene may be the result of the selective advantage conferred by protecting heterozygotes against iron deficiency.  相似文献   

6.
We studied 37 unrelated families with a history of 21-hydroxylase deficiency (CYP21D) for eight common mutations and gene deletions in the 21-hydroxylase (CYP21) gene. We found de novo mutations in the CYP21 gene in two CYP21D patients. Analysis for eight common mutations in the 21-hydroxylase gene as well as large gene deletions was accomplished using polymerase chain reaction (PCR) followed by amplified created restriction site (ACRS) or restriction fragment length polymorphism (RFLP) and Southern blot followed by hybridization to a CYP21-specific probe. Linkage analysis was performed using microsatellite markers flanking the CYP21 gene. Ten short tandem repeat (STR) markers were used to confirm parentage in the two de novo mutation cases. In two prenatal diagnosis cases, an intron 2-13A/C>G mutation was identified in the proband, but not in the fetus, although the proband and fetus had identical linkage markers. Subsequently, the mutation was confirmed to be absent in the parents' genome and misparentage was ruled out. Our findings are consistent with previous studies showing a de novo mutation frequency of approximately 1.0-1.5% in the CYP21 gene. This new mutation rate is high relative to the rate of approximately one in one million for other autosomal recessive disorders. Thus, the de novo mutation rate in the CYP21 gene is not negligible. It must be considered and discussed in prenatal diagnosis and genetic counseling for this relatively common inherited disorder.  相似文献   

7.
The identification of defects in the prion protein (PrP) gene in families with inherited Creutzfeldt-Jakob disease or Gerstmann-Straussler syndrome allows presymptomatic diagnosis or exclusion of these disorders in subjects at risk. After counseling, PrP gene analysis was performed in three such individuals: two from families with a 144-bp insert and one with a point mutation at codon 102 in the PrP gene. The presence of a PrP gene defect was confirmed in one and excluded in two. Despite the potential problems of using PrP gene analysis in genetic prediction - specifically, uncertainty about penetrance and, generally, problems of presymptomatic testing in any inherited late-onset neurodegenerative disorder - we conclude that it has a role to play in improved genetic counseling for families with inherited prion diseases.  相似文献   

8.
9.
10.
Tay-Sachs disease is an inherited lysosomal storage disorder caused by defects in the beta-hexosaminidase alpha-subunit gene. The carrier frequency for Tay-Sachs disease is significantly elevated in both the Ashkenazi Jewish and Moroccan Jewish populations but not in other Jewish groups. We have found that the mutations underlying Tay-Sachs disease in Ashkenazi and Moroccan Jews are different. Analysis of a Moroccan Jewish Tay-Sachs patient had revealed an in-frame deletion (delta F) of one of the two adjacent phenylalanine codons that are present at positions 304 and 305 in the alpha-subunit sequence. The mutation impairs the subunit assembly of beta-hexosaminidase A, resulting in an absence of enzyme activity. The Moroccan patient was found also to carry, in the other alpha-subunit allele, a different, and as yet unidentified, mutation which causes a deficit of mRNA. Analysis of obligate carriers from six unrelated Moroccan Jewish families showed that three harbor the delta F mutation, raising the possibility that this defect may be a prevalent mutation in this ethnic group.  相似文献   

11.
Familial hypercholesterolaemia is a co-dominant inherited disorder of lipoprotein metabolism, in which defects in the gene for the low-density-lipoprotein (LDL) receptor result in a twofold increase in the plasma concentration of cholesterol and moderate-to-severe premature coronary heart disease. Many mutations in the gene for the LDL receptor that have different effects on the structure and function of this multifunctional protein have been found, but it is not yet clear whether the nature of the mutation determines the severity of the disorder. This question is being answered by comparing patients with well-characterized mutations, and recent work suggests that other genetic or environmental factors may be important in modulating the effect of the defect in LDL-receptor function in patients who are heterozygous for the disorder.  相似文献   

12.
Mevalonic aciduria is the first proposed inherited disorder of the cholesterol/isoprene biosynthetic pathway in humans, and it is presumed to be caused by a mutation in the gene coding for mevalonate kinase. To elucidate the molecular basis of this inherited disorder, a 2.0-kilobase human mevalonate kinase cDNA clone was isolated and sequenced. The 1188-base pair open reading frame coded for a 396-amino acid polypeptide with a deduced M(r) of 42,450. The predicted protein sequence displayed similarity to those of galactokinase and the yeast RAR1 protein, indicating that they may belong to a common gene family. Southern hybridization studies demonstrated that the mevalonate kinase gene is located on human chromosome 12 and is a single copy gene. No major rearrangements were detected in the mevalonic aciduria subject. The relative size (2 kilobases) and amounts of human mevalonate kinase mRNA were not changed in mevalonic aciduria fibroblasts. Approximately half of the mevalonic aciduria cDNA clones encoding mevalonate kinase contained a single base substitution (A to C) in the coding region at nucleotide 902 that changed an asparagine residue to a threonine residue. The presence of this missense mutation was confirmed by polymerase chain reaction amplification and allele-specific hybridization of the genomic DNAs from the proband and the proband's father and brother. Similar analysis failed to detect this mutation in the proband's mother, seven normal subjects, or four additional mevalonic aciduria subjects, indicating that the mutation does not represent a common gene polymorphism. Functional analysis of the defect by transient expression confirmed that the mutation produced an enzyme with diminished activity. Our data suggest that the index case is a compound heterozygote for a mutation in the mevalonate kinase gene.  相似文献   

13.
14.
Steroid 21-hydroxylase deficiency is the most common enzymatic defect causing congenital adrenal hyperplasia, an inherited disorder of cortisol biosynthesis. All mutations thus far characterized that cause this disorder appear to result from recombinations between the gene encoding the enzyme, CYP21B (CYP21), and the adjacent pseudogene, CYP21A (CYP21P). These are either deletions caused by unequal crossing-over during meiosis or apparent transfers of deleterious sequences from CYP21A to CYP21B, a phenomenon termed gene conversion. However, a small percentage of alleles do not carry such a mutation. We analyzed DNA from a patient with the mild, nonclassic form of 21-hydroxylase deficiency, who carried one allele that had no gene conversions detectable by hybridization with oligonucleotide probes. Sequence analysis revealed that this allele carried two missense mutations, R339H and P453S, neither of which has been previously observed in CYP21A or CYP21B. Each of these mutations was introduced into CYP21 cDNA which was then expressed in COS1 cells using a vaccinia virus system. Each mutation reduced the ability of the enzyme to 21-hydroxylate 17-hydroxyprogesterone to 50% of normal and the ability to metabolize progesterone to 20% of normal. Thus, each of these mutations represents a potential nonclassic 21-hydroxylase deficiency allele that is not the result of an apparent gene conversion.  相似文献   

15.
Maternally inherited deafness associated with the A1555G mutation in the mitochondrial 12S ribosomal RNA (rRNA) gene appears to require additional environmental or genetic changes for phenotypic expression. Aminoglycosides have been identified as one such environmental factor. In one large Arab-Israeli pedigree with congenital hearing loss in some of the family members with the A1555G mutation and with no exposure to aminoglycosides, biochemical evidence has suggested the role of nuclear modifier gene(s), but a genomewide search has indicated the absence of a single major locus having such an effect. Thus it has been concluded that the penetrance of the mitochondrial mutation appears to depend on additive effects of several nuclear genes. We have now investigated 10 multiplex Spanish and Italian families with 35 members with the A1555G mutation and sensorineural deafness. Parametric analysis of a genomewide screen again failed to identify significant evidence for linkage to a single autosomal locus. However, nonparametric analysis supported the role of the chromosomal region around marker D8S277. The combined maximized allele-sharing LOD score of 3.1 in Arab-Israeli/Spanish/Italian families represents a highly suggestive linkage result. We suggest that this region should be considered a candidate for containing the first human nuclear modifier gene for a mitochondrial DNA disorder. The locus operates in Arab-Israeli, Spanish, and Italian families, resulting in the deafness phenotype on a background of the mitochondrial A1555G mutation. No obvious candidate genes are located in this region.  相似文献   

16.
A Novel Mutation of the Fibrillin Gene Causing Ectopia Lentis   总被引:1,自引:0,他引:1  
Ectopia lentis (EL), a dominantly inherited connective tissue disorder, has been genetically linked to the fibrillin gene on chromosome 15 (FBN1) in earlier studies. Here, we report the first EL mutation in the FBN1 gene confirming that EL is caused by mutations of this gene. So far, several mutations in the FBN1 gene have been reported in patients with Marfan syndrome (MFS). EL and MFS are clinically related but distinct conditions with typical manifestations in the ocular and skeletal systems, the fundamental difference between them being the absence of cardiovascular involvement in EL. We report a point mutation, cosegregating with the disease in the described family, that displays EL over four generations. The mutation changes a conserved glutamic acid residue in an EGF-like motif, which is the major structural component of the fibrillin and is repeated throughout the polypeptide. In vitro mutagenetic studies have demonstrated the necessity of an analogous glutamic acid residue for calcium binding in an EGF-like repeat of human factor IX. This provides a possible explanation for the role of this mutation in the disease pathogenesis.  相似文献   

17.
Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5) but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2). Here, we report two mutations in the CtIP (RBBP8) gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder.  相似文献   

18.
Biotinidase deficiency is an autosomal recessively inherited disorder in the recycling of the vitamin biotin. The most common mutation that causes profound biotinidase deficiency in symptomatic individuals is a deletion/insertion (G98:d7i3) that occurs in exon B of the biotinidase gene. We now report the second most common mutation, a C-to-T substitution (position 1612) in a CpG dinucleotide in exon D of the biotinidase gene. This mutation results in the substitution of a cysteine for arginine538 (designated R538C) and was found in 10 of 30 symptomatic children with profound biotinidase deficiency, 5 of whom also have the G98:d7i3 mutation. This mutation was not found in DNA samples from 32 individuals with normal biotinidase activity, but was found in one individual with enzyme activity in the heterozygous range. This mutation was not detected in 371 randomly selected, normal individuals using allele-specific oligonucleotide hybridization analysis. Aberrant biotinidase protein was not detectable in extracts of fibroblasts from a child who is homozygous for the R538C mutation, but was present in less than normal concentration in identical extracts treated with β-mercaptoethanol. Because there is no detectable biotinidase protein in sera of children who are homozygous for the R538C mutation and in combination with the deletion/insertion mutation, the R538C mutation likely results in inappropriate intra- or intermolecular disulfide bond formation, more rapid degradation of the aberrant enzyme, and failure to secrete the residual aberrant enzyme from the cells into blood. Received: 13 August 1996 / Revised: 13 November 1996  相似文献   

19.
The crucial role of the human platelet fibrinogen receptor in maintaining normal hemostasis is best exemplified by the autosomal recessive bleeding disorder Glanzmann thrombasthenia (GT). The platelet fibrinogen receptor is a heterodimer composed of glycoproteins IIb (GPIIb) and IIIa (GPIIIa). Platelets from patients with GT have a quantitative or qualitative abnormality in GPIIb and GPIIIa and can neither bind fibrinogen nor aggregate. Very few genetic defects have been identified that cause this disorder. We describe a kindred with GT in which the affected individuals have a unique inversion-deletion mutation in the gene for GPIIIa. Patient platelets lacked both GPIIIa protein and mRNA. Southern blots of patient genomic DNA probed with an internal 1.0-kb GPIIIa cDNA suggested a large rearrangement of this gene but were normal when probed with small GPIIIa cDNA fragments that were outside the mutation. Cytogenetics and pulsed-field gel analysis of the GPIIIa gene were normal, making a translocation or a very large rearrangement unlikely. Additional Southern analyses suggested that the abnormality was not a small insertion. We constructed a patient genomic DNA library and isolated fragments containing the 5' and 3' breakpoints of the mutation. The nucleotide sequence from these genomic clones was determined and revealed that, relative to the normal gene, the mutant allele contained a 1-kb deletion immediately preceding a 15-kb inversion. The DNA breaks occurred in two inverted and one forward Alu sequence within the gene for GPIIIa and in the left, right, and left arms, respectively, of these sequences. There was a 5-bp repeat at the 3' terminus of the inversion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Genetically isolated populations, such as Newfoundland, have contributed greatly to the identification of disease-causing genes. A linkage disequilibrium (LD) study involving six Newfoundland families predicted a critical interval for Bardet-Biedl syndrome 1 (BBS1) (Young et al. in Am J Hum Genet 65:1680–1687, 1999), but the subsequent identification of BBS1 revealed that it lies outside this region. This suggested that either there is another gene responsible for BBS in these families or the Newfoundland population may not be ideal for LD studies. We screened these six Newfoundland families for mutations in BBS1 and found that affected individuals in five of them were homozygous for the same M390R mutation. There was no evidence for any BBS1 mutation in the affected individual in the sixth family. Therefore, one of the criteria for LD mapping was not met; namely, there should be a single disease-causing allele in the population. Haplotype analysis of unaffected individuals from south-west Newfoundland and English BBS1 patients homozygous for M390R, revealed that a second criterion for LD mapping was violated. The M390R mutation occurred in a common haplotype and both of these chromosomes, the ancestral wild-type and disease-causing haplotypes, were introduced to Newfoundland and spread by a founder effect. Moreover, it was found that disease-associated alleles occurred at relatively high frequencies in normal haplotypes and this probably accounted for the incorrect prediction in the previous LD study. Knowing the amount of genetic variation and its distribution in the Newfoundland population would be useful to maximize its potential for mapping hereditary disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号