首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cao L  Ding X  Yu W  Yang X  Shen S  Yu L 《FEBS letters》2007,581(28):5526-5532
Septins, a conserved family of cytoskeletal GTP-binding proteins, were presented in diverse eukaryotes. Here, a comprehensive phylogenetic and evolutionary analysis for septin proteins in metazoan was carried out. First, we demonstrated that all septin proteins in metazoan could be clustered into four subgroups, and the representative homologue of every subgroup was presented in the non-vertebrate chordate Ciona intestinalis, indicating that the emergence of the four septin subgroups should have occurred prior to divergence of vertebrates and invertebrates, and the expansion of the septin gene number in vertebrates was mainly by the duplication of pre-existing genes rather than by the appearance of new septin subgroup. Second, the direct orthologues of most human septins existed in zebrafish, which suggested that human septin gene repertoire was mainly formed by as far as before the split between fishes and land vertebrates. Third, we found that the evolutionary rate within septin family in mammalian lineage varies significantly, human SEPT1, SEPT 10, SEPT 12, and SEPT 14 displayed a relative elevated evolutionary rate compared with other septin members. Our data will provide new insights for the further function study of this protein family.  相似文献   

2.
The septin is a conserved GTP binding protein family which is involved in multiple cellular processes. Many evidences have indicated that some septins were abnormally expressed in certain kinds of tumors and the altered expressions were related to the process of carcinogenesis. To better understand the relationship between septins and cancer, we compared the expression of 14 human septin family members in 35 kinds of tumor types with their normal counterparts using the publicly available ONCOMINE microarray database. We found altered expression of most septin members in many kinds of tumors. Significantly, SEPT2, SEPT8, SEPT9, SEPT11 were consistently up-regulated, and SEPT4, SEPT10 were down-regulated in most cancer types investigated. Furthermore, the abnormal expressions were also in accordance with the tumor malignances or prognosis of corresponding cancer patients. These findings have contributed to the view that septins may belong to a kind of cancer critical genes. More septins might act as potential oncogenes or tumor suppressor genes in cancer development.  相似文献   

3.
Septins are conserved GTP-binding proteins that assemble into lateral diffusion barriers and molecular scaffolds. Vertebrate genomes contain 9-17 septin genes that encode both ubiquitous and tissue-specific septins. Expressed septins may assemble in various combinations through both heterotypic and homotypic G-domain interactions. However, little is known regarding assembly states of mammalian septins and mechanisms directing ordered assembly of individual septins into heteromeric units, which is the focus of this study. Our analysis of the septin system in cells lacking or overexpressing selected septins reveals interdependencies coinciding with previously described homology subgroups. Hydrodynamic and single-particle data show that individual septins exist solely in the context of stable six- to eight-subunit core heteromers, all of which contain SEPT2 and SEPT6 subgroup members and SEPT7, while heteromers comprising more than six subunits also contain SEPT9. The combined data suggest a generic model for how the temporal order of septin assembly is homology subgroup-directed, which in turn determines the subunit arrangement of native heteromers. Because mammalian cells normally express multiple members and/or isoforms of some septin subgroups, our data also suggest that only a minor fraction of native heteromers are arranged as perfect palindromes.  相似文献   

4.
Septins are a family of GTP-binding proteins implicated in mammalian cell division. Most studies examining the role of septins in this process have treated the family as a whole, thus neglecting the possibility that individual members may have diverse functions. To address this, we individually depleted each septin family member expressed in HeLa cells by siRNA and assayed for defects in cell division by immunofluorescence and time-lapse microscopy. Depletion of SEPT2, SEPT7, and SEPT11 causes defects in the early stages of cytokinesis, ultimately resulting in binucleation. In sharp contrast, SEPT9 is dispensable for the early stages of cell division, but is critical for the final separation of daughter cells. Rescue experiments indicate that SEPT9 isoforms containing the N-terminal region are sufficient to drive cytokinesis. We demonstrate that SEPT9 mediates the localization of the vesicle-tethering exocyst complex to the midbody, providing mechanistic insight into the role of SEPT9 during abscission.  相似文献   

5.
6.
Mammalian septins nomenclature   总被引:10,自引:0,他引:10       下载免费PDF全文
There are 10 known mammalian septin genes, some of which produce multiple splice variants. The current nomenclature for the genes and gene products is very confusing, with several different names having been given to the same gene product and distinct names given to splice variants of the same gene. Moreover, some names are based on those of yeast or Drosophila septins that are not the closest homologues. Therefore, we suggest that the mammalian septin field adopt a common nomenclature system, based on that adopted by the Mouse Genomic Nomenclature Committee and accepted by the Human Genome Organization Gene Nomenclature Committee. The human and mouse septin genes will be named SEPT1-SEPT10 and Sept1-Sept10, respectively. Splice variants will be designated by an underscore followed by a lowercase "v" and a number, e.g., SEPT4_v1.  相似文献   

7.
Mammalian septins are required for phagosome formation   总被引:1,自引:0,他引:1  
Septins are members of a highly conserved family of filamentous proteins that are required in many organisms for the completion of cytokinesis. In addition, septins have been implicated in a number of important cellular processes and have been suggested to have roles in regulating membrane traffic. Given the proposed role of septins in cell membrane dynamics, we investigated the function of septins during FcgammaR-mediated phagocytosis. We show that several septins are expressed in RAW264.7 and J774 mouse macrophage cell lines and that SEPT2 and SEPT11 are colocalized with submembranous actin-rich structures during the early stages of FcgammaR-mediated phagocytosis. In addition, SEPT2 accumulation is seen in primary human neutrophils and in nonprofessional phagocytes. The time course of septin accumulation mirrors actin accumulation and is inhibited by latrunculin and genistein, but not other inhibitors of phagocytosis. Inhibition of septin function by transient expression of the BD3 domain of BORG3, known to cause septin aggregation, or depletion of SEPT2 or SEPT11 by RNAi, significantly inhibited FcgammaR-mediated phagocytosis of IgG-coated latex beads. Interestingly, this occurred without affecting the accumulation of actin or the actin-associated protein coronin-1. These observations show that, although not necessary for actin recruitment, septins are required for efficient FcgammaR-mediated phagocytosis.  相似文献   

8.
Septin-family proteins assemble into rod-shaped heteromeric complexes that form higher-order arrangements at the cell cortex, where they serve apparently conserved functions as diffusion barriers and molecular scaffolds. There are 13 confirmed septin paralogues in mammals, which may be ubiquitous or tissue specific. Septin hetero-oligomerization appears homology subgroup directed, which in turn determines the subunit arrangement of six- to eight-subunit core heteromers. Here we address functional properties of human SEPT9, which, due to variable mRNA splicing, exists as multiple isoforms that differ between tissues. Myeloid K562 cells express three SEPT9 isoforms, all of which have an equal propensity to hetero-oligomerize with SEPT7-containing hexamers to generate octameric heteromers. However, due to limiting amounts of SEPT9, K562 cells contain both hexameric and octameric heteromers. To generate cell lines with controllable hexamer-to-octamer ratios and that express single SEPT9 isoforms, we developed a gene product replacement strategy. By this means we identified SEPT9 isoform–specific properties that either facilitate septin heteromer polymerization along microtubules or modulate the size range of submembranous septin disks—a prevalent septin structure in nonadhered cells. Our findings show that the SEPT9 expression level directs the hexamer-to-octamer ratio, and that the isoform composition and expression level together determine higher-order arrangements of septins.  相似文献   

9.
Interest in the biology of mammalian septin proteins has undergone a birth in recent years. Originally identified as critical for yeast budding throughout the 1970s, the septin family is now recognized to extend from yeast to humans and is associated with a variety of events ranging from cytokinesis to vesicle trafficking. An emerging theme for septins is their presence at sites where active membrane or cytoplasmic partitioning is occurring. Here, we briefly review the mammalian septin protein family and focus on a prototypic human and mouse septin, termed SEPT5, that is expressed in the brain, heart, and megakaryocytes. Work from neurobiology laboratories has linked SEPT5 to the exocytic complex of neurons, with implications that SEPT5 regulates neurotransmitter release. Striking similarities exist between neurotransmitter release and the platelet-release reaction, which is a critical step in platelet response to vascular injury. Work from our laboratory has characterized the platelet phenotype from mice containing a targeted deletion of SEPT5. Most strikingly, platelets from SEPT5(null) animals aggregate and release granular contents in response to subthreshold levels of agonists. Thus, the characterization of a SEPT5-deficient mouse has linked SEPT5 to the platelet exocytic process and, as such, illustrates it as an important protein for regulating platelet function. Recent data suggest that platelets contain a wide repertoire of different septin proteins and assemble to form macromolecular septin complexes. The mouse platelet provides an experimental framework to define septin function in hemostasis, with implications for neurobiology and beyond.  相似文献   

10.
Septins are filament-forming proteins important for organizing the cortex of animal and fungal cells. In mammals, 13 septin paralogues were recently shown to assemble into core heterohexamer and heterooctamer complexes, which serve as building blocks for apolar filamentous structures that differ among cell types. To determine how tissue-specific septin paralogue expression may shape core heteromer repertoires and thereby modulate properties of septin filaments, we devised protocols to analyze native septin heteromers with distinct numbers of subunits. Our evidence based on genetically manipulated human cells supports and extends recent concepts of homology subgroup–restricted assembly into distinct categories of apolar heterohexamers and heterooctamers. We also identify a category of tetramers that have a subunit composition equivalent to an octameric building block. These atypical tetramers are prevalent in lymphocytes and neural tissues, in which octamers are abundant but hexamers are rare. Our results can be explained by tissue-specific expression of SEPT3 subgroup members: SEPT3, SEPT9, and SEPT12. These serve as cognate subunits in either heterooctamers or atypical tetramers but exhibit different preferences in various tissues. The identified tissue-specific repertoires of septin heteromers provide insights into how higher-order septin structures with differential properties and stabilities may form in diverse animal cell types.  相似文献   

11.
Septins are filamentous guanosine triphosphatase-binding proteins that are required for cytokinesis in a wide range of organisms from yeast to man. Several septins, including SEPT9, have been found to be altered in cancers, but their roles in malignancy and cytokinesis remain unclear. It is known that they assemble into rod-shaped oligomeric complexes that join end-on-end to form filaments, but whether SEPT9 incorporates into these complexes and how it does so are unanswered questions. We used tandem affinity purification of mammalian septin complexes to show that SEPT9 occupies a terminal position in an octameric septin complex. A mutant SEPT9, which cannot self-associate, disrupted septin filament formation and resulted in late abscission defects during cytokinesis but did not affect septin-dependent steps earlier in mitosis. These data suggest that mammalian SEPT9 holds a terminal position in the septin octamers, mediating abscission-specific polymerization during cytokinesis.  相似文献   

12.
13.
The mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias. MLL rearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions and MLL gene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2, SEPT5, SEPT6, SEPT9, and SEPT11) have been identified as MLL fusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of both MLL and its septin fusion partner, originating distinct gene fusion variants. MLL-SEPTIN rearrangements have been repeatedly identified in de novo and therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.  相似文献   

14.
15.
Precise cell division is essential for multicellular development, and defects in this process have been linked to cancer. Septins are a family of proteins that are required for mammalian cell division, but their function and mode of regulation during this process are poorly understood. Here, we demonstrate that cyclin-dependent kinase 1 (Cdk1) phosphorylates septin 9 (SEPT9) upon mitotic entry, and this phosphorylation controls association with the proline isomerase, Pin1. Both SEPT9 and Pin1 are critical for mediating the final separation of daughter cells. Expression of mutant SEPT9 that is defective in Pin1 binding was unable to rescue cytokinesis defects caused by SEPT9 depletion but rather induced dominant-negative defects in cytokinesis. However, unlike SEPT9 depletion, Pin1 was not required for the accumulation of the exocyst complex at the midbody. These results suggest that SEPT9 plays multiple roles in abscission, one of which is regulated by the action of Cdk1 and Pin1.  相似文献   

16.
We undertook this study to evaluate the expression of septin family members SEPT5, SEPT8, and SEPT11 in proliferative retinal membranes. Epiretinal membranes (ERM) were obtained from seven patients with proliferative vitreoretinopathy (PVR) and from four patients and four postmortem eyes with proliferative diabetic retinopathy (PDR). Subretinal membranes (SRM) were obtained from one patient and six postmortem eyes. Membranes were examined by immunohistochemical staining of paraffin sections using polyclonal antibodies against SEPT5, SEPT8, and SEPT11 and an ABC detection system. SEPT8 expression was detected in all ERM and SRM, with an exceptionally strong expression of 100% for ERM of PVR, 63% for PDR membranes, and 57% for SRM. SEPT11 was identified in 91% of all cases, with strong expression of 14%, 25%, and 14% in ERM of PVR, PDR, and SRM, respectively. SEPT5 was seen in 54% of all cases; strong immunostaining was found in only one case of PVR membranes. Our finding suggests a role for members of the septin family in the development of proliferative retinal membranes.  相似文献   

17.
Ding X  Yu W  Liu M  Shen S  Chen F  Cao L  Wan B  Yu L 《Molecules and cells》2008,25(3):385-389
Septins are a family of filament-forming GTP-binding proteins involved in a variety of cellular process such as cytokinesis, exocytosis, and membrane dynamics. Here we report the biochemical and immunocytochemical characterization of a recently identified mammalian septin, SEPT12. SEPT12 binds GTP in vitro, and a mutation (Gly56 to Asn) in the GTP-binding motif abolished binding. Immunocytochemical analysis revealed that wild-type SEPT12 formed filamentous structures when transiently expressed in Hela cells whereas SEPT12G56A generated large aggregates. In addition, wild-type SEPT12 failed to form filaments when coexpressed with SEPT12G56A. We also observed that GTP-binding by SEPT12 is required for interaction with SEPT11 but not with itself.  相似文献   

18.
SEPT4 is a member of the mammalian septin family of GTPases. Mammalian septins are conserved proteins which form heteropolymers in vivo and which are implicated in a variety of cellular functions such as cytokinesis, exocytosis, and vesicle trafficking. However, their structural properties and modes of action are largely unknown. There is a limited, but as yet inconclusive, amount of experimental data suggesting that SEPT4 may accumulate in tau-based filamentous deposits and cytoplasmic inclusions in Alzheimer's and Parkinson's disease, respectively. Here we report an intermediate structure of the GTPase domain of human SEPT4 (SEPT4-G) during unfolding transitions induced by temperature. This partially unfolded intermediate, which is rich in beta-sheet and free of bound nucleotide, was plagued by irreversible aggregation. The aggregates have the ability to bind specific dyes such as Congo red and thioflavin-T, suggesting they are amyloid in nature. Under electron microscopy, fibers of variable diameter extending for several micrometers in length can be visualized. This is the first report of amyloid formation by a septin or domain thereof, and the capacity of SEPT4-G to form such fibrillar aggregates may shed some light on the current discussion concerning the formation of homo- and heteropolymers of septins in vitro.  相似文献   

19.
And then there were many: MADS goes genomic   总被引:3,自引:0,他引:3  
During the past decade, MADS-box genes have become known as key regulators in both reproductive and vegetative plant development. Traditional genetics and functional genomics tools are now available to elucidate the expression and function of this complex gene family on a much larger scale. Moreover, comparative analysis of the MADS-box genes in diverse flowering and non-flowering plants, boosted by bioinformatics, contributes to our understanding of how this important gene family has expanded during the evolution of land plants. Therefore, the recent advances in comparative and functional genomics should enable researchers to identify the full range of MADS-box gene functions, which should help us significantly in developing a better understanding of plant development and evolution.  相似文献   

20.
Septins comprise a conserved family of GTPases important in cytokinesis. These proteins polymerize into filaments from rod-shaped heteromeric septin complexes. Septins interact with one another at two interfaces (NC and G) that alternate within the complex. Here, we show that small mutations at the N terminus greatly enhance the formation of SEPT2 homopolymers. Taking advantage of this mutation to examine polymer formation using SEPT2 alone, we show that both NC and G interfaces are required for filament formation. However, co-expression of wild type SEPT2 with SEPT2 containing mutations at either NC or G interfaces revealed that only the NC mutant suppressed filament formation. NC mutants are able to interact with one another at putative G interfaces, whereas G mutants fail to interact at NC interfaces. In addition, all promiscuous septin pairwise interactions occur at the G interface. These findings suggest that G interface interactions must occur before NC interactions during polymer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号