首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Horizontal flow constructed wetlands are engineered systems capable of eliminating a wide range of pollutants from the aquatic environment. Nevertheless, poor hydrodynamic behavior is commonly found resulting in preferential pathways and variations in both (i) the hydraulic residence time distribution (HRTD) and, consequently, (ii) the wetland's treatment efficiency. The aim of this work was to outline a methodology for wetland design that accounts for the effect of heterogeneous hydraulic properties of the porous substrate on the HRTD and treatment efficiency. Biodegradation of benzene was used to illustrate the influence of hydraulic conductivity heterogeneity on wetland efficiency. Random, spatially correlated hydraulic conductivity fields following a log-normal distribution were generated and then introduced in a subsurface flow numerical model. The results showed that the variance of the distribution and the correlation length in the longitudinal direction are key indicators of the extent of heterogeneity. A reduction of the mean hydraulic residence time was observed as the extent of heterogeneity increased, while the HRTD became broader with increased skewness. At the same time, substrate heterogeneity induced preferential flow paths within the wetland bed resulting in variations of the benzene treatment efficiency. Further to this it was observed that the distribution of biomass within the porous bed became heterogeneous, rising questions on the representativeness of sampling. It was concluded that traditional methods for wetland design based on assumptions such as a homogeneous porous medium and plug flow are not reliable. The alternative design methodology presented here is based on the incorporation of heterogeneity directly during the design phase. The same methodology can also be used to optimize existing systems, where the HRTD has been characterized with tracer experiments.  相似文献   

2.
A series of investigations were conducted to evaluate the feasibility of using constructed wetlands to remove pollutants from seafood processing wastewater. Six emergent plant species; Cyperus involucratus, Canna siamensis, Heliconia spp., Hymenocallis littoralis, Typha augustifolia and Thalia deabata J. Fraser were planted in surface flow wetland. They were fed with seafood wastewater that was 50% diluted with treated seafood wastewater from an aerated lagoon. All macrophytes were found to meet satisfying treatment efficiency (standard criteria for discharged wastewater) at 5 days hydraulic retention time (HRT). While C. involucratus, T. deabata and T. augustifolia met acceptable treatment efficacy at 3 days HRT. Nutrient uptake rate of these species was observed in the range of 1.43-2.30 g Nitrogen/m(2)day and 0.17-0.29 g Phosphorus/m(2)day, respectively at 3 days HRT. The highest treatment performances were found at 5 days HRT. Average removal efficiencies were 91-99% for BOD(5), 52-90% for SS, 72-92% for TN and 72-77% for TP. Plant growth and nitrogen assimilation were experienced to be most satisfactory for C. involucratus, T. deabata and T. augustifolia. Lower HRTs affected contaminant removal efficiency for all species. C. involucratus, T. deabata and T. augustifolia can remove all contaminants efficiently even at the lowest hydraulic retention time (1 day).  相似文献   

3.
The first-order removal model is widely used in constructed wetland design. The suitability of this model was tested to predict metal retention in a young constructed wetland receiving agricultural and urban runoff. During two years, water samples for total and dissolved metal analyses were collected every third day at both the inlet and the outlet. The wetland retained metals best during summer and fall whereas during winter the retention of metals was significantly lower. The first-order removal model predicted Fe and Mn retention in the spring and dissolved Zn retention from spring to fall in both years. During those periods, hydraulic retention times (HRTs) greater than 7 days provided maximum retention for Fe, Mn, and dissolved Zn. However, first-order removal models failed to fit summer, fall and winter data for almost every metal under investigation (Fe, Mn, dissolved Cu, dissolved As) suggesting that HRTs (<1–25 days) did not affect metal retention during these seasons. The metal loading to the wetland was low and the input of metals through internal loading may be more significant consequently decreasing the metal retention. Therefore, the first-order removal model is inadequate to predict metal retention on a seasonal basis. Models used to design constructed wetlands under cold climates must consider seasonal changes that affect biological as well as hydrological variables.  相似文献   

4.
A new hydraulic index was derived according to residence time distribution theory. The approach quantifies hydraulic inefficiencies according to the juxtaposition of the hold back parameter relative to the residence time distribution. The index was evaluated for its ability to detect variation, for conformity with qualitative assessments, and for correlation to effluent pollutant fractions in order to assess its suitability as a predictor of treatment.The moment index overcomes many of the weaknesses inherent in existing indices. The index can be computed from a dataset considering just one volume exchange so arbitrary truncation of data due to the finite nature of data collection has no impact on the moment index. The moment index appears to be more sensitive than existing indices in detecting attenuation of a residence time distribution as well. The new index demonstrated excellent correlation to the effluent pollutant fraction predicted by a first-order reduction implying the index could be the good predictor of treatment. In addition to correlation with treatment, the moment index matched qualitative assessment precisely for eight specific cases considered.The moment index could substantially aid in the design and management of treatment wetlands for balancing cost and efficacy by resolving some of the uncertainty associated with residence time. The index could be used to help identify the optimal wetland configuration for maximizing residence time. Not only would it be useful in quantifying the effects of vegetation, bathymetry, and wetland shape on residence time; it could have utility in supplying the bounds for pollutant reduction.  相似文献   

5.
The aim of the study was to determine the reduction of the overall environmental load (in terms of organic and nutrient load) in effluents of a flow‐through trout farm. Effluents of a flow‐through system for rainbow trout (Oncorhynchus mykiss) production passed through constructed wetlands with free water surface. Removal of nutrients was determined in three wetlands of 350 m2 each at hydraulic residence times (HRTs) of 3.5, 5.5 and 11 h. The areal load of total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) varied in terms of HRTs from 12.3–36.8 g m?2 day?1, 21.7–65.2 g m?2 day?1, 0.23–0.70 g m?2 day?1, and 1.46–4.37 g m?2 day?1. Values for reduction of suspended solids, COD, TP, and TN were 67–72%, 30–31%, 41–53% ,and 19–30%, respectively. Significantly lower nutrient concentrations in the effluent among the wetlands were only found for nitrogen parameters: TN and ammonia concentrations were lower in the wetlands with a HRT of 5.5 h (0.89 mg L?1, 0.11 mg L?1) and 11 h (0.81 mg L?1, 0.11 mg L?1) compared with the one with 3.5 h (0.96 mg L?1, 0.16 mg L?1).  相似文献   

6.
Hydraulic characteristics of biological wastewater treatment systems were shown to affect bacterial state distributions and system performance through mathematical simulations. The term "state" is used here to mean the microbial storage product and biomass content of a bacterium. The traditional approach to simulating biological treatment processes assumes "lumped" (average) states, rather than accounting for variable states across bacterial populations. Distributed states were previously suggested as critical to enhanced biological phosphorus removal (EBPR), but the factors that cause distributed states were not evaluated. A primary driver for distributed state development is variable hydraulic experiences of bacteria as they cycle through completely mixed reactors, and so process characteristics that affect hydraulics were hypothesized to affect state distributions. Two design characteristics affecting system hydraulics were evaluated using a new distributed state simulation program (DisSimulator 1.0): total hydraulic residence time (HRT) and numbers of reactors in series. Distributed predictions consistently predicted worse EBPR performance than did the lumped approach. Increasing HRTs (with constant solids retention times) tended to increase state distributions, to increase the differences between lumped and distributed simulation predictions, and to decrease predicted EBPR performance. As the numbers of reactors in series increased, distributed predictions tended to converge with lumped simulation predictions. Distributed simulations tended to predict a greater benefit to using reactors in series than did lumped simulations. This work provides guidance for new strategies to improve EBPR by minimizing state distributions. The targeted hydraulic characteristics may be more important to EBPR than previously recognized due to their effects on distributed states.  相似文献   

7.
Subsurface flow constructed wetlands (SSFCW) subjected to changing of loading rates are poorly understood, especially when used to treat swine waste under heavy loads. This study employed a SSFCW system to take pretreated swine effluent at three hydraulic retention times (HRT): 8.5-day HRT (Phase I), 4.3-day HRT (Phase II), and 14.7-day HRT (Phase III). Results showed that the system responded well to the changing hydraulic loads in removing suspended solids (SS) and carbonaceous oxygen demands. The averaged reduction efficiencies for four major constituents in the three phases were: SS 96-99%, chemical oxygen demand (COD) 77-84%, total phosphorus 47-59%, and total nitrogen (TN) 10-24%. While physical mechanisms were dominant in removing pollutants, the contributions of microbial mechanisms increased with the duration of wetland use, achieving 48% of COD removed and 16% of TN removed in the last phase. Water hyacinth made only a minimal contribution to the removal of nutrients. This study suggested that the effluent from SSFCW was appropriate for further treatment in land applications for nutrient assimilation.  相似文献   

8.
AIMS: The aim of this study is to evaluate the effect of hydraulic retention time (HRT) on the development of aerobically grown microbial granules. METHODS AND RESULTS: Five column-shaped sequential aerobic sludge blanket reactors (SASBRs) were seeded with aerobically grown microbial granules and operated in a cyclic mode at different HRTs. At the shortest HRT of 1 h, the strong hydraulic pressure triggered biomass washout and led to reactor failure. At the longest HRT of 24 h, which represented the weakest hydraulic selection in this study, aerobic granules were gradually substituted by bioflocs because of the lower frequency of volumetric exchange. Within the optimum range of HRTs from 2 to 12 h, however, aerobic granules became stabilized in the presence of adequate hydraulic selection in the reactors, with good mixed liquor volatile suspended solids (MLVSS) retention, high volumetric chemical oxygen demand (COD) removal, low sludge volume index (SVI) values, good effluent quality, low sludge production rate, stronger and more compact structures, high cell hydrophobicity and high ratios of extracellular polysaccharides (PS) to extracellular proteins (PN). CONCLUSIONS: HRTs between 2 and 12 h provided the hydraulic selection pressures favourable for the formation and maintenance of stable aerobic granules with good settleability and activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first systematic study on the effect of HRT on heterotrophic aerobic granules. The results of the investigation are useful in understanding how aerobic granules can be applied for wastewater treatment.  相似文献   

9.
三大沿海城市群滨海湿地的陆源人类活动影响模式   总被引:2,自引:0,他引:2  
王毅杰  俞慎 《生态学报》2013,33(3):998-1010
随着陆源人类活动对滨海湿地的干扰日益强烈,研究滨海湿地陆源人类活动影响规律对于滨海湿地资源管理和保护具有重要的现实意义.以我国三大沿海城市群(环渤海湾、长江三角洲、珠江三角洲)滨海湿地为研究对象,分别选取围海造地(直接因子)和流域污染物(营养盐、非点源无机污染物)输入(间接因子)表征1990-2000年间滨海湿地的陆源人类活动影响强度及规律.研究发现,虽然围海造地仍然以农业用地为主(>50%),但城市建设用地比例随人口城市化率增高而增加,以珠江三角洲城市群最高;在环渤海湾和珠江三角洲城市群区域超过60%的滨海湿地面积受到高或中等污染物输入强度影响,长江三角洲城市群区域则有44.7%的滨海湿地面积处于中等污染物输入强度及以上.通过叠加围海造地和污染物输入双重陆源人类活动的综合影响强度表明,珠江三角洲城市群平均强度指数达到0.79,且处于中等及以上影响强度区域面积比例达到78%,均高于其他两个城市群滨海湿地区域.空间分析结果表明,陆源人类活动对滨海湿地的强影响区域多集中分布于河流人海口、较为发达城市滨海区以及海岸线附近.  相似文献   

10.
塘堰湿地因其良好的生态性能而被广泛用于水稻灌区的排水净化,由于湿地的水力性能及净化效果受到诸多因素影响,客观认识这些因素的作用机理有助于提高湿地设计和运行管理的质量.本文通过示踪剂试验探讨了不同水深(20、40、60 cm)对塘堰湿地水力特性的影响.结果表明: 随着湿地水深的减小,湿地的有效容积率从0.421增加到0.844,水力效率从0.281增加到0.604;在水深较小时(20和40 cm),湿地前半部分的有效容积率达到0.9以上,明显优于湿地整体情况,湿地前半部分的水流混合情况高,接近于完全混合流.通过对原始示踪曲线的标准化分析发现,矩分析参数与水力参数有较好的数值一致性,水力参数与不受尾部截断误差影响的矩指数之间具有良好的一致性.塘堰湿地水深较小时有利于提高湿地的水力性能,试验结果可为今后塘堰湿地的优化设计提供参考.  相似文献   

11.
The influence of the hydraulic retention time (HRT) and organic loading rate (OLR) on the performance of the hydrolytic–acidogenic step of a two-stage anaerobic digestion process of sunflower oil cake (SuOC) were assessed. The experiments were performed in laboratory-scale completely stirred tank reactors at mesophilic (35 °C) temperature. Six OLR (ranging from 4 to 9 g VS L−1 d−1) for four HRTs (8, 10, 12 and 15 days) were tested to check the effect of each operational variable. Based on the results obtained, it can be concluded that the hydrolysis yields obtained for all HRTs and OLRs assayed were in the range of 20.5–30.1%. In addition, the acidification degree of the substrate was mainly influenced by the OLR but not by the HRTs, the highest value (83.8%) being achieved for an HRT of 10 days and an OLR of 6 g VS L−1 d−1.  相似文献   

12.
A fixed-film (biofilm) reactor was designed and its performance was determined at various retention times. The goal was to find the optimal retention time for recycling plant nutrients in an advanced life support system, to minimize the size, mass, and volume (hold-up) of a production model. The prototype reactor was tested with aqueous leachate from wheat crop residue at 24, 12, 6, and 3 h hydraulic retention times (HRTs). Biochemical oxygen demand (BOD), nitrates and other plant nutrients, carbohydrates, total phenolics, and microbial counts were monitored to characterize reactor performance. BOD removal decreased significantly from 92% at the 24 h HRT to 73% at 3 h. Removal of phenolics was 62% at the 24 h retention time, but 37% at 3 h. Dissolved oxygen concentrations, nitric acid consumption, and calcium and magnesium removals were also affected by HRT. Carbohydrate removals, carbon dioxide (CO2) productions, denitrification, potassium concentrations, and microbial counts were not affected by different retention times. A 6 h HRT will be used in future studies to determine the suitability of the bioreactor effluent for hydroponic plant production.  相似文献   

13.
The distribution, mobility and availability of metals in the environment depend not only on their total concentration but also on their formations and bounds with the soil. Hexavalent chromium is a very toxic, metal compound, frequently found in polluted industrial wastewaters, and causes serious environmental problems. The potential application of constructed wetlands in the treatment of chromium bearing wastewaters has been reported recently. This paper reviews research on constructed wetlands treating chromium polluted wastewaters, and focuses on several design and operational parameters. The review highlights the effect of vegetation type, hydraulic residence time and porous media type on wetland performance. Constructed wetlands have been proved to be rather efficient at treating chromium containing wastewaters.  相似文献   

14.
To estimate the bioleaching performance of chalcopyrite for various hydraulic residence times (HRTs), laboratory-scale bioleaching of chalcopyrite concentrate was carried out in a continuous bubble column reactor with three different HRTs of 120, 80 and 40 h, respectively. An extraction rate and ratio of 0.578 g Cu l−1 h−1 and 39.7%, respectively, were achieved for an HRT of 80 h at a solids concentration of 10% (w/v). Lower bioleaching performances than this were obtained for a longer HRT of 120 h and a shorter HRT of 40 h. In addition, there was obvious competition between Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans to oxidize ferrous iron, causing large compositional differences between the microbial communitys obtained for the different HRTs. Leptospirillum ferriphilum and Acidithiobacillus thiooxidans were found to be the dominant microbes for the longer HRT (120 h). Acidithiobacillus ferrooxidans became the dominant species when the HRT was decreased. The proportion of Acidithiobacillus thiooxidans was comparatively constant in the microbial community throughout the three process stages.  相似文献   

15.
The effects of the hydraulic retention time (HRT = 8, 10, 12 or 16.7 h) and glucose concentration (30, 40 or 50 g/L) on the production of hydrogen and butyrate by an immobilized Clostridium tyrobutyricum culture, grown under continuous culturing conditions, were evaluated. With 30 g/L glucose, the higher HRTs tested led to greater butyrate concentrations in the culture, i.e., 9.3 g/L versus 12.9 g/L with HRTs of 8 h and 16.7 h, respectively. In contrast, higher biogas and hydrogen production rates were generally seen when the HRT was lower. Experiments with different glucose concentrations saw a significant amount of glucose washed out when 50 g/L was used, the highest being 22.7 g/L when the HRT was 16.7 h. This study found the best conditions for the continuous production of hydrogen and butyric acid by C. tyrobutyricum to be with an HRT of 12 h and a glucose concentration of 50 g/L, respectively.  相似文献   

16.
17.
Removal of pharmaceutical compounds in tropical constructed wetlands   总被引:2,自引:0,他引:2  
The ability of tropical horizontal subsurface constructed wetlands (HSSF CWs) planted with Typha angustifolia to remove four widely used pharmaceutical compounds (carbamazepine, declofenac, ibuprofen and naproxen) at the relatively short hydraulic residence time of 2-4 days was documented. For both ibuprofen and naproxen, pharmaceutical compounds with low Dow values, the planted beds showed significant (p < 0.05) enhancement of removal efficiencies (80% and 91%, respectively, at the 4 day HRT), compared to unplanted beds (60% and 52%, respectively). The presence of plants resulted in the removal of these pharmaceutical compounds from artificial wastewater. The more oxidizing environment in the rhizosphere might have played an important role, but other rhizosphere effects, beside rhizosphere aeration, appeared to be important also. Carbamazepine, considered one of the most recalcitrant pharmaceuticals, and declofenac showed low removal efficiencies in our CW, and this is attributable to their higher hydrophobicity. The fact that the removal of these compounds could be explained by the sorption onto the available organic surfaces, explains why there was no significant difference (p > 0.05) in their removal efficiencies between planted as compared to unplanted beds. No statistical significant differences (p > 0.05) were observed for the removal efficiencies of any of the pharmaceuticals tested for the 2-day HRT as compared to that corresponding to 4-day HRT. The rather efficient removal shown by the wetlands in this study (with HRTs of 2-4 days), indicates that such a CW system may be more practically used (with less land requirements) in tropical regions for removing conventional pollutants and certain pharmaceutical compounds from wastewater effluents.  相似文献   

18.
《Ecological Engineering》2007,29(2):173-191
In order to investigate the effect of temperature, hydraulic residence time (HRT), vegetation type and porous media material and grain size on the performance of horizontal subsurface flow (HSF) constructed wetlands treating wastewater, five pilot-scale units of dimensions 3 m in length and 0.75 m in width were operated continuously from January 2004 until January 2006 in parallel experiments. Three units contained medium gravel obtained from a quarry. The other two contained one fine gravel and one cobbles, both obtained from a river bed. The three units with medium gravel were planted one with common reeds and one with cattails, and one was kept unplanted. The other two units were planted with common reeds. Planting and porous media combinations were appropriate for comparison of the effect of vegetation and media type on the function of the system. Synthetic wastewater was introduced in the units. During the operation period, four HRTs (i.e., 6, 8, 14 and 20 days) were used, while wastewater temperatures varied from about 2.0 to 26.0 °C. The removal performance of the constructed wetland units was very good, since it reached on an average 89, 65 and 60% for BOD, TKN and ortho-phosphate (P-PO43−), respectively. All pollutant removal efficiencies showed dependence on temperature. It seems that the 8-day HRT was adequate for acceptable removal of organic matter, TKN and P-PO43− for temperatures above 15 °C. Furthermore, based on statistical testing, cattails, finer media and media obtained from a river showed higher removal efficiencies of TKN and P-PO43−.  相似文献   

19.
This study set up two flow-through pilot-scale constructed wetlands with the same size but various flow patterns (free water surface flow (FWS) and subsurface flow (SSF)) to receive a nitrate-contaminated groundwater. The effects of hydraulic loading rate (HLR) on nitrate removal as well as the difference in performance between the various types of wetlands were investigated. Nitrate removal rates of both wetlands increased with increasing HLR until a maximum value was reached. The maximum removal rates, occurred at HLR of 0.12 and 0.07 m d(-1), were 0.910 and 1.161 g N m(-2)d(-1) for the FWS and SSF wetland, respectively. After the maximum values were reached, further increasing HLR led to a considerable decrease in nitrate removal rate. Nitrate removal efficiencies remained high (>85%) and effluent nitrate concentrations always satisfied drinking water standard (<10mg NO3-NL(-1)) when HLR did not exceed 0.04 m d(-1) for both FWS and SSF wetlands. The first-order nitrate removal rate constant tends to decrease with increasing HLRs. The FWS wetland provided significantly higher (p<0.05) organic carbon in effluent than the SSF wetland, while the SSF wetland exhibited significantly (p<0.05) lower effluent DO than the FWS wetland. However, there was no significant difference (p>0.05) in nitrate removal performance between the two types of constructed wetlands in this study except in one trial operating at HLR of 0.06-0.07 m d(-1).  相似文献   

20.
Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号