首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topographic factors strongly affect the diversity of plants and local environmental conditions, yet little is known about their effects on the distribution of ectomycorrhizal fungi (EMF). By combining morphological and molecular identification methods, we investigated the relationship between EMF communities of Quercus liaotungensis and topographic factors along local slopes in the temperate oak forest on the Loess Plateau of northwest China. ITS-RFLP analysis revealed a high diversity of EMF taxa (135 taxa) associated with Q. liaotungensis along three local slopes. EMF communities among slope sites or slope positions, tended to share major common EMF species, which accounted for more than 80 % of the total EMF abundance, and showed a diverse distribution, which mainly related to rare species. Ordination analyses showed that EMF taxa distribution was significantly correlated with several environmental variables (slope site, slope position, slope gradient, and soil C:N). Topography-mediated changes of environmental conditions may be important determinants of the distribution of EMF taxa along local slopes (slope position and slope site) in the central Loess Plateau.  相似文献   

2.
Soil fertility and associated nitrogen (N) status was a key ecosystem attribute, and surveys of ectomycorrhizal fungal (EMF) communities via epigeous fruiting bodies could provide an effective biotic indicator of forest soil productivity. We explored the utility of aboveground EMF communities in this regard by surveying sporocarps over a 3-year period from contrasting plant associations of southern old-growth boreal forests of British Columbia (Canada). Cumulative richness ranged from 39 to 89 EMF species per plot (0.15 ha) and followed a skewed parabolic correlation with foliar N concentrations and soil N availability. EMF species composition was consistently distinct in ordinations and strongly correlated to the increasing rates of N mineralization aligned with soil productivity. Approximately 40 EMF species were specialists, as they collectively indicated oligotrophic, mesotrophic, and eutrophic nutrient regimes, while the remaining species were categorized as broadly tolerant (distributed over 100% of the N gradient), partially intolerant (approximately 70%), or satellites (rare). The functional organization of EMF communities reflected by distribution classes could help define the ecological integrity of forests, which was characterized in this boreal landscape by an average allotment of 20 broadly tolerant, 25 partially intolerant, 15 specialist, and ten satellite species per plot. Epigeous fruiting bodies provided a disparate yet complementary view to the belowground assessment of EMF communities that was valuable in identifying indicators for ecosystem monitoring.  相似文献   

3.
The relative importance of abiotic factors in community assembly is debated and thought to be dependent on the scale. I investigated the relative role of topography and soils as structuring agents at the landscape and the community scales in 126 subalpine calcareous grasslands in the Pyrenees, in terms of species composition and abundance. I wished to know: (1) the role of abiotic factors in the organization of plant communities across the landscape; (2) how much of the variation in community distribution was accounted for by abiotic factors; and (3) how well their role applied to the distribution of dominant species at the landscape and the community scales. The hypothesis was: abiotic factors play an important role in community distribution in the landscape, but species interactions are more important within communities. Multivariate methods generated four communities, organized in two contrasting groups along the main vegetation axis, which explained 13% of the variation: mesic grasslands (Nardus stricta and Festuca nigrescens communities) and xeric grasslands (Carex humilis and Festuca gautieri communities). Mesic communities were more acidic and fertile than xeric communities. Changes in the abiotic environment, accounting for up to 80% of the variation in the vegetation, were smooth, while the transition between xeric and mesic grasslands was sharp in terms of species composition. The distribution in the landscape of the first main species from each community was closely related to abiotic factors, which modeled poorly the abundance of the main species at smaller scales. At the within-community scale, the explanatory power of biotic relationships was community dependent, producing the most significant models for plants highly dominant within their communities, such as N. stricta and F. gautieri. Contrary to current hypothesis, there was a shift from mainly positive relationships among dominant species in fertile mesic communities to mainly negative in infertile xeric ones.  相似文献   

4.
The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction–restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.  相似文献   

5.
A diverse range of fungi associate with ectomycorrhizal (EcM) root tips, however, their identity and the biotic and abiotic filters structuring these communities remain unknown. We employed a metabarcoding approach to characterize fungal communities associating with the EcM root tips of Quercus rubra along a natural soil nitrogen gradient. EcM communities and ectomycorrhizal associated fungi (EcAF) were tightly linked across the breadth of the soil gradient. Notably, EcAF communities were primarily shaped by the morphological attributes of EcM communities, particularly the relative abundance of EcM taxa forming rhizomorphic hyphae. Edaphic properties (soil C:N and net N mineralization) exerted minimal influence, suggesting a strong role of biotic interactions in EcAF community assembly. The presence of plants forming ericoid mycorrhizal associations also shapes the prevalence of ericoid mycorrhizal fungi associating with EcM root tips. Overall, EcAF communities were dominated by helotialean fungi, ericoid mycorrhizal fungi, dark septate endophytes, and the white-rot fungi Mycena.  相似文献   

6.
Bryophyte communities can exhibit similar structural and taxonomic diversity as vascular plant communities, just at a smaller scale. Whether the physiological diversity can be similarly diverse, and whether it can explain local abundance patterns is unknown, due to a lack of community‐wide studies of physiological traits. This study re‐analyzed data on photosynthesis‐related traits (including the nitrogen, phosphorus and chlorophyll concentrations, photosynthetic capacities, and photosynthetic nutrient use efficiencies) of 27 bryophyte species in a subalpine old‐growth fir forest on the eastern Tibetan Plateau. We explored differences between taxonomic groups and hypothesized that the most abundant bryophyte species had physiological advantages relative to other subdominant species. Principal component analysis (PCA) was used to summarize the differences among species and trait values of the most abundant and other co‐occurring subdominant species. Species from the Polytrichaceae were separated out on both PCA axes, indicating their high chlorophyll concentrations and photosynthetic capacities (axis 1) and relatively high‐light requirements (axis 2). Mniaceae species also had relatively high photosynthetic capacities, but their light saturation points were low. In contrast, Racomitrium joseph‐hookeri and Lepidozia reptans, two species with a high shoot mass per area, had high‐light requirements and low nutrient and chlorophyll concentrations and photosynthetic capacities. The nutrient concentrations, photosynthetic capacities, and photosynthetic nutrient use efficiencies of the most abundant bryophyte species did not differ from co‐occurring subdominant species. Our research confirms the links between the photosynthesis‐related traits and adaptation strategies of bryophytes. However, species relative abundance was not related to these traits.  相似文献   

7.
四川卧龙亚高山林线生态交错带群落的种多度关系   总被引:22,自引:3,他引:19  
以盖度作为物种多度指标,用描述物种多度分布的模型:断棍分布、几体级数分布、对数级数分布和截尾对数正态分布研究了卧龙巴郎山岷江冷棚林线交错带附近草本群落的种--我镀分布关系。结果表明,截尾对数正态分布和对数级数分布能较好地拟合交错带附近群落的种-多度分布,截尾对数正态分布模型更适合交错带群落,对数级数分布 较好地适合亚高山草甸群落。对数级数分布的参数α和对数正态分布的参数λ是反映群落结构特征内在性质  相似文献   

8.
Microbial Community Succession in an Unvegetated,Recently Deglaciated Soil   总被引:3,自引:0,他引:3  
Primary succession is a fundamental process in macroecosystems; however, if and how soil development influences microbial community structure is poorly understood. Thus, we investigated changes in the bacterial community along a chronosequence of three unvegetated, early successional soils (∼20-year age gradient) from a receding glacier in southeastern Peru using molecular phylogenetic techniques. We found that evenness, phylogenetic diversity, and the number of phylotypes were lowest in the youngest soils, increased in the intermediate aged soils, and plateaued in the oldest soils. This increase in diversity was commensurate with an increase in the number of sequences related to common soil bacteria in the older soils, including members of the divisions Acidobacteria, Bacteroidetes, and Verrucomicrobia. Sequences related to the Comamonadaceae clade of the Betaproteobacteria were dominant in the youngest soil, decreased in abundance in the intermediate age soil, and were not detected in the oldest soil. These sequences are closely related to culturable heterotrophs from rock and ice environments, suggesting that they originated from organisms living within or below the glacier. Sequences related to a variety of nitrogen (N)-fixing clades within the Cyanobacteria were abundant along the chronosequence, comprising 6–40% of phylotypes along the age gradient. Although there was no obvious change in the overall abundance of cyanobacterial sequences along the chronosequence, there was a dramatic shift in the abundance of specific cyanobacterial phylotypes, with the intermediate aged soils containing the greatest diversity of these sequences. Most soil biogeochemical characteristics showed little change along this ∼20-year soil age gradient; however, soil N pools significantly increased with soil age, perhaps as a result of the activity of the N-fixing Cyanobacteria. Our results suggest that, like macrobial communities, soil microbial communities are structured by substrate age, and that they, too, undergo predictable changes through time.  相似文献   

9.
We investigated how the phylogenetic structure of Amazonian plant communities varies along an edaphic gradient within the non‐inundated forests. Forty localities were sampled on three terrain types representing two kinds of soil: clayey soils of a high base cation concentration derived from the Solimões formation, and loamy soils with lower base cation concentration derived from the Içá formation and alluvial terraces. Phylogenetic community metrics were calculated for each locality for ferns and palms both with ferns as one group and for each of three fern clades with a crown group age comparable to that of palms. Palm and fern communities showed significant and contrasting phylogenetic signals along the soil gradient. Fern species richness increased but standard effect size of mean pairwise distance (SES.MPD) and variation of pairwise distances (VPD) decreased with increasing soil base cation concentration. In contrast, palm communities were more species rich on less cation‐rich soils and their SES.MPD increased with soil base cation concentration. Species turnover between the communities reflected the soil gradient slightly better when based on species occurrences than when phylogenetic distances between the species were considered. Each of the three fern subclades behaved differently from each other and from the entire fern clade. The fern clade whose phylogenetic patterns were most similar to those of palms also resembled palms in being most species‐rich on cation‐poor soils. The phylogenetic structuring of local plant communities varies along a soil base cation concentration gradient within non‐inundated Amazonian rain forests. Lineages can show either similar or different phylogenetic community structure patterns and evolutionary trajectories, and we suggest this to be linked to their environmental adaptations. Consequently, geological heterogeneity can be expected to translate into a potentially highly diverse set of evolutionarily distinct community assembly pathways in Amazonia and elsewhere.  相似文献   

10.
Question: What is the nature of the relationships between cover, diversity and abundance of biological soil crusts, cover and diversity of vascular plants, and annual rainfall, soil texture and forestry practices in Callitris glaucophylla woodlands? Location: Arid and semi‐arid Callitris glaucophylla‐domi‐nated woodlands of eastern Australia. Methods: We documented soil crust‐forming mosses, lichens and liverworts at 83 woodland sites along a gradient of declining rainfall. Linear and non‐linear regression were used to examine relationships between soil crust species and attributes of vascular plant communities, and a similarity matrix (species abundance X sites) was subjected to Non‐metric Multi‐Dimensional Scaling (MDS), and Analysis of Similarities (ANOSIM) to show the degree of association between groups of taxa, and soil texture, rainfall classes and forestry practices. Results : We collected 86 taxa. Mosses were dominated by the family Pottiaceae, and lichens were dominated by squamulose forms. Average annual rainfall was highly correlated with soil crust community composition, and loamy soils supported a greater cover and diversity of taxa compared with sandy soils. Increases in tree cover were associated with significant, though weak, increases in abundance, but not diversity, of crusts. Crusts tended to be more diverse in areas that (1) had a sparse cover of ground‐storey plants; (2) were relatively stable ‐ as indicated by the proportion of perennial and/or native plants; (3) had more stable soil surfaces; and (4) were unlogged. Litter cover, overstorey thinning, and livestock grazing had no appreciable effect on crust diversity or cover. Conclusions : Callitris glaucophylla woodlands provide substantial habitat for soil crust organisms, and the dense tree cover and closed canopies of Callitris do not appear to have a major influence on the structure of biological crust communities. Unlike other woodland systems, relatively few patches would be required to reserve a high diversity of crust species.  相似文献   

11.
Latitudinal gradients of tree species composition along the Sierran/Cascade axis in northern California were explored by comparing forests of Lassen Volcanic and Yosemite National Parks, USA. A calibration procedure based on canonical correspondence analysis predicted a mean rate of elevational displacement of 172.1 m/° latitude for Lassen sites in Yosemite. This is a steep latitudinal gradient compared with other temperate uplands (which average around 100 m/0 latitude), but it corresponds with the magnitude of the July mean temperature gradient (143 m/0 latitude) and the annual precipitation gradient (230 m/0 latitude). Elevational displacement of basal-area weighted species means showed considerable variation. The range for montane species was 20–153 m/0 latitude; for subalpine species the range was 142–305 m/0 latitude. This disparity is related to differential temperature lapse rates between regions and is reinforced by contrasting biogeographic affinities of montane vs. subalpine species. Whereas it is uniformly hot and dry during the growing season at lower elevations in both regions, growing seasons in the subalpine zone are significantly warmer and drier (at comparable elevations) in Yosemite, the more southerly locale. Furthermore, montane species are principally of Sierran affinity, whereas subalpine are primarily of Pacific Northwestern affinity.  相似文献   

12.
Invasive species may leave behind legacies that persist even after removal, inhibiting subsequent restoration efforts. We examined the soil legacy of Cytisus scoparius, a nitrogen-fixing, putatively allelopathic shrub invading the western US. We tested the hypothesis that allelopathy plays a critical role in the depressive effect of Cytisus on the key native Douglas-fir, both directly on tree growth and indirectly via effects on its ectomycorrhizal fungi (EMF). In a greenhouse factorial experiment, we used activated carbon to inhibit Cytisus-produced allelochemicals and sucrose to reduce elevated nitrogen (N). We found that: (1) Cytisus-invaded soils depressed Douglas-fir growth compared to uninvaded forest soils. The effect of adding Cytisus litter was positive (possibly reflecting an N fertilization effect) only in the presence of activated carbon, providing evidence for a role of allelopathic compounds. Activated carbon did not increase growth in the absence of Cytisus litter. Finally, sucrose addition provided weak support for a nitrogen effect of Cytisus litter. (2) Seedlings grown in Cytisus soils had lower EMF abundance compared to those in uninvaded forest soils. In forest soil from one site, adding Cytisus litter also decreased EMF abundance. Douglas-fir growth increased significantly with EMF across sites and soils suggesting that changes in EMF were linked to tree growth. The fungal taxon Cenococcum geophilum was significantly depressed in Cytisus soils compared to forest soils, while Rhizopogon rogersii abundance was similar across soil types. These results together suggest an overall negative effect of Cytisus on the growth of a dominant native tree and its fungal symbionts. Our study suggests how the role of allelopathy in ecological restoration may play out on two time scales: through immediate, direct impacts on native plants as well as through long-term, persistent impacts mediated by the collapse or transformation of microbial communities.  相似文献   

13.
Nitrogen is a major limiting nutrient for the net primary production of terrestrial ecosystems, especially on sentinel alpine ecosystem. Ammonia oxidation is the first and rate-limiting step on nitrification process and is thus crucial to nitrogen cycle. To decipher climatic influence on ammonia oxidizers, their communities were characterized by qPCR and clone sequencing by targeting amoA genes (encoding the alpha subunit of ammonia mono-oxygenase) in soils from 7 sites over an 800 m elevation transect (4400–5200 m a.s.l.), based on “space-to-time substitution” strategy, on a steppe-meadow ecosystem located on the central Tibetan Plateau (TP). Archaeal amoA abundance outnumbered bacterial amoA abundance at lower altitude (<4800 m a.s.l.), but bacterial amoA abundance was greater in surface soils at higher altitude (≥4800 m a.s.l.). Archaeal amoA abundance decreased with altitude in surface soil, while its abundance stayed relatively stable and was mostly greater than bacterial amoA abundance in subsurface soils. Conversely, bacterial amoA abundance gradually increased with altitude at all three soil depths. Statistical analysis indicated that altitude-dependent factors, in particular pH and precipitation, had a profound effect on the abundance and community of ammonia-oxidizing bacteria, but only on the community composition of ammonia-oxidizing archaea along the altitudinal gradient. These findings imply that the shifts in the relative abundance and/or community structure of ammonia-oxidizing bacteria and archaea may result from the precipitation variation along the altitudinal gradient. Thus, we speculate that altitude-related factors (mainly precipitation variation combing changed pH), would play a vital role in affecting nitrification process on this alpine grassland ecosystem located at semi-arid area on TP.  相似文献   

14.
Within the tropics, a marked gradient in rainfall between dry and wet forests correlates with a well documented turnover of plant species. While water availability along these gradients is an important determinant of species distributions, other abiotic and biotic factors correlate with rainfall and may also contribute to limit species distribution. One of these is soil fertility, which is often lower in the wetter forests. To test its possible role in species distribution along a rainfall gradient, we performed a screen‐house experiment where we measured the growth performance of seedlings of 23 species with contrasting distributions across the Isthmus of Panama. We grew seedlings in soils collected from the drier Pacific side and the wetter Atlantic side. Differences in soil fertility across the Isthmus were large enough to significantly influence the growth performance of the seedlings. However, we found no evidence of home‐soil advantage among species with contrasting distributions. Dry‐distribution species grew on average slower than wet‐distribution species suggesting a cost to drought adaptations. The response to soil differences correlated with the growth rate of the species, such that fast‐growing species responded more to changes in soil quality. We hypothesize that inherently slow growth rates of some dry‐distribution tropical species may be a more important factor limiting their colonization of wetter sites along the rainfall gradient.  相似文献   

15.
Species turnover of monkey beetle (Scarabaeidae: Hopliini) assemblages along disturbance and environmental gradients was examined at three sites within the arid, winter rainfall Namaqualand region of the succulent Karoo, South Africa. At each site two study plots with comparable vegetation and soils but contrasting management (grazing) histories were chosen, the disturbed sites having fewer perennial shrubs and generally more annuals and bare ground. Beetles collected using coloured pan-traps showed a consistently higher abundance in disturbed sites. Lepithrix, Denticnema and Heterochelus had higher numbers in disturbed plots, while Peritrichia numbers were lower in disturbed areas. Measures of species richness and diversity were consistently higher in the undisturbed sites. Distinctive assemblages of monkey beetles and plants occurred at each site. A high compositional turnover ( diversity) was recorded for both monkey beetles and plants along a rainfall gradient; between-site diversity values ranged from 0.7 to 0.8 (out of a maximum of 1.0). Species turnover of beetles was higher between the disturbed sites along the environmental gradient than the corresponding undisturbed sites. The high monkey beetle species turnover is probably linked to the high plant species turnover, a distinctive feature of succulent Karoo landscapes. Monkey beetles are useful indicators of overgrazing disturbance in Namaqualand, as their pollinator guilds are apparently disrupted by overgrazing. A shift away from perennial and bulb pollinator guilds towards those favouring weedy annuals was observed in disturbed areas. The consequences to ecosystem processes due to the effects of disturbance on monkey beetle communities and the role of monkey beetles as indicators of disturbance is discussed, as well as the implications of disturbance on monkey beetle pollination guilds.  相似文献   

16.
为研究磷酸氢二铵(DAP)添加对土壤纤毛虫群落结构的影响,于2012年4月在甘南高寒草甸选取典型样地,在0~120 g·m-2浓度区间内设置5个添加水平,采用“非淹没培养皿法”、活体观察法和“3级10倍环式稀释法”测定土壤纤毛虫物种数和密度,同时测定了土壤相关环境因子(含水量、pH值、总氮、总磷、有机碳).共获得土壤纤毛虫129种,隶属9纲17目31科46属.对照组的土壤纤毛虫物种数和物种多样性指数均大于施肥处理,且随着施肥量的增大,土壤纤毛虫物种数减少,物种多样性减小,但其密度随施肥量的增大而增加.对照土壤纤毛虫优势类群为刺钩目,随着施肥量的增大,土壤纤毛虫优势类群更新为肾形目.土壤纤毛虫群落结构和环境因子的冗余分析表明,总磷、土壤温度和含水量是影响甘南高寒草甸土壤纤毛虫群落分布的关键环境因子.  相似文献   

17.
ABSTRACT

In the framework of an ongoing study on the mycorrhizal associations of silver fir (Abies alba Mill., Pinaceae), we investigated the below-ground diversity of ectomycorrhizal communities in ten field sites located in five distinct natural A. alba woods, situated in the central part of the Apennine chain (Abruzzo region, Italy). Based on macro- and microscopic features, a total of 48 morphologically distinct ectomycorrhizal types have been classified on mature trees of A. alba, 37 of which are reported here for the first time. Ectomycorrhizal morphotypes were partially characterized, and their main features described; in many cases, the relevant fungal symbiont was identified at the level of species or genus. The number of distinguishable morphotypes per site was, with few exceptions, rather homogeneous, ranging from (5) 8 to 13 (20). Comparison of morphotype occurrence revealed that only few types were encountered in five or more sampled sites, whereas the vast majority of types was less frequent. The present study revealed a considerably high species diversity of the ectomycorrhizal symbionts of A. alba in a quite restricted area, thus raising interesting questions as to the ectomycorrhizal potential of this host tree over its entire, large natural range.  相似文献   

18.
Abstract. Diversity relations in Mediterranean heathlands and the understorey of oak woodlands on sandstone-derived substrates were studied at both sides of the Strait of Gibraltar. Trends in species composition and cover were analysed by Detrended Correspondence Analysis; the first axis, assumed to reflect a main environmental gradient, was used to analyse the patterns of three aspects of community diversity. Species richness, i.e. number of species along a 100-m transect, shows a humpbacked trend along the gradient, with the highest values in the understorey of evergreen Quercus suber woodlands, associated with soils of intermediate fertility and moisture status. The number of endemic species is highest in open heathlands, associated with more extreme conditions of acid, infertile soils on exposed ridges. The taxonomic singularity, as measured by the inverse of the average number of species per genus at each site, is highest at the most fertile and moist sites occupied by semideciduous Q. canariensis woodlands. A comparison between northern (Spanish) and southern (Moroccan) sides of the Strait of Gibraltar shows a general concordance of the trends of woody plant communities along the main environmental gradient. However, significant differences of the southern samples are: (1) lack of some differential, habitat-specific species and greater abundance of widespread generalists; and (2) a general reduction in species diversity, number of endemics and taxonomic singularity. We interpret these differences as affected partly by the smaller extent and fragmentation of sandstone areas in the south, and partly by the higher impact of slashing and grazing there.  相似文献   

19.
Woody plant encroachment into grasslands has been globally widespread. The woody species invading grasslands represent a variety of contrasting plant functional groups and growth forms. Are some woody plant functional types (PFTs) better suited to invade grasslands than others? To what extent do local patterns of distribution and abundance of woody PFTs invading grasslands reflect intrinsic topoedaphic properties versus plant-induced changes in soil properties? We addressed these questions in the Southern Great Plains, United States at a subtropical grassland known to have been encroached upon by woody species over the past 50-100 years. A total of 20 woody species (9 tree-statured; 11 shrub-statured) were encountered along a transect extending from an upland into a playa basin. About half of the encroaching woody plants were potential N2-fixers (55% of species), but they contributed only 7% to 16 % of the total basal area. Most species and the PFTs they represent were ubiquitously distributed along the topoedaphic gradient, but with varying abundances. Overstory-understory comparisons suggest that while future species composition of these woody communities is likely to change, PFT composition is not. Canonical correspondence analysis (CCA) ordination and variance partitioning (Partial CCA) indicated that woody species and PFT composition in developing woody communities was primarily influenced by intrinsic landscape location variables (e.g., soil texture) and secondarily by plant-induced changes in soil organic carbon and total nitrogen content. The ubiquitous distribution of species and PFTs suggests that woody plants are generally well-suited to a broad range of grassland topoedaphic settings. However, here we only examined categorical and non-quantitative functional traits. Although intrinsic soil properties exerted more control over the floristics of grassland-to-woodland succession did plant modifications of soil carbon and nitrogen concentrations, the latter are likely to influence productivity and nutrient cycling and may, over longer time-frames, feed back to influence PFT distributions.  相似文献   

20.
The effects of long-term nitrogen loading on grassland insect communities   总被引:14,自引:0,他引:14  
Just as long-term nitrogen loading of grasslands decreases plant species richness and increases plant biomass, we have found that nitrogen loading decreases insect species richness and increases insect abundances. We sampled 54 plots that had been maintained at various rates of nitrogen addition for 14 years. Total insect species richness and effective insect diversity, as well as herbivore and predator species richness, were significantly, negatively related to the rate of nitrogen addition. However, there was variation in trophic responses to nitrogen. Detritivore species richness increased as nitrogen addition increased, and parasitoids showed no response. Insect abundances, measured as the number of insects and insect biovolume (an estimate of biomass), were significantly, positively related to the rate of nitrogen addition, as were the abundances of herbivores and detritivores. Parasitoid abundance was negatively related to the rate of nitrogen addition. Changes in the insect community were correlated with changes in the plant community. As rates of nitrogen addition increased, plant species richness decreased, plant productivity and plant tissue nitrogen increased, and plant composition shifted from C4 to C3 grass species. Along this gradient, total insect species richness and effective insect diversity were most strongly, positively correlated with plant species richness. Insect biovolume was negatively correlated with plant species richness. Responses of individual herbivores varied along the nitrogen gradient, but numbers of 13 of the 18 most abundant herbivores were positively correlated with their host plant biomass. Although insect communities did not respond as strongly as plant communities, insect species richness, abundance, and composition were impacted by nitrogen addition. This study demonstrates that long-term nitrogen loading affects the entire food chain, simplifying both plant and insect communities. Received: 18 May 1999 / Accepted: 5 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号