共查询到20条相似文献,搜索用时 0 毫秒
1.
Composition of the synaptic PSD-95 complex 总被引:2,自引:0,他引:2
Dosemeci A Makusky AJ Jankowska-Stephens E Yang X Slotta DJ Markey SP 《Molecular & cellular proteomics : MCP》2007,6(10):1749-1760
Postsynaptic density protein 95 (PSD-95), a specialized scaffold protein with multiple protein interaction domains, forms the backbone of an extensive postsynaptic protein complex that organizes receptors and signal transduction molecules at the synaptic contact zone. Large, detergent-insoluble PSD-95-based postsynaptic complexes can be affinity-purified from conventional PSD fractions using magnetic beads coated with a PSD-95 antibody. In the present study purified PSD-95 complexes were analyzed by LC/MS/MS. A semiquantitative measure of the relative abundances of proteins in the purified PSD-95 complexes and the parent PSD fraction was estimated based on the cumulative ion current intensities of corresponding peptides. The affinity-purified preparation was largely depleted of presynaptic proteins, spectrin, intermediate filaments, and other contaminants prominent in the parent PSD fraction. We identified 525 of the proteins previously reported in parent PSD fractions, but only 288 of these were detected after affinity purification. We discuss 26 proteins that are major components in the PSD-95 complex based upon abundance ranking and affinity co-purification with PSD-95. This subset represents a minimal list of constituent proteins of the PSD-95 complex and includes, in addition to the specialized scaffolds and N-methyl-d-aspartate (NMDA) receptors, an abundance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, small G-protein regulators, cell adhesion molecules, and hypothetical proteins. The identification of two Arf regulators, BRAG1 and BRAG2b, as co-purifying components of the complex implies pivotal functions in spine plasticity such as the reorganization of the actin cytoskeleton and insertion and retrieval of proteins to and from the plasma membrane. Another co-purifying protein (Q8BZM2) with two sterile alpha motif domains may represent a novel structural core element of the PSD. 相似文献
2.
Christine E. Taft Gina G. Turrigiano 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1633)
Maintaining a population of stable synaptic connections is probably of critical importance for the preservation of memories and functional circuitry, but the molecular dynamics that underlie synapse stabilization is poorly understood. Here, we use simultaneous time-lapse imaging of post synaptic density-95 (PSD-95) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) to investigate the dynamics of protein composition at axodendritic (AD) contacts. Our data reveal that this composition is highly dynamic, with both proteins moving into and out of the same synapse independently, so that synapses cycle rapidly between states in which they are enriched for none, one or both proteins. We assessed how PSD-95 and CaMKII interact at stable and transient AD sites and found that both phospho-CaMKII and PSD-95 are present more often at stable than labile contacts. Finally, we found that synaptic contacts are more stable in older neurons, and this process can be mimicked in younger neurons by overexpression of PSD-95. Taken together, these data show that synaptic protein composition is highly variable over a time-scale of hours, and that PSD-95 is probably a key synaptic protein that promotes synapse stability. 相似文献
3.
Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95 总被引:2,自引:0,他引:2
The scaffold protein PSD-95 promotes the maturation and strengthening of excitatory synapses, functions that require proper localization of PSD-95 in the postsynaptic density (PSD). Here we report that phosphorylation of ser-295 enhances the synaptic accumulation of PSD-95 and the ability of PSD-95 to recruit surface AMPA receptors and potentiate excitatory postsynaptic currents. We present evidence that a Rac1-JNK1 signaling pathway mediates ser-295 phosphorylation and regulates synaptic content of PSD-95. Ser-295 phosphorylation is suppressed by chronic elevation, and increased by chronic silencing, of synaptic activity. Rapid dephosphorylation of ser-295 occurs in response to NMDA treatment that causes chemical long-term depression (LTD). Overexpression of a phosphomimicking mutant (S295D) of PSD-95 inhibited NMDA-induced AMPA receptor internalization and blocked the induction of LTD. The data suggest that synaptic strength can be regulated by phosphorylation-dephosphorylation of ser-295 of PSD-95 and that synaptic depression requires the dephosphorylation of ser-295. 相似文献
4.
PSD-95, a principal scaffolding component of the postsynaptic density, is targeted to synapses by palmitoylation, where it couples NMDA receptor stimulation to production of nitric oxide (NO) by neuronal nitric oxide synthase (nNOS). Here, we show that PSD-95 is physiologically S-nitrosylated. We identify cysteines 3 and 5, which are palmitoylated, as sites of nitrosylation, suggesting a competition between these two modifications. In support of this hypothesis, physiologically produced NO inhibits PSD-95 palmitoylation in granule cells of the cerebellum, decreasing the number of PSD-95 clusters at synaptic sites. Further, decreased palmitoylation, as seen in heterologous cells treated with 2-bromopalmitate or in ZDHHC8 knockout mice deficient in a PSD-95 palmitoyltransferase, results in increased PSD-95 nitrosylation. These data support a model in which NMDA-mediated production of NO regulates targeting of PSD-95 to synapses via mutually competitive cysteine modifications. Thus, differential modification of cysteines may represent a general paradigm in signal transduction. 相似文献
5.
Molecular dissociation of the role of PSD-95 in regulating synaptic strength and LTD 总被引:1,自引:0,他引:1
The postsynaptic density protein PSD-95 influences synaptic AMPA receptor (AMPAR) content and may play a critical role in LTD. Here we demonstrate that the effects of PSD-95 on AMPAR-mediated synaptic responses and LTD can be dissociated. Our findings suggest that N-terminal-domain-mediated dimerization is important for PSD-95's effect on basal synaptic AMPAR function, whereas the C-terminal SH(3)-GK domains are also necessary for localizing PSD-95 to synapses. We identify PSD-95 point mutants (Q15A, E17R) that maintain PSD-95's influence on basal AMPAR synaptic responses yet block LTD. These point mutants increase the proteolysis of PSD-95 within its N-terminal domain, resulting in a C-terminal fragment that functions as a dominant negative likely by scavenging critical signaling proteins required for LTD. Thus, the C-terminal portion of PSD-95 serves a dual function. It is required to localize PSD-95 at synapses and as a scaffold for signaling proteins that are required for LTD. 相似文献
6.
7.
8.
Xu W 《Current opinion in neurobiology》2011,21(2):306-312
Activity-dependent modification of excitatory synaptic transmission is a fundamental mechanism for developmental plasticity of the neural circuits and experience-dependent plasticity. Synaptic glutamatergic receptors including AMPA receptors and NMDA receptors (AMPARs and NMDARs) are embedded in the postsynaptic density, a highly organized protein network. Overwhelming data have shown that PSD-95-like membrane associated guanylate kinases (PSD-MAGUKs), a major family of scaffold proteins at glutamatergic synapses, regulate basal synaptic AMPAR function and trafficking. It is now clear that PSD-MAGUKs have multifaceted functions in regulating both basal synaptic transmission and synaptic plasticity. Here we discuss recent advancements in understanding the roles of PSD-95 and other family members of PSD-MAGUKs in synaptic plasticity, both as an anchoring protein for synaptic AMPARs and as a signaling scaffold for mediating the interaction of the signaling complex and NMDARs. 相似文献
9.
Delint-Ramírez I Salcedo-Tello P Bermudez-Rattoni F 《Journal of neurochemistry》2008,106(4):1658-1668
NMDA receptors (NMDARs) activation in the hippocampus and insular cortex is necessary for spatial memory formation. Recent studies suggest that localization of NMDARs to lipid rafts enhance their signalization, since the kinases that phosphorylate its subunits are present in larger proportion in lipid raft membrane microdomains. We sought to determine the possibility that NMDAR translocation to synaptic lipid rafts occurs during plasticity processes such as memory formation. Our results show that water maze training induces a rapid recruitment of NMDAR subunits (NR1, NR2A, NR2B) and PSD-95 to synaptic lipid rafts and decrease in the post-synaptic density plus an increase of NR2B phosphorylation at tyrosine 1472 in the rat insular cortex. In the hippocampus, spatial training induces selective translocation of NR1 and NR2A subunits to lipid rafts. These results suggest that NMDARs translocate from the soluble fraction of post-synaptic membrane (non-raft PSD) to synaptic lipid raft during spatial memory formation. The recruitment of NMDA receptors and other proteins to lipid rafts could be an important mechanism for increasing the efficiency of synaptic transmission during synaptic plasticity process. 相似文献
10.
Palmitoylation is a lipid modification that plays a critical role in protein trafficking and function throughout the nervous system. Palmitoylation of PSD-95 is essential for its regulation of AMPA receptors and synaptic plasticity. The enzymes that mediate palmitoyl acyl transfer to PSD-95 have not yet been identified; however, proteins containing a DHHC cysteine-rich domain mediate palmitoyl acyl transferase activity in yeast. Here, we isolated 23 mammalian DHHC proteins and found that a subset specifically palmitoylated PSD-95 in vitro and in vivo. These PSD-95 palmitoyl transferases (P-PATs) showed substrate specificity, as they did not all enhance palmitoylation of Lck, SNAP-25b, Galpha(s), or H-Ras in cultured cells. Inhibition of P-PAT activity in neurons reduced palmitoylation and synaptic clustering of PSD-95 and diminished AMPA receptor-mediated neurotransmission. This study suggests that P-PATs regulate synaptic function through PSD-95 palmitoylation. 相似文献
11.
Synapse-associated protein 97 (SAP97) and postsynaptic density 95 (PSD-95) are closely related membrane-associated guanylate kinase homologs (Maguks) implicated in the synaptic targeting and anchoring of alpha-amino-5-methyl-3-hydroxy-4-isoxazolepropionic acid (AMPA)-selective glutamate receptors. Prompted by accumulating evidence for an oligomeric nature of Maguks, we examined the potential of SAP97 and PSD-95 to form heteromeric complexes. SAP97 and PSD-95 coimmunoprecipitated from rat brain detergent extracts and subsequent glutathione S-transferase pull-down and immunoprecipitation experiments showed that the interaction is mediated by binding of the N-terminal segment of SAP97 (SAP97(NTD)) to the Src homology 3 domain of PSD-95 (PSD-95(SH3)). In cultured hippocampal neurons, expression of green fluorescent protein-tagged PSD-95 triggered accumulation of SAP97 in synaptic spines, which was totally inhibited by coexpression of PSD-95(SH3). Furthermore, overexpression of green fluorescent protein-PSD-95 induced dendritic clustering of GluR-A subunit-containing AMPA receptors, which was strongly inhibited by cotransfection with SAP97(NTD) and PSD-95(SH3) constructs. Our results demonstrated a direct interaction between SAP97 and PSD-95 and suggested that this association may play a functional role in the trafficking and clustering of AMPA receptors. 相似文献
12.
Alternative N-terminal domains of PSD-95 and SAP97 govern activity-dependent regulation of synaptic AMPA receptor function 总被引:7,自引:0,他引:7
PSD-95 and SAP97 are scaffolding proteins that have been implicated in regulating AMPA receptor incorporation and function at synapses. Gain- and loss-of-function approaches, however, have generated conflicting results. To minimize adaptations during development and potential dominant-negative effects of overexpression, we have combined silencing of endogenous PSD-95 in mature neurons with heterologous expression of specific SAP97 or PSD-95 isoforms. We find that both PSD-95 and SAP97 contain alternative N termini expressing either double cysteines that normally are palmitoylated (alpha-isoforms) or an L27 domain (beta-isoforms). Whereas alpha-isoforms of PSD-95 and SAP97 influence AMPA receptor-mediated synaptic strength independent of activity, the effects of beta-isoforms are regulated by activity in a CaMKII-dependent manner. Importantly, the synaptic effects of the beta-isoforms are masked by the endogenous alpha-isoform of PSD-95. These results demonstrate that the different N termini of the predominant endogenous forms of PSD-95 (alpha-isoform) and SAP97 (beta-isoform) govern their role in regulating synaptic function. 相似文献
13.
The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes. 相似文献
14.
Jun Zhang Steven M. Lewis Brian Kuhlman Andrew L. Lee 《Structure (London, England : 1993)》2013,21(3):402-413
Highlights? Using NMR and SAXS, we depict the dynamic structure of the MAGUK core PSD-95 ? PDZ3 of the MAGUK core interacts with SH3 via its canonical peptide binding groove ? Binding of PDZ peptides, such as CRIPT, disrupts the interaction between PDZ3 and SH3 ? Rosetta modeling shows that linker residues L411/M412 dock into the PDZ3 binding site 相似文献
15.
《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1998,321(2-3):131-133
The application of fluctuation analysis to studies of synaptic function in the neocortex is discussed. Analysis of failures of transmission has been valuable in indicating whether a presynaptic or a postsynaptic site is responsible for a change in synaptic efficacy. When combined with detailed ultrastructural verification of all synapses involved in an individual cell to cell connection, a reasonable estimate of quantal size and release probability under conditions of low frequency activity can be obtained. However, both the number of available release sites in functional terms and the probability that an action potential (AP) will release transmitter from any given site can vary from AP to AP at higher frequencies. A variety of presynaptic mechanisms that modulate release are now apparent. For example, one mechanism dominates release patterns at one class of connection which is insensitive to absolute firing frequency, but responsive to changes in frequency. At another class of connection, a different mechanism dominates, resulting in high sensitivity to frequency. 相似文献
16.
We compared the distribution of three scaffolding proteins, all belonging to a family of membrane-associated guanylate kinases, thought to have key roles in the organization of the postsynaptic density (PSD). Isolated PSDs readily adhered to treated glass coverslips where they were labeled with immunogold and rotary shadowed for analysis by EM. The distribution of proteins within individual PSDs were measured by counting and mapping individual immunogold particles. PSD-95, as previously described, is distributed evenly throughout the PSD. We find here that PSD-93 has a nearly identical distribution suggesting that PSD-95 and PSD-93 could perform similar roles. SAP97, in contrast, is concentrated near edges of cleft sides of the PSDs, and in small clumps on their cytoplasmic sides. The homogenous distribution of PSD-95 and PSD-93 throughout the PSD is consistent with their being part of a backbone that stabilizes their various binding partners within the PSD. The distribution of SAP97 confirms that this protein is actually an integral component of the PSD, and suggests that it may have a role in inserting or stabilizing its main binding partner, Glu-R1, at the edge of the PSD. 相似文献
17.
The PSD-95 family of membrane- associated guanylate kinases (MAGUKs) are thought to act as molecular scaffolds that regulate the assembly and function of the multiprotein signaling complex found at the postsynaptic density of excitatory synapses. Genetic analysis of PSD-95 family members in the mammalian nervous system has so far been difficult, but the zebrafish is emerging as an ideal vertebrate system for studying the role of particular genes in the developing and mature nervous system. Here we describe the cloning of the zebrafish orthologs of PSD-95, PSD-93, and two isoforms of SAP-97. Using in situ hybridization analysis we show that these zebrafish MAGUKs have overlapping but distinct patterns of expression in the developing nervous system and craniofacial skeleton. Using a pan-MAGUK antibody we show that MAGUK proteins localize to neurons within the developing hindbrain, cerebellum, visual and olfactory systems, and to skin epithelial cells. In the olfactory and visual systems MAGUK proteins are expressed strongly in synaptic regions, and the onset of expression in these areas coincides with periods of synapse formation. These data are consistent with the idea that PSD-95 family members are involved in synapse assembly and function, and provide a platform for future functional studies in vivo in a highly tractable model organism. 相似文献
18.
Vinade L Chang M Schlief ML Petersen JD Reese TS Tao-Cheng JH Dosemeci A 《Journal of neurochemistry》2003,87(5):1255-1261
A widely used method for the preparation of postsynaptic density (PSD) fractions consists of treatment of synaptosomal membranes with Triton X-100 and further purification by density gradient centrifugation. In the present study, the purity of this preparation was assessed by electron microscopic analysis. Thin-section and rotary shadow immuno-electron microscopy of the Triton X-100-derived PSD fraction shows many PSD-95-positive structures that resemble in situ PSDs in shape and size. However, the fraction also includes contaminants such as CaMKII clusters, spectrin filaments and neurofilaments. We used magnetic beads coated with an antibody against PSD-95 to further purify PSD-95-containing complexes from the Triton-derived PSD fraction. Biochemical analysis of the affinity-purified material shows a substantial reduction in the astrocytic marker glial fibrillary acidic protein and electron microscopic analysis shows mostly individual PSDs attached to magnetic beads. This preparation was used to assess the association of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-type glutamate receptors with the PSD-95-containing complex. AMPA receptors are demonstrated by immunoblotting to be present in the complex, although they do not co-purify exclusively with PSD-95, suggesting the existence of two pools of receptors, one associated with the PSD-95 scaffold and the other not. Of the AMPA receptor-anchoring proteins tested, SAP-97 is present in the affinity-purified preparation whereas GRIP is found only in trace amounts. These results imply that a subpopulation of AMPA receptors is anchored to the PSD-95-containing scaffold through interaction of GluR1 with SAP-97. 相似文献
19.
Levinson JN Chéry N Huang K Wong TP Gerrow K Kang R Prange O Wang YT El-Husseini A 《The Journal of biological chemistry》2005,280(17):17312-17319
The balance between excitatory and inhibitory synapses is a tightly regulated process that requires differential recruitment of proteins that dictate the specificity of newly formed contacts. However, factors that control this process remain unidentified. Here we show that members of the neuroligin (NLG) family, including NLG1, NLG2, and NLG3, drive the formation of both excitatory and inhibitory presynaptic contacts. The enrichment of endogenous NLG1 at excitatory contacts and NLG2 at inhibitory synapses supports an important in vivo role for these proteins in the development of both types of contacts. Immunocytochemical and electrophysiological analysis showed that the effects on excitatory and inhibitory synapses can be blocked by treatment with a fusion protein containing the extracellular domain of neurexin-1beta. We also found that overexpression of PSD-95, a postsynaptic binding partner of NLGs, resulted in a shift in the distribution of NLG2 from inhibitory to excitatory synapses. These findings reveal a critical role for NLGs and their synaptic partners in controlling the number of inhibitory and excitatory synapses. Furthermore, relative levels of PSD-95 alter the ratio of excitatory to inhibitory synaptic contacts by sequestering members of the NLG family to excitatory synapses. 相似文献
20.
The signaling molecule nitric oxide (NO) exerts most of its effects by the stimulation of the NO-sensitive guanylyl cyclase. Two isoforms of the NO receptor molecule exist: the ubiquitously occurring alpha(1)beta(1) and the alpha(2)beta(1) with a more limited distribution. As the isoforms are functionally indistinguishable, the physiological relevance of these isoforms remained unclear. The neuronal NO synthase has been reported to be associated with PSD-95. Here, we demonstrate the interaction of the so far unnoticed alpha(2)beta(1) isoform with PSD-95 in rat brain as shown by coprecipitation. The interaction is mediated by the alpha(2) C-terminal peptide and the third PDZ domain of PSD-95. As a consequence of the PSD-95 interaction, the so far considered "soluble" alpha(2)beta(1) isoform is recruited to the membrane fraction of synaptosomes, whereas the alpha(1)beta(1) isoform is found in the cytosol. Our results establish the alpha(1)beta(1) as the cytosolic and the alpha(2)beta(1) as the membrane-associated NO-sensitive guanylyl cyclase and suggest the alpha(2)beta(1) isoform as the sensor for the NO formed by the PSD-95-associated neuronal NO synthase. 相似文献