首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the cell cycle regulation of deoxyribonucleoside triphosphate (dNTP) metabolism in hydroxyurea-resistant (HYUR) murine S49 T-lymphoma cell lines. Cell lines 10- to 40-fold more hydroxyurea-resistant were selected in a stepwise manner. These HYUR cells exhibited increased CDP reductase activity (5- to 8-fold) and increased dNTP pools (up to 5-fold) that appeared to result from increased activity of the M2 subunit (binding site of hydroxyurea) of ribonucleotide reductase. These characteristics remained stable when the cells were grown in the absence of hydroxyurea for up to 2 years. In both wild type and hydroxyurea-resistant cell populations synchronized by elutriation, dCTP and dTTP pools increased in S phase, whereas dATP and dGTP pools generally remained the same or decreased, suggesting that allosteric effector mechanisms were operating to regulate pool sizes. Additionally, CDP reductase activity measured in permeabilized cells increased in S phase in both wild type and hydroxyurea-resistant cells, suggesting a nonallosteric mechanism of increased ribonucleotide reductase activity during periods of active DNA synthesis. While wild type S49 cells could be arrested in the G1 phase of the cell cycle by dibutyryl cyclic AMP, hydroxyurea-resistant cell lines could not be arrested in the G1 phase by exogenous cyclic AMP or agents that elevate the concentration of endogenous cyclic AMP. These data suggest that cyclic AMP-generated G1 arrest in S49 cells might be mediated by the M2 subunit of ribonucleotide reductase.  相似文献   

2.
3.
Nuclear and whole-cell deoxynucleoside triphosphate (dNTP) pools were measured in HeLa cells at different densities and throughout the cell cycle of synchronized CHO cells. Nuclei were prepared by brief detergent (Nonidet P-40) treatment of subconfluent monolayers, a procedure that solubilizes plasma membranes but leaves nuclei intact and attached to the plastic substratum. Electron microscopic examination of monolayers treated with Nonidet P-40 revealed protruding nuclei surrounded by cytoskeletal remnants. Control experiments showed that nuclear dNTP pool sizes were stable during the time required for isolation, suggesting that redistribution of nucleotides during the isolation procedure was minimal. Examination of HeLa whole-cell and nuclear dNTP levels revealed that the nuclear proportion of each dNTP was distinct and remained constant as cell density increased. In synchronized CHO cells, all four dNTP whole-cell pools increased during S phase, with the dCTP pool size increasing most dramatically. The nuclear dCTP pool did not increase as much as the whole-cell dCTP pool during S phase, lowering the relative nuclear dCTP pool. Although the whole-cell dNTP pools decreased after 30 h of isoleucine deprivation, nuclear pools did not decrease proportionately. In summary, nuclear dNTP pools in synchronized CHO cells maintained a relatively constant concentration throughout the cell cycle in the face of larger fluctuations in whole-cell dNTP pools. Ribonucleotide reductase activity was measured in CHO cells throughout the cell cycle, and although there was a 10-fold increase in whole-cell activity during S phase, we detected no reductase in nuclear preparations at any point in the cell cycle.  相似文献   

4.
A reversed-phase ion-pair high-performance liquid chromatographic method for the direct and simultaneous determination of ribonucleoside triphosphates and their corresponding deoxyribonucleoside triphosphates in trichloroacetic acid cell extracts is presented. Using this system, high resolution of nine acid-soluble compounds, including ADP, CTP, dCTP, GTP, UTP, dGTP, dTTP, ATP and dATP in 16 normal or tumor cell lines, is obtained. The method is based on an extraction of nucleotides from cells with a solution of 6% trichloroacetic acid followed by neutralization with the addition of 5 M K(2)CO(3) just prior to HPLC analysis. Chromatographic separations were performed using a Symmetry C(18) 3.5 micrometer (150x4.6 mm) column (Waters) equipped with a NovaPak C(18) Sentry guard column with UV detection at 254 nm. The HPLC columns were kept at 27 degrees C. The mobile phase was delivered at a flow-rate of 1.0 ml/min, with the following stepwise gradient elution program: A-B (60:40) at 0 min-->(40:60) at 30 min-->(40:60) at 60 min. Solvent A contained 10 mM tetrabutylammonium hydroxide, 10 mM KH(2)PO(4) and 0.25% MeOH, and was adjusted to pH 6.9 with 1 M HCl. Solvent B consisted of 5.6 mM tetrabutylammonium hydroxide, 50 mM KH(2)PO(4) and 30% MeOH, and was neutralized to pH 7.0 with 1 M NaOH. The calibration curves (r>0.99) of the components in cell extracts were established with their aqueous standards. The average within-day precision for the nine compounds was 0.9%, and the average day-to-day precision was 5.0%. The detection limits (pmol) of the nine reagents were 1.39 (ADP), 4.32 (CTP), 15.5 (dCTP), 2.38 (GTP), 4.42 (UTP), 9.45 (dGTP), 14.6 (dTTP), 2.44 (ATP) and 11.8 (dATP). The recovery of this method for the standards ranged from 82.4 to 120.5%. The results for the detection of nucleotide pools in 16 normal and tumor cell lines were presented. In conclusion, this simplified analytical method enables the simultaneous quantitation of NTP and dNTP in cell or tissue extracts and may represent a valuable tool for the detection of minute alterations of intracellular NTP/dNTP pools induced by anticancer/antiviral drugs and diseases.  相似文献   

5.
Deoxyribonucleoside triphosphate (dNTP) levels were measured in wild type Neurospora and nine mutagen-sensitive mutants, at nine different genes. Eight of these mutants are sensitive to hydroxyurea and histidine and show chromosomal instability, a phenotype which could result from altered levels of dNTPs. Two patterns were seen. Five of the mutants had altered ratios of dNTPs, with relatively high levels of dATP and dGTP and low levels of dCTP, but changes in the dTTP/dCTP ratio did not correlate with changes in spontaneous mutation levels. During exponential growth all but two of the mutants had small but consistent increases in dNTP pools compared to wild type. DNA content per microgram dry hyphae was altered in several mutants but these changes showed no correlation with the dNTP pool alterations.  相似文献   

6.
In this communication we describe the rapid increase in cellular deoxynucleoside triphosphate (dNTP) concentrations in Chinese Hamster cell line V79 after exposure to known mutagens. With this cell line an expansion of dATP and dTTP pools was detected; changes in dCTP were not large; changes in dGTP were either not significant or too low to quantitate. This situation may reflect the existence of imbalances in dNTP pools at the DNA replication fork. The expansion of dATP and dTTP pools occurred within 2 to 4 hours after exposure of cultured cells to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Ultraviolet light (UV), mitomycin C, and cytosine arabinoside also caused similar dNTP pool changes.  相似文献   

7.
Hydroxyurea-resistant S49 T-lymphoma cells have increased ribonucleotide reductase activity and deoxyribonucleoside triphosphate pools when compared with wild-type cultures. If ribonucleotide reductase inhibition is the mechanism by which deoxyadenosine is cytotoxic, then hydroxyurea (HU)-resistant S49 cells might be more resistant to deoxyadenosine toxicity when adenosine deaminase is inhibited than wild-type cells. Five S49 cell lines resistant to varying concentrations of HU were compared with wild-type cells by measuring CDP reductase activity, deoxyribonucleoside triphosphate pools, and deoxyadenosine toxicity. All five cell lines resistant to increasing concentrations of HU exhibited a twofold increase in resistance to deoxyadenosine toxicity when compared to wild type, and the resistance was proportional to the twofold increased pools of dNTPs in these cell lines but was less than the six- to eight fold increase in ribonucleotide reductase activity. In both wild-type and mutant cell lines, deoxyadenosine toxicity was accompanied by the accumulation of deoxyadenosine triphosphate and reduction of the other dNTPs; however, only dGTP greatly diminished. Exogenous addition of deoxycytidine decreased the dATP accumulation by about 20%, but also resulted in increases in the dCTP, dTTP, and dGTP pools. The S49 cells arrested in G1 phase when exposed to dAdo, although hydroxyurea-resistant cells required higher dAdo concentrations to elicit G1-phase arrest than wild-type cells. Deoxycytidine prevented dAdo-induced G1 arrest in all cell types. In summary, these data support the hypothesis that deoxyadenosine-induced dATP accumulation results in inhibition of ribonucleotide reductase and that this may be the mechanism for both cell cycle arrest and cytotoxicity in S49 T-lymphoma cells.  相似文献   

8.
We investigated deoxyribonucleoside triphosphate metabolism in S49 mouse T-lymphoma cells synchronized in different phases of the cell cycle. S49 wild-type cultures enriched for G1 phase cells by exposure to dibutyryl cyclic AMP (Bt2cAMP) for 24 h had lower dCTP and dTTP pools but equivalent or increased pools of dATP and dGTP when compared with exponentially growing wild-type cells. Release from Bt2cAMP arrest resulted in a maximum enrichment of S phase occurring 24 h after removal of the Bt2cAMP, and was accompanied by an increase in dCTP and dTTP levels that persisted in colcemid-treated (G2/M phase enriched) cultures. Ribonucleotide reductase activity in permeabilized cells was low in G1 arrested cells, increased in S phase enriched cultures and further increased in G2/M enriched cultures. In cell lines heterozygous for mutations in the allosteric binding sites on the M1 subunit of ribonucleotide reductase, the deoxyribonucleotide pools in S phase enriched cultures were larger than in wild-type S49 cells, suggesting that feedback inhibition of ribonucleotide reductase is an important mechanism limiting the size of deoxyribonucleoside triphosphate pools. The M1 and M2 subunits of ribonucleotide reductase from wild-type S49 cells were identified on two-dimensional polyacrylamide gels, but showed no significant change in intensity during the cell cycle. These data are consistent with allosteric inhibition of ribonucleotide reductase during the G1 phase of the cycle and release of this inhibition during S phase. They suggest that the increase in ribonucleotide reductase activity observed in permeabilized S phase-enriched cultures may not be the result of increased synthesis of either the M1 or M2 subunit of the enzyme.  相似文献   

9.
The effect of 5-methoxymethyl-2'-deoxycytidine (MMdCyd), in combination with tetrahydrodeoxyuridine (H4dUrd) and 5-methoxymethyl-2'-deoxyuridine (MMdUrd) on deoxyribonucleoside triphosphate pools was assessed. The dNTP pool content was almost 5 times as high in herpes simplex virus (HSV) infected VERO cells compared with mock-infected cells. Significant differences in dNTP pool sizes were observed with the different treatments. Treatment of HSV-infected cells with MMdCyd and MMdUrd resulted in a massive expansion of the dTTP pool, whereas pools of dCTP and dGTP were not affected substantially. MMdUrd and MMdCyd produced dATP pools that were 4 and 2.5 times that of the controls, respectively. Treatment with H4dUrd resulted in the dCTP pool increasing 12 times and barely detectable levels of dTTP. MMdCyd in combination with H4dUrd resulted in a marked reduction of the total deoxyribonucleoside triphosphate level. These results indicate that during viral replication the bulk of the thymidine nucleotides are derived from the dCyd/dCMP deaminase de novo pathway.  相似文献   

10.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder associated with multiple mutations in mitochondrial DNA, both deletions and point mutations, and mutations in the nuclear gene for thymidine phosphorylase. Spinazzola et al. (Spinazzola, A., Marti, R., Nishino, I., Andreu, A., Naini, A., Tadesse, S., Pela, I., Zammarchi, E., Donati, M., Oliver, J., and Hirano, M. (2001) J. Biol. Chem. 277, 4128-4133) showed that MNGIE patients have elevated circulating thymidine levels and they hypothesized that this generates imbalanced mitochondrial deoxyribonucleoside triphosphate (dNTP) pools, which in turn are responsible for mitochondrial (mt) DNA mutagenesis. We tested this hypothesis by culturing HeLa cells in medium supplemented with 50 microM thymidine. After 8-month growth, mtDNA in the thymidine-treated culture, but not the control, showed multiple deletions, as detected both by Southern blotting and by long extension polymerase chain reaction. After 4-h growth in thymidine-supplemented medium, we found the mitochondrial dTTP and dGTP pools to expand significantly, the dCTP pool to drop significantly, and the dATP pool to drop slightly. In whole-cell extracts, dTTP and dGTP pools also expanded, but somewhat less than in mitochondria. The dCTP pool shrank by about 50%, and the dATP pool was essentially unchanged. These results are discussed in terms of the recent report by Nishigaki et al. (Nishigaki, Y., Marti, R., Copeland, W. C., and Hirano, M. (2003) J. Clin. Invest. 111, 1913-1921) that most mitochondrial point mutations in MNGIE patients involve T --> C transitions in sequences containing two As to the 5' side of a T residue. Our finding of dTTP and dGTP elevations and dATP depletion in mitochondrial dNTP pools are consistent with a mutagenic mechanism involving T-G mispairing followed by a next-nucleotide effect involving T insertion opposite A.  相似文献   

11.
Treatment of L1210 cells with increasing concentrations of MNNG produces heterogeneous perturbations of cellular deoxynucleoside triphosphate pools, with the magnitude and direction of the shift depending on the deoxynucleotide and on the concentration and time of exposure of the DNA damaging agent. 5 microM MNNG stimulated an increase in dATP, dCTP and dTTP but dGTP pools remained constant. These increases were not affected by 3-aminobenzamide, indicating that the pool size increases were produced by poly(ADP-ribose) polymerase independent reactions. 30 microM MNNG caused a time dependent decrease in dATP, dGTP, dTTP and dCTP. The dGTP pool was most drastically affected, becoming totally depleted within 3 hours. The fall in all 4 dNTP pools was substantially prevented by 3-aminobenzamide, suggesting that the decrease in dNTPs following DNA damage is mediated by a poly(ADP-ribose) polymerase dependent reaction. Severe depression of dGTP pools consequent to NAD and ATP depletion may provide a metabolic pathway for rapidly stopping DNA synthesis as a consequence of DNA damage and the activation of poly(ADP-ribose) polymerase.  相似文献   

12.
We have demonstrated that methanol extracts of human cells are heterogeneous with regard to content of dNDP (deoxynucleoside diphosphate) and dNMP (deoxynucleoside monophosphate) kinases. The presence of these enzymes can affect the reliability of techniques used to measure intracellular pools of deoxynucleotides. An optimized extraction procedure and enzymic assay for dNTP species in haematopoietic cells are described which provide sensitivity to measure 0.1-40pmol of dATP, dTTP and dGTP, and 1.0-40pmol of dCTP. The extraction and assay give linear results with (2.5-15)x10(6) nucleated cells and (0.1-1.5)x10(9) red blood cells. Under these conditions, extracts equivalent to ~0.5x10(6) nucleated haematopoietic cells catalyse the phosphorylation of 0-8% of dNDP and dNMP standards to dNTP and incorporate them into deoxynucleotide polymer under circumstances where 100% of an equimolar dNTP standard would be incorporated. By contrast, extracts of 0.4x10(6) HeLa cells totally converted dADP, dTDP and dGDP into dNTP with subsequent polymerization. Conversion of dCDP was somewhat less efficient. The results demonstrate conclusively that the activities of deoxynucleotide interconverting enzymes differ in different types of human cells. They can interfere with assay of nucleotides, but may not do so in many types of cell extracts. In particular, dNTP concentrations can be measured in human haematopoietic cells after extraction with 60% (v/v) methanol and are not artificially elevated by deoxynucleotide interconversions. It is apparent that extraction and assay procedures for measurement of dNTP species should be analysed for each cell type in order to minimize contaminating enzyme activities and ensure accuracy of dNTP quantification.  相似文献   

13.
Pool sizes of dATP, dTTP, dGTP and dCTP were determined during the life cycle of Chlamydomonas using light-dark synchronized cultures. The pools of all four nucleotides were small until the start of the DNA synthesis, when they all increased in close time relationship with the increase in rate of DNA synthesis. The dTTP and dATP pools increased more than 200-fold while the pools of dCTP and dGTP expanded approx. 10 times.  相似文献   

14.
The Thy- mutants of Chinese hamster ovary cells have a 5- to 10-fold elevated pool of deoxycytidine 5'-triphosphate (dCTP) and are auxotrophic for thymidine as an apparent consequence of a single mutation. thy is also a mutator gene, elevating the spontaneous rate of mutation 5- to 200-fold for at least two genetic markers. Previous experiments suggested that this mutator activity was caused by the elevated pool of dCTP in Thy- cells. To test this, the dCTP and deoxythymidine 5'-triphosphate (dTTP) pools were manipulated by altering the external concentration of thymidine in the growth medium. The rate of mutation at one genetic locus, ouabain resistance, was directly related to cellular dCTP content. At the highest level of dCTP the rate in one Thy- strain was approximately 200 times that of wild-type cells. However, the relationship between dCTP content and the rate of mutation at the ouabain locus was different for two mutator strains and wild-type cells. The rate of mutation at a second locus, thioguanine resistance, was increased approximately 10-fold over wild type regardless of the dCTP-dTTP pools. These experiments suggest that the mutator activity of thy is clearly related to dCTP content, but the dCTP level alone does not appear to be the cause of the mutator.  相似文献   

15.
Intracellular deoxyribonucleotide pools were examined before and after thymidine treatment in highly sensitive T-lymphoid cells, relatively resistant B-lymphoid cells and moderately sensitive melanoma cells. Among the 4 cell lines studied, proportions of the 4 deoxyribonucleotide pools varied appreciably while ribonucleotide profiles were similar. The ratio of dGTP to dCTP increased with sensitivity to thymidine. Increase in dTTP levels with increasing thymidine concentration was dependent on sensitivity of cells to thymidine and was accompanied by reduction in the dCTP pool. dGTP levels increased as did dTTP levels in all cells, while dATP pool expansion correlated with thymidine sensitivity. The results indicate an additional aspect of purine deoxyribonucleotide involvement in the growth inhibitory effects of thymidine.  相似文献   

16.
The thy- mutator phenotype of Chinese hamster ovary cells is distinguished by increased intracellular levels of dCTP, auxotrophy for thymidine, and elevated spontaneous mutational rates. To determine the biochemical lesion responsible for this complex phenotype, enzymes responsible for the synthesis of dCTP and dTTP were investigated. Levels of ribonucleotide reductase and dCMP deaminase were identical in mutant and wild type strains. In contrast, CTP synthetase activity in extracts from thy- strains was consistently altered in that 50% of enzyme activity was resistant to feedback inhibition by CTP. Additionally, thy- strains obtained by DNA transfection also had CTP-resistant CTP synthetase. Thy+ revertants lost the resistant enzyme, and total activity was reduced. CTP-resistant CTP synthetase was regained in thy- mutants reselected from thy+ revertants, but in these strains all activity was resistant. These experiments demonstrate that the thy- mutator phenotype is a consequence of a mutation of CTP synthetase and suggest that one pathway of reversion to the wild type state is by loss or inactivation of the mutant allele rendering the revertants hemizygous for the gene.  相似文献   

17.
The regulatory role of the allosteric site of CTP synthetase on flux through the enzyme in situ and on pyrimidine nucleotide triphosphate (NTP) pool balance was investigated using a mutant mouse T lymphoblast (S49) cell line which contains a CTP synthetase refractory to complete inhibition by CTP. Measurements of [3H]uridine incorporation into cellular pyrimidine NTP pools as a function of time indicated that CTP synthesis in intact wild type cells was markedly inhibited in a cooperative fashion by small increases in CTP pools, whereas flux across the enzyme in mutant cells was much less affected by changes in CTP levels. The cooperativity of the allosteric inhibition of the enzyme was greater in situ than in vitro. Exogenous manipulation of levels of GTP, an activator of the enzyme, indicated that GTP had a moderate effect on enzyme activity in situ, and changes in pools of ATP, a substrate of the enzyme, had small effects on CTP synthetase activity. The consequences of incubation with actinomycin D, cycloheximide, dibutyryl cyclic AMP, and 6-azauridine on the flux across CTP synthetase and on NTP pools differed considerably between wild type and mutant cells. Under conditions of growth arrest, an intact binding site for CTP on CTP synthetase was required to maintain a balance between the CTP and UTP pools in wild type cells. Moreover, wild type cells failed to incorporate H14CO3- into pyrimidine pools following growth arrest. In contrast, mutant cells incorporated the radiolabel at a high rate indicating loss of a regulatory function. These results indicated that uridine nucleotides are important regulators of pyrimidine nucleotide synthesis in mouse S49 cells, and CTP regulates the balance between UTP and CTP pools.  相似文献   

18.
Hydroxyurea (HU) causes inhibition of DNA synthesis in regenerating rat liver due to an inhibition of the ribonucleotide reductase. We studied the consequences of a continuous HU infusion for deoxyribonucleoside triphosphate (dNTP) pools in the liver after partial hepatectomy and tried to modify imbalances by application of deoxyribonucleosides in vivo. In normal liver, an intracellular concentration of 0.16, 0.84, 0.33 and 0.27 pmol/micrograms DNA was observed for dATP, dCTP, dGTP and dTTP, respectively. In regenerating liver the dNTP pools show minor changes until 18 h after partial hepatectomy. During and after a continuous HU infusion 14--24 h after partial hepatectomy, the intracellular dNTP pools change considerably. At 19.5 h after partial hepatectomy, 5.5 h after the start of HU infusion, and at 25 h after partial hepatectomy, 1 h after termination of HU infusion, the dTTP pool was more than 10-times, and the dGTP pool about 2-times higher than in controls, while the dATP and dCTP pools remain relatively unchanged. Simultaneous infusion of HU and deoxythymidine (dThd) 14--25 h after partial hepatectomy results in a further increase of the dTTP pool during and after HU infusion. Administration of deoxycytidine (dCyd) leads to a moderate increase of the dCTP pool and a weak decrease of the dTTP pool during HU infusion. The combined application of dCyd and dThd after HU infusion had similar effects on dNTP pools as observed with dThd alone. These results show that intracellular pools of dNTPs in hepatocytes can be altered by exogenous factors in a controlled pattern. This system can be used as a model for studying the implications of induced dNTP pool dysbalances for the initiation of liver carcinogenesis by mutagenic chemicals.  相似文献   

19.
Ribonucleotide reduction provides deoxynucleotides for nuclear and mitochondrial (mt) DNA replication and DNA repair. In cycling mammalian cells the reaction is catalyzed by two proteins, R1 and R2. A third protein, p53R2, with the same function as R2, occurs in minute amounts. In quiescent cells, p53R2 replaces the absent R2. In humans, genetic inactivation of p53R2 causes early death with mtDNA depletion, especially in muscle. We found that cycling fibroblasts from a patient with a lethal mutation in p53R2 contained a normal amount of mtDNA and showed normal growth, ribonucleotide reduction, and deoxynucleoside triphosphate (dNTP) pools. However, when made quiescent by prolonged serum starvation the mutant cells strongly down-regulated ribonucleotide reduction, decreased their dCTP and dGTP pools, and virtually abolished the catabolism of dCTP in substrate cycles. mtDNA was not affected. Also, nuclear DNA synthesis and the cell cycle-regulated enzymes R2 and thymidine kinase 1 decreased strongly, but the mutant cell populations retained unexpectedly larger amounts of the two enzymes than the controls. This difference was probably due to their slightly larger fraction of S phase cells and therefore not induced by the absence of p53R2 activity. We conclude that loss of p53R2 affects ribonucleotide reduction only in resting cells and leads to a decrease of dNTP catabolism by substrate cycles that counterweigh the loss of anabolic activity. We speculate that this compensatory mechanism suffices to maintain mtDNA in fibroblasts but not in muscle cells with a larger content of mtDNA necessary for their high energy requirements.  相似文献   

20.
dNTP pools are quite low in immature oocytes of the starfish, expand during the 1-methyladenine-induced maturational process and thereafter reach a maximal level (approx. 35, 20, 15 and 5 fmoles/egg for dTTP, dCTP, dATP and dGTP, respectively) which is maintained in overmatured eggs. Maturing oocytes were inseminated at the stage just before extrusion of the first polar body and determination of dNTP pools during early embryogenesis showed the same expansion pattern as that of the 1-methyladenine-treated oocytes. Therefore, the increase in dNTP pools during early embryogenesis is dependent on 1-methyladenine (1-MA) but independent of fertilization. Aphidicolin, a specific inhibitor of eukaryotic DNA polymerase alpha, has no effect on dNTP pool size in 1-methyladenine-treated oocytes, but causes considerable expansion of dNTP pools in fertilized eggs which cleave achromosomally in the presence of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号