首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, by using two transgenic models, we address the general topic of the significance of axonal glycoproteins regulated expression in nervous tissue maturation. The immunoglobulin superfamily components F3/Contactin (F3) and TAG-1 are used as the molecular models in this respect. First, a minigene including the relevant regulatory sequences of the F3 gene, deduced by a previous in vitro study, has been fused to an EGFP (Enhanced Green Fluorescent Protein) reporter and expressed in transgenic mice, which provided information about the profile of F3 gene developmental activation. In a complementary model, transgenic mice have been generated which express the F3 cDNA under control of a selected regulatory region from the TAG-1 gene. While leading to ectopic expression of F3, this perturbed neuronal precursor proliferation and differentiation. The arising effects were even stronger than those coming from the overall suppression of the F3 or, respectively, TAG-1 genes, thus supporting the hypothesis that the mechanisms underlying axonal glycoprotein regulated expression are themselves endowed with a key significance in neural development.  相似文献   

2.
Transgenic animals, especially mice, have been used quite extensively as models for various human diseases. At first, the level of scientific inquiry was driven by the need to establish the model. In many cases, these models may be considered quite crude because of their limitations. More recently, transgenic models of disease have become more refined and are currently being used to study the pathological mechanisms behind the disease rather than to just provide a model of the disease. Using some examples from the recent literature, we will document the current level and complexity of inquiry using transgenic animals. New techniques and techniques that may prove promising will be discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.  相似文献   

4.
The human microbiome substantially affects many aspects of human physiology, including metabolism, drug interactions and numerous diseases. This realization, coupled with ever-improving nucleotide sequencing technology, has precipitated the collection of diverse data sets that profile the microbiome. In the past 2 years, studies have begun to include sufficient numbers of subjects to provide the power to associate these microbiome features with clinical states using advanced algorithms, increasing the use of microbiome studies both individually and collectively. Here we discuss tools and strategies for microbiome studies, from primer selection to bioinformatics analysis.  相似文献   

5.
The insulin-like growth factor-binding proteins (IGFBPs) comprise a family of six related peptides that interact with high affinity with IGFs. IGFBPs compete with IGF receptors for IGF binding, and as a consequence of this competition they can affect cell growth. In addition, IGF-independent regulatory mechanisms of IGFBPs have been described. Despite their common property to interact with IGFs every IGFBP is expressed in a tightly regulated time- and tissue-specific manner suggesting that each protein may have its own distinct functions. Several transgenic mouse models overexpressing IGFBP-1, -2, -3, or -4 were developed in the past few years. Brain abnormalities were a common feature of IGFBP-1 transgenic models. Individual strains showed alterations in glucose homeostasis, reproductive performance, and a reduction of somatic growth as the most prominent phenotypes. The latter was also the main effect observed in IGFBP-2 transgenic mice. The overexpression of IGFBP-3 under the control of an ubiquitous promoter resulted in selective organomegaly, whereas mammary gland-targeted expression of this protein caused an altered involution after pregnancy in this organ. Tissue-specific overexpression of IGFBP-4 resulted in hypoplasia and reduced weight of smooth muscle-rich tissues such as bladder, aorta, and stomach. This review summarizes the current knowledge about the actions of IGFBPs in vivo based on the presently established transgenic mice.  相似文献   

6.
7.
ContributorsThis report results from the discussion of an Expert Group convened in Edinburgh on 29–30 October 1992 for a workshop on that subject sponsored and organized by the Commission of the European Communities, Directorate General XII (CEC-DG XII). The experts taking part in the workshop were: R. Lathe and J.J. Mullins, Coordinators (AFRC Centre for Genome Research, University of Edinburgh); G.N. Fracchia, Secretary (Medical Research-Pharmaceuticals, CEC-DG XII, Brussels); and the participants; C. Babinet (Dept d'Immunologie, Institut Pasteur, Paris); P. Eliard (EFPIA, Brussels); C. Benoist (LGME du CNRS/INSERM, Strasbourg); G. Bianchi (Ospedale San Raffaele, Universita di Milano, Milan); E. Boncinelli (DIBIT, Ospedale San Raffaele, Milan); G. Brem (Universitat München); G. Cossu (Institute of Histology, School of Medicine, University of Rome); N. Dillon (MRC National Institute for Medical Research, London); V. Episkopou (Dept of Biochemistry & Molecular Genetics, St Mary's Hospital Medical School, London); M. Evans (Wellcome/CRC Institute, Cambridge); R. Forster (Italfarmaco Research Centre, Cinisello Balsamo, Milan); D. Ganten (Max-Delbrück-Zentrum für Molekulare Medizin, Berlin); A. Gossler (Max-Delbrück-Laboratorium in der Max-Planck-Gesellschaft, Köln); J. Gray (Dept Psychology, Institute of Psychiatry, London); R. Hammer (Howard Hughes Medical Institute, University of Texas, Dallas, USA); A. Hobden (Genetics Unit, Glaxo Group Research Ltd, Middlesex); G. Kollias (Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens); D. Lamy (Transgène SA, Strasbourg); D. Lincoln (MRC Reproductive Biology Unit, Edinburgh); J. Mallet (CNRS/LNCM, Gif-sur-Yvette); D. Melton (ICMB, University of Edinburgh, Edinburgh); J.M. Moalic (U127 INSERM, Hôpital Laraboisire, Paris); S. Mockrin (Dept Health & Human Services, National Institutes of Health, Bethesda, MA, USA); J. Ottesen (Biopharmaceuticals Division, Dept of Gene Technology and Virology, Novo Industrie, Denmark); D. Porteous (MRC Human Genetics Unit, Western General Hospital, Edinburgh); P. Rae (Pharmaceutical Division, Miles, West Haven, USA); F. Theuring (Schering AG, Pharmaceutical Research, Berlin); G. Tremp (Rhone-Poulenc Rorer SA, Centre de Recherche de Vitry-Alfortville, Vitry-sur-Seine); H. Van der Putten (Dept Biotechnology, Ciba-Geigy AG, Basel); R. Wolf (ICRF Molecular Pharmacology Group, Biochemistry Dept, Edinburgh). Further supporting documentation and commentary were received from P. Dement (Amsterdam), U. Habenicht (Berlin), P. Grüss (Gottingen), M. Lyon (Oxford), C.C.J. Miller (London), W.-D. Schleuning (Berlin) and R. Williamson (London) and their contributions are gratefully acknowledged.  相似文献   

8.
Rab GTPases play a key role in the regulation of membrane traffic. Posttranslational geranylgeranylation is critical for their biological activity and is conferred by a Rab geranylgeranyl transferase (RabGGTase). To study the interactions between Rab proteins and RabGGTase, we used in vitro ligation methodology to generate a fluorescent semi-synthetic Rab7 protein. The obtained protein was functionally active and was used to demonstrate a micromolar affinity interaction of Rab7 with the RabGGTase in the absence of Rab escort protein (REP). This finding is consistent with an earlier proposed model according to which RabGGTase possesses two independent weak binding sites for REP and Rab proteins.  相似文献   

9.
Summary

Recent research concerning ecdysteroid-responsive and ecdysteroid-producing cell lines is reviewed. The advantages and limitations of cell lines of defined and undefined origin are considered with regard to their suitability for studies on molecular, physiological, morphological and developmental aspects of ecdysteroid action. The considerable potential for future studies involving insect cell lines is indicated.  相似文献   

10.
The use of amphibians as models in ecological research has a rich history. From an early foundation in studies of amphibian natural history sprang generations of scientists who used amphibians as models to address fundamental questions in population and community ecology. More recently, in the wake of an environment that human disturbances rapidly altered, ecologists have adopted amphibians as models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change. Some of the characteristics of amphibians that make them useful models for studying these environmental problems are highlighted, including their trophic importance, environmental sensitivity, research tractability, and impending extinction. The article provides specific examples from the recent literature to illustrate how studies on amphibians have been instrumental in guiding scientific thought on a broad scale. Included are examples of how amphibian research has transformed scientific disciplines, generated new theories about global health, called into question widely accepted scientific paradigms, and raised awareness in the general public that our daily actions may have widespread repercussions. In addition, studies on amphibian declines have provided insight into the complexity in which multiple independent factors may interact with one another to produce catastrophic and sometimes unpredictable effects. Because of the complexity of these problems, amphibian ecologists have been among the strongest advocates for interdisciplinary research. Future studies of amphibians will be important not only for their conservation but also for the conservation of other species, critical habitats, and entire ecosystems.  相似文献   

11.
Berger S 《Planta》2002,214(4):497-504
Jasmonates are naturally occurring signal compounds that regulate plant growth and development, and are involved in plant responses to several environmental stress factors. The mode of action of jasmonates has been investigated traditionally by analysis of the effects of exogenous application of these compounds, including identification of jasmonate-responsive genes and determination of their expression and responsive promoter elements. In addition, jasmonate biosynthesis has been studied by identification of biosynthetic enzymes, use of inhibitors and determination of endogenous jasmonate levels. Recently, several mutants defective in jasmonate biosynthesis and signaling have been isolated and their phenotypes shed new light on the role of jasmonates and jasmonate signaling in plant responses to pathogens, insects and ozone.  相似文献   

12.
Transgenic rabbits as models for atherosclerosis research   总被引:4,自引:0,他引:4  
Several characteristics of the rabbit make it an excellent model for the study of lipoprotein metabolism and atherosclerosis. New Zealand White (NZW) rabbits have low plasma total cholesterol concentrations, high cholesteryl ester transfer protein activity, low hepatic lipase (HL) activity, and lack an analogue of human apolipoprotein (apo) A-II, providing a unique system in which to assess the effects of human transgenes on plasma lipoproteins and atherosclerosis susceptibility. Additionally, rabbit models of human lipoprotein disorders, such as the Watanabe Heritable Hyperlipidemic (WHHL) and St. Thomas' Hospital strains, models of familial hypercholesterolemia and familial combined hyperlipidemia, respectively, allow for the assessment of candidate genes for potential use in the treatment of dyslipoproteinemic patients. To date, transgenes for human apo(a), apoA-I, apoB, apoE2, apoE3, HL, and lecithin:cholesterol acyltransferase (LCAT), as well as for rabbit apolipoprotein B mRNA-editing enzyme catalytic poly-peptide 1 (APOBEC-1), have been expressed in NZW rabbits, whereas only those for human apoA-I and LCAT have been introduced into the WHHL background. All of these transgenes have been shown to have significant effects on plasma lipoprotein concentrations. In both NZW and WHHL rabbits, human apoA-I expression was associated with a significant reduction in the extent of aortic atherosclerosis, which was similarly the case for LCAT in rabbits having at least one functional LDL receptor allele. Conversely, expression of apoE2 in NZW rabbits caused increased susceptibility to atherosclerosis. These studies provide new insights into the mechanisms responsible for the development of atherosclerosis, emphasizing the strength of the rabbit model in cardiovascular disease research.  相似文献   

13.
Summary This paper reports a study of the chemistry of valinomycin, enniatins and related membrane-active depsipeptides that increase alkali metal ion permeability of model and biological membranes. The antimicrobial activity of these compounds and their effect on membranes has been correlated with their cation-complexing ability. The complexing reaction has been studied by spectropolarimetric and conductimetric methods. Nuclear magnetic resonance, optical rotatory dispersion, and infrared spectrophotometric studies have revealed the coexistence of conformers of the cyclodepsipeptides in solution and have led to elucidation of the spatial structure of valinomycin, enniatin B and their K+ complexes. The effect of the conformational properties of the cyclodepsipeptides on their complexation efficiency and selectivity, surface-active properties and behavior towards phospholipid monolayers, bimolecular phospholipid membranes and a number of biological membrane systems has been ascertained. The studies have clearly shown the feasibility of using cyclodepsipeptides with predetermined structural and conformational parameters as chemical tools for membrane studies. it is suggested that the principle of conformation-dependent cation binding through iondipole interactions may possibly lie at the basis of the mode of action of systems governing the natural ion permeability in biological membranes.For preliminary communication,see Refs. [9, 19, 20, 27, 29].  相似文献   

14.
15.
16.
Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell‐surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short‐term receptor activation and signal initiation but decrease long‐term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand–receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
18.
19.
20.
The natural physiological ligands for selectins are oligosaccharides found in glycoprotein or glycolipid molecules in cell membranes. In order to study the role of sugar residues in the in vivo lectin anti-inflammatory effect, we tested three leguminous lectins with different carbohydrate binding affinities in the peritonitis and paw oedema models induced by carrageenin in rats. L. sericeus lectin was more anti-inflammatory than D. virgata lectin, the effects being reversed by their specific binding sugars (N-acetylglucosamine and alpha-methylmannoside, respectively). However, V. macrocarpa, a galactose-specific lectin, was not anti-inflammatory. The proposed anti-inflammatory activity of lectins could be due to a blockage of neutrophil-selectin carbohydrate ligands. Thus, according to the present data, we suggest an important role for N-acetylglucosamine residue as the major ligand for selectins on rat neutrophil membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号