首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hearing in the FM-bat Phyllostomus discolor: a behavioral audiogram   总被引:3,自引:3,他引:0  
Absolute auditory thresholds of six adult lesser spear-nosed bats Phyllostomus discolor (Chiroptera, Phyllostomidae) were determined in a two-alternative forced-choice procedure. Behavioral responses to pure tone stimuli could be elicited throughout the tested frequency range of 5–142 kHz. The shape of the average audiogram is characterized by two sensitivity peaks and a pronounced increase of thresholds around 55 kHz, and towards the limits of the tested frequency range. The spectral extent of both sensitivity peaks shows a close relation to the bandwidth of two types of species-specific vocalizations. The first low threshold area (> 10 and < 55 kHz) of the audiogram seems perfectly adapted to the directive call used for intraspecific communication, whereas the second sensitivity peak, centered around 85 kHz, covers most of the bandwidth of the species' echolocation calls.Abbreviations CF constant frequency - FM frequency modulation - l left - r right - SPL Sound pressure level  相似文献   

2.
3.
Advertisement calls, auditory tuning, and larynx and ear morphology were examined in 3 neotropical frogs, Hyla microcephala, H. phlebodes and H. ebraccata, H. microcephala has the highest call dominant frequency (6.068 kHz) and basilar papilla tuning (5.36 kHz). H. phlebodes and H. ebraccata calls have lower dominant frequencies (3.832 and 3.197 kHz respectively) and basilar papilla tuning (2.79 and 2.56 kHz). The primary call notes of H. ebraccata are longer (181.6 ms) than those of H. microcephala (95.5 ms) or H. phlebodes (87.3 ms). Morphometric analysis suggests that temporal call features differ as laryngeal musculature changes, in the process changing the overall size of the larynx. The spectral aspects of the call differ as head size, and hence the size of its resonating and radiating structures, changes, modifying the dominant frequency of calls by accentuating their higher harmonics when head size decreases. Decreasing head size decreases the size of the middle and inner ear chambers, changing the mechanical tuning of the ear in the same direction as the change in dominant frequency. These changes result in divergent spectral-temporal characteristics of both the sending and receiving portions of the acoustic communication system underlying social behavior in these frogs.Abbreviations AP amphibian papilla - BEF best excitatory frequency - BP basilar papilla - dB SPL decibels sound pressure level re:20 N/m2  相似文献   

4.
A common rule for mammals vocalizing in the human audible frequency range (20 Hz–20 kHz) suggests that calls are higher in fundamental frequency (f0) in the young than in adults, because of the smaller sound‐producing structures of the young. Exclusions are rare, for example the pups of Asian house shrews (Suncus murinus) make some call types of the same or higher pitch than adults. In this study, calls from 62 piebald shrews (Diplomesodon pulchellum), 37 1 to 10‐d‐old pups from 10 litters and 25 adults were acoustically investigated in captivity. We found eight call types, all within the human audible frequency range: short and long low‐frequency squeaks with nearly flat contour, high‐frequency squeaks with modulated contour, high‐frequency squeaks with fractured contour, short and long screeches, clicks and whimpers. Seven call types were shared by pups and adults, suggesting that this vocal repertoire commences at birth. Against the common rule, the f0 of squeaks was the same in pups and adults, and the f0 of clicks and screeches was even higher in adults than in pups. These results suggest a non‐descending ontogenetic pathway that not follows the common physical relationship, of the lower f0 for the larger vocal folds.  相似文献   

5.
The pipistrelle ( Pipistrellus pipistrellus ) occurs as two phonic types in Britain, its echolocation calls falling into two distinct frequency bands, with mean frequencies of maximum energy at 55 kHz and 46 kHz. These are termed the 55 kHz and 45 kHz phonic types here for simplicity. Songflight calls produced by males in the mating season, probably to attract females, differed between the two phonic types in the number of components in the calls and the call parameters measured. Songflight calls of the 55 kHz phonic type, which generally consisted of three components, were of higher frequencies than those of the 45 kHz phonic type, usually of four components. There were also significant differences in call parameters among individuals. A discriminant analysis of songflight calls classified 100% of individuals to the correct phonic type. The relationships between echolocation call frequency and songflight call frequency differed significantly between phonic types. Social calls produced during flight also differed between phonic types, in the number of components and call parameters measured. Social calls were compared to songflight calls of each phonic type. Social calls of the 55 kHz phonic type did not differ significantly from songflight calls; there were small but significant differences between the two types of calls of the 45 kHz phonic type. The study provides support for the hypothesis that the phonic types should be treated as sibling species. If songflight calls are used for mate choice, the differences may allow reproductive isolation between the two phonic types. The functions of songflight calls and social calls need to be investigated through experimental studies to explain the implications of the differences between phonic types.  相似文献   

6.
Acoustic noise from automobile traffic impedes communication between signaling animals. To overcome the acoustic interference imposed by anthropogenic noise, species across taxa adjust their signaling behavior to increase signal saliency. As most of the spectral energy of anthropogenic noise is concentrated at low acoustic frequencies, species with lower frequency signals are expected to be more affected. Thus, species with low-frequency signals are under stronger pressure to adjust their signaling behaviors to avoid auditory masking than species with higher frequency signals. Similarly, for a species with multiple types of signals that differ in spectral characteristics, different signal types are expected to be differentially masked. We investigate how the different call types of a Japanese stream breeding treefrog (Buergeria japonica) are affected by automobile traffic noise. Male B. japonica produce two call types that differ in their spectral elements, a Type I call with lower dominant frequency and a Type II call with higher dominant frequency. In response to acoustic playbacks of traffic noise, B. japonica reduced the duration of their Type I calls, but not Type II calls. In addition, B. japonica increased the call effort of their Type I calls and decreased the call effort of their Type II calls. This result contrasts with prior studies in other taxa, which suggest that signalers may switch to higher frequency signal types in response to traffic noise. Furthermore, the increase in Type I call effort was only a short-term response to noise, while reduced Type II call effort persisted after the playbacks had ended. Overall, such differential effects on signal types suggest that some social functions will be disrupted more than others. By considering the effects of anthropogenic noise across multiple signal types, these results provide a more in-depth understanding of the behavioral impacts of anthropogenic noise within a species.  相似文献   

7.
ABSTRACT

The sub-family Conocephalinae constitutes one of the richest groups of katydids in terms of diversity and distribution. Tropical katydids especially in India have largely escaped academic attention. Here, we record and describe call patterns for six conehead katydids from India: Conocephalus melanus, Conocephalus sp X, Euconocephalus indicus, Euconocephalus mucro, and Euconocephalus sp Y from North-Eastern Himalayas and Euconocephalus pallidus from the Western Ghats. All the species showed broadband frequency spectra (10.5–42.4 kHz), and three of the six species showed high rates of calling (289–453 syllables/s). We observed that the co-occurring call types never called at the same time or from the same location. We hypothesized this partitioning between call types is due to similarity in their calls; we used non-metric multi-dimensional scaling (NMDS) to investigate patterns of temporal or habitat-partitioning that some of the co-occurring call types exhibited during the course of study. The co-occurring Euconocephalus sp Y and E. mucro with high degree of overlap and similarity in their calls exhibited partitioning on a spatial scale. Conocephalus sp. X and C. melanus with distinct calling activity peaks formed separate clusters based on temporal call structures. As females rely heavily on spectral qualities, we speculate partitioning on temporal scale to avoid heterospecific interference due to similar spectral properties between the two call types.  相似文献   

8.
Size, peripheral auditory tuning and target strength in noctuid moths   总被引:1,自引:0,他引:1  
We investigated relationships among body size, the frequency of peak auditory sensitivity (best frequency) and acoustic conspicuousness (measured as target strength) to simulated bat echolocation calls in a range of tympanate moths (Lepidoptera: Noctuidae). Audiograms of Amphipyra pyramidea Linnaeus, Agrotis exclamationis Linnaeus, Omphaloscelis lunosa Haworth and Xestia xanthographa Denis and Schiffermüller are described for the first time. Best frequency was inversely related to forewing length, an index of body size. Models predict that target strength falls off rapidly once wavelength (1/frequency) exceeds some defined feature of target size (e.g. circumference for spheres). We investigated how target strength varies in relation to target size and emitted frequency for simple targets (paper discs) and for moths. Target strength fell rapidly when target radius/wavelength < 2 for paper discs of similar size to many noctuid moths. Target strength fell rapidly below wing‐length/wavelength ratios of 2 in relatively small (O. lunosa, wing‐length = 15.2 ± 0.4 mm, best frequency = 45 kHz) and large (N. pronuba, wing‐length = 24.6 ± 0.8 mm, best frequency = 15 kHz) noctuid species, and decreased rapidly at frequencies below 25 kHz in both species. These target strengths were used to predict the detection distance of the moths by bat sonar between 10 and 55 kHz. Predicted detection distances of both species were maximal for fictive call frequencies of 20 kHz, and were reduced at lower frequencies due to decreased target strength and at higher frequencies by excess atmospheric attenuation. Both relatively large and small noctuid moths are therefore strong acoustic targets to bats that echolocate at relatively low frequencies. Bats may emit allotonic calls at low frequency because the costs of reduced detection range are smaller than the benefits of reduced audibility to moths. Because best frequency scales with body size and maximum detection distance is not very sensitive to body size, noctuid moths in the size range examined do not necessarily have best frequencies that would match the call frequencies of bats that may detect the moths at greatest distance precisely. Hence, best frequency may be constrained in part by body size.  相似文献   

9.
Resource partitioning of sonar frequency bands in rhinolophoid bats   总被引:18,自引:0,他引:18  
Summary In the Constant Frequency portions of the orientation calls of various Rhinolophus and Hipposideros species, the frequency with the strongest amplitude was studied comparatively. (1) In the five European species of the genus Rhinolophus call frequencies are either species-specific (R. ferrumequinum, R. blasii and R. euryale) or they overlap (R. hipposideros and R. mehelyi). The call frequency distributions are approximately 5–9 kHz wide, thus their ranges spead less than ±5% from the mean (Fig. 1). Frequency distributions are considerably narrower within smaller geographic areas. (2) As in other bat groups, call frequencies of the Rhinolophoidea are negatively correlated with body size (Fig. 3). Regression lines for the genera Rhinolophus and Rhinolophus, species from dryer climates have on the average higher call frequencies than species from tropical rain forests. (4) The Krau Game Reserve, a still largely intact rain forest area in Malaysia, harbours at least 12 syntopic Rhinolophus and Hipposiderso species. Their call frequencies lie between 40 and 200 kHz (Fig. 2). Distribution over the available frequency range is significantly more even than could be expected from chance alone. Two different null hypotheses to test for random character distribution were derived from frequency-size-relations and by sampling species assemblages from a species pool (Monte Carlo method); both were rejected. In particular, call frequencies lying close together are avoided (Figs. 4, 5). Conversely, the distribution of size ratios complied with a corresponding null hypothesis. This even distribution may be a consequence of resource partitioning with respect to prey type. Alternatively, the importance of these calls as social signals (e.g. recognition of conspecifics) might have necessitated a communication channel partitioning.  相似文献   

10.
The greater sac-winged bat, Saccopteryx bilineata (Emballonuridae), uses two distinct echolocation call sequences: a ‘monotonous’ sequence, where bats emit ~48 kHz calls at a relatively stable rate, and a frequency-alternating sequence, where bats emit calls at ~45 kHz (low-note call) and ~48 kHz (high-note call). The frequencies of these low–high-note pairs remain stable within sequences. In Panama, we recorded echolocation calls from S. bilineata with a multi-microphone array at two sites: one a known roosting site, the other a known foraging site. Our results indicate that this species (1) only produces monotonous sequences in non-foraging contexts and, at times, directly after emitting a feeding buzz and (2) produces frequency-alternating sequences when actively foraging. These latter sequences are also characterized by an unusual, offbeat emission rhythm. We found significant positive relationships between (1) call intensity and call duration and (2) call intensity and distance from clutter. However, these relationships were weaker than those reported for bats from other families. We speculate on how call frequency alternation and an offbeat emission rhythm might reflect a novel strategy for prey detection at the edge of complex habitat in this ancient family of bats.  相似文献   

11.
Mormoopid bat species have their echolocation system adapted to different hunting strategies. To study the corresponding mechanical properties of their inner ear, we measured distortion-product otoacoustic emissions to assess cochlear sensitivity and tuning. Mormoops blainvillii, Pteronotus macleayii and P. quadridens use frequency-modulated echolocation signals, sometimes preceded by a short narrowband signal component. Their distortion-product otoacoustic emission-threshold curves are most sensitive between 30 and 50 kHz and show no adaptation to the narrowband echolocation components. In contrast, the constant-frequency bat P. parnellii always uses long constant-frequency call components. Its inner ear is maximally sensitive at 62 kHz, the echo-frequency of the dominant constant-frequency component, and pronounced insensitivities at 61 and 93 kHz (CF2 and CF3 call frequency) are the major evolutionary change in comparison to its relatives. Furthermore, in P. parnellii, the optimum cochlear frequency separation is minimal at 62 and 93 kHz, associated with enhanced cochlear tuning, while for the other mormoopids there is no indication of enhanced tuning. The phylogeny of mormoopids, assessed by mitochondrial DNA analysis, shows a close relationship between the Pteronotus species. This suggests that major cochlear redesign, associated with the acquisition of echolocation-call specific cochlear processing in P. parnellii, has occurred within a relatively short evolutionary time scale. Accepted: 30 April 1999  相似文献   

12.
While searching for prey, Molossus molossus broadcasts narrow-band calls of 11.42 ms organized in pairs of pulses that alternate in frequency. The first signal of the pair is at 34.5 kHz, the second at 39.6 kHz. Pairs of calls with changing frequencies were only emitted when the interpulse intervals were below 200 ms. Maximum duty cycles during search phase are close to 20%. Frequency alternation of search calls is interpreted as a mechanism for increasing duty cycle and thus the temporal continuity of scanning, as well as increasing the detection range. A neurophysiological correlate for the processing of search calls was found in the inferior colliculus. 64% of neurons respond to frequencies in the 30- to 40-kHz range and only in this frequency range were closed tuning curves found for levels below 40 dB SPL. In addition, 15% of the neurons have double-tuned frequency-threshold curves with best thresholds at 34 and 39 kHz. Differing from observations in other bats, approach calls of M. molossus are longer and of higher frequencies than search calls. Close to the roost, the call frequency is increased to 45.0–49.8 kHz and, in addition, extremely broadband signals are emitted. This demonstrates high plasticity of call design.Abbreviations BF best frequency - CF constant frequency - IC inferior colliculus - Fmax maximal frequency - Fmin minimal frequency - PF peak frequency - PSTH post-stimulus time histogram - QCF quasi-constant frequency - SPL sound pressure level  相似文献   

13.
It is generally thought that for species using vocal communication the spectral properties of the sender’s calls should match the frequency sensitivity of the receiver’s auditory system. Nevertheless, few studies have investigated both sender and receiver characteristics in anuran species. In the present study, auditory brainstem responses (ABRs) were recorded in the serrate legged treefrog, Philautus odontotarsus, in order to determine if male call spectral structure and hearing sensitivity in males and females have co-evolved in this species. The results showed that the spectral structures of male vocalization match both male and female hearing sensitivity, even though the dominant frequencies of male calls (2.5 kHz) are mismatched with the regions of best frequency sensitivity (1.4 and 2.8 kHz). In addition, the results show that, in contrast with most previous ABR studies in non-human animals, but consistent with human studies, there are noticeable sex differences in peripheral auditory sensitivity in Philautus insofar as females exhibit lower auditory thresholds than males across the entire 1.8–18 kHz frequency range. The results also show that the dominant frequency of male calls is negatively correlated with body size, indicating that call characteristics reflect body size in this species which may be used by females during mate choice.  相似文献   

14.
We investigated the relationship between auditory sensitivity, frequency selectivity, and the vocal repertoire of greater spear-nosed bats (Phyllostomus hastatus). P. hastatus commonly emit three types of vocalizations: group-specific foraging calls that range from 6 to 11 kHz, low amplitude echolocation calls that sweep from 80 to 40 kHz, and infant isolation calls from 15 to 100 kHz. To determine if hearing in P. hastatus is differentially sensitive or selective to frequencies in these calls, we determined absolute thresholds and masked thresholds using an operant conditioning procedure. Both absolute and masked thresholds were lowest at 15 kHz, which corresponds with the peak energy of isolation calls. Auditory and masked thresholds were higher at sound frequencies used for group-specific foraging calls and echolocation calls. Isolation calls meet the requirements of individual signatures and facilitate parent-offspring recognition. Many bat species produce isolation calls with peak energy between 10 and 25 kHz, which corresponds with the frequency region of highest sensitivity in those species for which audiogram data are available. These findings suggest that selection for accurate offspring recognition exerts a strong influence on the sensory system of P. hastatus and likely on other species of group-living bats.  相似文献   

15.
Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31–52 dB RMS SPL), measured at the subjects’ position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18–39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41–51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7–2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39–47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.  相似文献   

16.
17.
Advertisement calls of green treefrogs (Hyla cinerea) have two spectral peaks centered at about 1 kHz and 3 kHz. Addition of a component of intermediate frequency (1.8 kHz) to a synthetic call reduced its attractiveness to females relative to an alternative lacking this component. This mid-frequency suppression occurred over a 20-dB range of playback levels. Addition of other intermediate frequencies had weak effects on preferences at some playback levels, in some localities, and at lower-than-normal temperatures. These effects correlate well with the response properties of a population of low-frequency-tuned auditory neurons innervating the amphibian papilla. Males of a closely related species (H. gratiosa) produce calls with emphasized frequencies within the range of suppression in H. cinerea; however, suppression also occurred in localities well outside the area of geographical overlap with this species. Thus, previous speculation that mid-frequency suppression evolved to enhance species discrimination is probably incorrect. This phenomenon is more likely to reflect a general sensory bias in anurans and other vertebrates, tone-on-tone inhibition. Such negative biases, and other inhibitory mechanisms, almost certainly play an important role in the evolution of communication systems but have received far less attention than positive biases that enhance signal attractiveness.  相似文献   

18.
The bushcricket Pantecphylus cerambycinus has two types of stridulatory mechanisms and acoustical signals. The elytro-elytral mechanism typical for tettigonioid bushcrickets is used to produce a narrow-band calling song (peak frequency 15 kHz). An abdomino-alary mechanism is used for disturbance stridulation. Its stridulatory file is situated on the hind edge of the abdominal tergites and consists of 50-70 parallel ridges, covering the whole width of the tergite. The broad-band sound (peak frequency 10 kHz) is produced by the contact between the file and ribs situated on the upper side of the hindwings which are folded in such a way that their upper side is directed toward the tergites. Defensive stridulation in bushcrickets is reviewed here, and its function and evolution discussed in the context of predator avoidance strategies. © 1996 Wiley-Liss, Inc.  相似文献   

19.
The origin and meaning of echolocation call frequency variation within rhinolophid bats is not well understood despite an increasing number of allopatric and sympatric examples being documented. A bimodal distribution of mean regional call frequency within the Okinawa‐jima Island population of Rhinolophus cornutus pumilus (Rhinolophidae) provided a unique opportunity to investigate geographic call frequency variation early in its development. Individual resting echolocation frequencies, partial mitochondrial DNA D‐loop sequences and genotypes from six microsatellite loci were obtained from 288 individuals in 11 colonies across the entire length of the island, and nearby Kume‐jima Island. Acoustic differences (5–8 kHz) observed between the north and south regions have been maintained despite evidence of sufficient nuclear gene flow across the middle of the island. Significant subdivision of maternally inherited D‐loop haplotypes suggested a limitation of movement of females between regions, but not within the regions, and was evidence of female philopatry. These results support a ‘maternal transmission’ hypothesis whereby the difference in the constant frequency (CF) component between the regions is maintained by mother–offspring transmission of CF, the restricted dispersal of females between regions and small effective population size. We suggest that the mean 5–8 kHz call frequency difference between the regions might develop through random cultural drift.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号