首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the free amino acid pool in the chestnut fruit (Castanea sativa) shows that it is high in γ-aminobutyric acid. A metabolic connection between arginine and γ-aminobutyric acid is evident. Three enzymatic activities are involved: L-arginine ureohydrolase, L-ornithine 2-oxo-acid aminotransferase and L-glutamate carboxylyase.  相似文献   

2.
Arginine is the predominant free amino acid in the cotyledons of developing seeds of Pisum sativum L. cv Marzia. Breakdown of arginine was measured by injecting l-[guanido-14C]arginine into detached cotyledons. Cotyledons of developing seeds showed a low rate of 14CO2 evolution whereas a much higher rate of 14CO2 evolution was measured from cotyledons of seeds 4 days after the onset of germination. The activities of the catabolic enzymes arginase, urease, and ornithine aminotransferase were measured throughout development and germination. Arginase and ornithine aminotransferase were present at an early stage of development. Urease activity appeared later as the seeds started to desiccate. During germination, all three enzymes were present. The different course of activity of these enzymes indicates that they are controlled separately.  相似文献   

3.
Ungerminated pumpkin (Cucurbita moschata Poir.) cotyledons contained 30 % of their dry weight as lipid and 26 % as protein, of which 93 % was globulin. There was a rapid degradation of these reserves 4 to 8 days after planting when the cotyledons had their maximum metabolic activity. About half of the mole percent of amino acids found in the globulin reserve was in arginine, glutamate, aspartate, and their amides. The cotyledons had a large soluble pool of arginine, glutamine, glutamate, and leucine. Most amino acids increased steadily in amount in the cotyledons during germination, except glutamine, ornithine, alanine, serine, glycine, and γ-aminobutyrate and these appeared in large amounts in the translocation stream to the axis tissue. Little arginine or proline was translocated. By 10 days, when translocation had decreased, amino acids accumulated. Ornithine, γ-aminobutyrate, and aspartate were rapidly utilized in the hypocotyl, while glutamine, glycine, and alanine accumulated there. Cysteine and methionine levels were low in the reserve, trans-location stream and soluble fractions. γ-Aminobutyrate-U?14C injected into cotyledons or incubated with hypocotyls was utilized in a similar fashion. The label appeared in citric acid cycle acids and in the amino acids closely related to this cycle, but the bulk of the label appeared in CO2. The labeling pattern suggests that γ-aminobutyrate was utilized via succinate, and thus entered the citric acid cycle. A close relationship between arginine, ornithine, glutamate, and γ-aminobutyrate exists in the cotyledon with all but arginine being translocated rapidly to the axis tissue where these amino acids are rapidly metabolized.  相似文献   

4.
1. The activities of ornithine decarboxylase, S-adenosylmethionine decarboxylase and ornithine-2-oxoglutarate aminotransferase were studied during the first 24 h of conidial germination in Aspergillus nidulans. 2. Increases (over 100-fold) in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase occurred during the emergence of the germ-tube and before the doubling of DNA and this was followed by a sharp fall in the activities of both enzymes by 16h. 3. The increase in ornithine decarboxylase could be largely suppressed if 0.6 mM-putrescine was added to the growth medium. 4. Low concentrations of cycloheximide, which delayed germination by 2h, caused a corresponding delay in the changes in ornithine decarboxylase activity. 5. Ornithine-2-oxoglutarate aminotransferase activity increased steadily during the first 24h of germination. 6. Ornithine or arginine in the growth medium induced higher activity of ornithine-2-oxoglutarate aminotransferase, but did not affect ornithine decarboxylase activity. 7. The significance of these enzyme changes during germination is discussed.  相似文献   

5.
6.
The protein metabolism of cotyledons attached to the embryonic axis has been compared with that in cotyledons removed from the axis at the initiation of a 6-day imbibition. Total protein declined in the attached but not in the detached cotyledons. Concurrent with the decline in protein level in the intact cotyledons there was an increased capacity to incorporate exogenously supplied leucine into protein. In contrast, detached cotyledons showed a restricted capacity for protein synthesis. It was demonstrated that ribosomal preparations from cotyledons of intact seedlings contained an increasing proportion of polyribosomes as germination progressed and such ribosomes were active in in vitro amino acid incorporation. Ribosomal preparations from detached cotyledons contained few polyribosomes and had a restricted capacity to incorporate amino acids in vitro. The in vitro incorporation of phenylalanine was stimulated by polyuridylic acid with the stimulation being greatest in ribosomal preparations from detached cotyledons. The results suggest that an axis component may regulate the availability of messenger RNA in the cotyledons during germination.  相似文献   

7.
8.
K. Yamamoto  A. Niwa 《Amino acids》1996,10(3):263-271
Summary A subline growing in medium without arginine and ornithine was established from a rat Reuber hepatoma cell line (R-Y121B·cho). The subline designated R-Y117B·cho was able to grow in glutamine, arginine and ornithine-free, glutamate-supplemented medium. Arginine synthesis from glutamate requires four urea cycle enzymes and another two enzymes, glutamate semialdehyde dehydrogenase and ornithine aminotransferase. Since R-Y121B·cho cells have all the urea cycle enzymes, two other enzyme activities were determined. The activities of ornithine aminotransferase and glutamate semialdehyde dehydrogenase were similar in R-Y117B·cho and its parental R-Y121B·cho cells, but R-Y117B·cho cells had higher conversion of glutamate to arginine than parental cells.  相似文献   

9.
The enzymic basis for the flow of nitrogen from arginine to asparagine during the first 3 days of germination has been measured in extracts from cotton (Gossypium hirsutum) cotyledons. Evidence that asparagine synthetase regulates asparagine accumulation in germination (for transport to the axis) is presented. Further, evidence that the bulk of the nitrogen passed from one generation to the next in dicots is through an asparagine cycle involving the following sequence asparagine → arginine → storage protein → arginine → asparagine is discussed.  相似文献   

10.
Mature chestnut seeds, with one of the highest moisture contents described to date, accumulate certain defensive proteins at unusually elevated levels. In this work a major 23-kDa thaumatin-like protein, termed CsTL1, has been purified from mature chestnut ( Castanea sativa ) cotyledons. Amino acid sequencing and characterization of its full-length cDNA indicate that CsTL1 is synthesized as a preprotein with a signal peptide 22 amino acids in length. The mature protein contains 16 conserved cysteine residues presumably involved in disulfide bonding and has a high isoelectric point (ca. 9). Unlike most basic pathogenesis-related (PR) proteins, mature CsTL1 is localized to the extracellular matrix, as revealed by immunoelectron microscopy studies of cotyledonary cells. The isolated protein has in vitro antifungal activity against Trichoderma viride and Fusarium oxysporum and shows strong synergistic effects with CsCh1, the most abundant chestnut cotyledon endochitinase. Moreover, both CsTL1 and CsCh1 appear to be regulated in the same manner during seed development and germination. These observations, along with the recent finding of endoglucanase activity for some TL proteins, support the notion that CsTL1 and CsCh1 are part of a complex seed defensive system against microbial growth. Another possibility is that these, and probably other seed PR proteins, have antifreeze activity. Both functions would be particularly relevant for chestnut seeds given their remarkable moisture content at maturity.  相似文献   

11.
In chick-pea ( Cicer arietinum L.) seed germinated in the presence of 14C-lysine, the latter is taken up and partly metabolised to cadaverine and TCA-precipitable molecules. Labelled cadaverine is detectable in seedlings only after 3 days, on a labelled lysine-containing medium, as confirmed also by the presence of lysine decarboxylase (LDC) activity, measured in the embryo axis and cotyledons of the seed and in the epicotyl, cotyledons, hypocotyl and roots of the seedling on the basis of 14CO2 evolution from the labelled precursor. Putrescine biosynthesis occurred only via arginine decarboxylase (ADC) activities in soaked seeds and via both ADC and ornithine decarboxylase (ODC) activities in seedlings. Both putrescine and cadaverine were present in soaked seed, and accumulated in very large amounts in the different portions of both 3- and 8-day-old seedlings, while spermidine and spermine titers were maintained at similar levels with respect to the seed. Diamine oxidase activity, measured by evaluating oxygen consumption in the presence of putrescine, was absent in ungerminated seed and appeared in 3- and 8-day-old seedlings. In order to clarify the metabolic relationships between cadaverine and the more common polyamines, gradients of biosynthesis, accumulation and degradation of putrescine and cadaverine along the seedling axis were compared, indicating that the two diamines behave similarly during seed germination and seedling development. Their conspicuous accumulation (up to 6 m M for putrescine) seems to be regulated mainly via oxidation rather than biosynthesis.  相似文献   

12.
After seed germination, hydrolysis of storage proteins provides a nitrogen source for the developing seedling. In conifers the majority of these reserves are located in the living haploid megagametophyte tissue. In the developing loblolly pine (Pinus taeda L.) seedling an influx of free amino acids from the megagametophyte accompanies germination and early seedling growth. The major component of this amino acid pool is arginine, which is transported rapidly and efficiently to the seedling without prior conversion. This arginine accounts for nearly half of the total nitrogen entering the cotyledons and is likely a defining factor in early seedling nitrogen metabolism. In the seedling, the enzyme arginase is responsible for liberating nitrogen, in the form of ornithine and urea, from free arginine supplied by the megagametophyte. In this report we investigate how the seedling uses arginase to cope with the large arginine influx. As part of this work we have cloned an arginase cDNA from a loblolly pine expression library. Analysis of enzyme activity data, accumulation of arginase protein and mRNA abundance indicates that increased arginase activity after seed germination is due to de novo synthesis of the enzyme. Our results suggest that arginase is primarily regulated at the RNA level during loblolly pine seed germination and post-germinative growth.  相似文献   

13.
In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.

No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.

In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  相似文献   

14.
The composition of the free amino acid pool in embryonic cotton (Gossypium hirsutum) cotyledons is quite distinct from that of endosperm, and that of germinated, greened cotyledons is quite distinct from that of leaves. During germination (including the precocious germination of immature seeds), the pool expands considerably showing a pronounced accumulation of asparagine. The high level of asparagine found in seedling roots and in the cotyledon vascular exudate indicates that this is the major transported amino acid in germination. There is no pool expansion in the presence of abscisic acid. In the presence of actinomycin D, the pool expands, but an enormous accumulation of glutamine takes place. The composition of the pool at any stage is not related to the composition of the isoacceptor transfer RNA pool, nor to the composition of the storage protein. Anaerobiosis leads to an accumulation of aspartate, alanine, and glycine at the expense of asparagine; however, desiccation does not result in an accumulation of proline. Conspicuously high levels of arginine are maintained through embryogenesis and germination. The levels of individual amino acids are presented as nanomol per cotyledon pair and as per cent of total pool.  相似文献   

15.
In excised pro1-1 mutant and corresponding normal type roots of Zea mays L. the uptake and interconversion of [14C]proline, [14C]glutamic acid, [14C]glutamine, and [14C]ornithine and their utilization for protein synthesis was measured with the intention of finding an explanation for the proline requirement of the mutant. Uptake of these four amino acids, with the exception of proline, was the same in mutant and normal roots, but utilization differed. Higher than normal utilization rates for proline and glutamic acid were noted in mutant roots leading to increased CO2 production, free amino acid interconversion, and protein synthesis. Proline was synthesized from either glutamic acid (or glutamine) or ornithine in both mutant and normal roots; it did not accumulate but rather was used for protein synthesis. Ornithine was not a good precursor for proline in either system, but was preferentially converted to arginine and glutamine, particularly in mutant roots. The pro1-1 mutant was thus not deficient in its ability to make proline. Based on these findings, and on the fact that ornithine, arginine, glutamic acid and aspartic acid are elevated as free amino acids in mutant roots, it is suggested that in the pro1-1 mutant proline catabolism prevails over proline synthesis.  相似文献   

16.
Changes in total nitrogen, soluble amino nitrogen, lipid and phytate contents, and in the activities of proteinase (pH 7.0), isocitrate lyase and phytase were followed in the endosperm, cotyledons, and axis during germination of fenugreek seeds and subsequent growth of the seedlings. The endosperm is comprised largely of cell-wall galactomannans: the majority of the seed total nitrogen, lipid and phytate (5%, 8%, 0.44% of seed dry weight respectively) is localised within the cotyledons as stored reserves. Germination is completed after 10–14 h from the start of imbibition, but the major reserves are not mobilised during the first 24 h. Then the total nitrogen content of the cotyledons starts to decrease and that of the axis increases; there is a concomitant accumulation of soluble amino nitrogen in both cotyledons and axis. An increase in proteinase activity in the cotyledons correlates well with the depletion of total nitrogen therein. Depletion of lipid and phytate reserves in the different seed tissues constitutes a late event, occurring after 50 h from the start of imbibition, and is coincident with the final disintegration of the endosperm tissue. The depletion of phytate and stored lipids is accompanied by an increase in phytase and isocitrate lyase activity. It appears that the products of lipid hydrolysis are converted by gluconeogenesis to serve as the major source of sugars for the growing axis after the endosperm galactomannan has been completely mobilised.  相似文献   

17.
Are Polyamines Transported in Etiolated Peas?   总被引:1,自引:0,他引:1       下载免费PDF全文
To investigate the possible transport of polyamines and their precursor amino acids, 14C-labeled putrescine, spermidine, arginine, or lysine were injected into cotyledons of 4-day etiolated pea (Pisum sativum L. cv Alaska) seedlings. After 4 hours the shoot, root, and cotyledons were homogenized and the extracted, dansylated polyamines separated by thin-layer chromatography. Little radioactivity was transported from the cotyledons when [14C]putrescine or [14C]spermidine were injected and of the radioactivity in the axis, none could be recovered as polyamines. Injection of [14C]arginine or [14C]lysine, on the other hand, led to a significant transport of radioactivity into the axis, of which a large fraction was present in the form of the diamines, putrescine or cadaverine, respectively. These results indicate that polyamines in the growing regions of etiolated pea seedlings probably arise from transport and conversion of amino acid precursors.  相似文献   

18.
During maturation the ornithine carbamyltransferase activity from cotyledons of Vicia faba sharply decreased. It declined further during subsequent germination. On the other hand, arginase activity was low in mature, air-dry seeds but increased considerably during germination. After centrifugation at 40 000 g, more than 90% of the ornithine carbamyltransferase activity remained in the supernatant. The fractions containing tightly coupled mitochondria, showed hardly any omithine carbamyltransferase activity.  相似文献   

19.
The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future.  相似文献   

20.
Across Britain and continental Europe there are many ancient Castanea sativa trees of great significance for natural and cultural heritage, yet scant assessment has been made of them for dendrochronological information. This paper describes the dendrochronological analysis of 28 Castanea sativa trees (veteran historic trees, forest trees and coppice stems) sampled from 15 sites in southern Britain: 56 growth-ring sequences were collected for analysis, by boring living trees and by cutting transverse sections from dead fallen trees and previously cut stumps. Twenty-three single-tree sequences from 14 sites were cross-matched (t ≥3.5) and then cross-dated with 17 oak Quercus reference chronologies from England and northern France: a Castanea sativa master chronology spanning AD 1660–2014 has been created. The results demonstrate the viability of dendrochronological analysis of Castanea sativa wood; and confirm that Castanea sativa can be cross-dated with oak Quercus reference chronologies, inter-regionally and inter-nationally. The findings provide the potential means for dating Castanea sativa timbers sampled from palaeoenvironmental and historical contexts. The extraction of sawn sections from long-dead (up to 60 years in this study) trees and stumps is proven to be a reliable method for dating veteran trees in cultural landscapes and ancient woodlands; and for revealing the growth history of historic/iconic trees. The germination dates calculated for the Castanea sativa trees in this study span the period AD 1640–1943. The inaccuracy of estimating veteran Castanea sativa tree ages from girth measurements is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号