首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用缩微实验法 ,初步系统研究了杉木叶凋落物分别与火力楠、红栲和木荷 3个阔叶树种之一的叶凋落物两两混合分解的动态变化 ,以探明凋落物混合分解过程中可能存在的相互作用 .结果表明 ,杉木叶凋落物与 3种阔叶树种叶凋落物两两混合分解时所表现出不同的相互作用形式 :杉木与木荷表现出抑制作用 ,杉木与红栲或火力楠表现为较弱的促进作用 .  相似文献   

2.
The forests of the Luquillo Experimental Forest Long-Term Ecological Research site are subject to low-intensity, widespread disturbance that establishes levels of background mortality that contrast with periodic catastrophic mortality resulting from hurricanes and landslides. Although catastrophic mortality is more dramatic, background mortality is still more important in determining population turnover. However, catastrophic mortality may still be an important agent in determining ecosystem structure. Catastrophic disturbances affect forest function in many ways besides mortality, some of which are only apparent in the context of long-term studies. Since most ecosystems are subject to some form of catastrophic disturbance, general principles can be derived from comparative studies of disturbance in different systems.  相似文献   

3.
Methane-oxidising bacteria (MOB) play an important role in the reduction of methane emissions from rice agriculture. In rice fields, they are subjected to many environmental and field management parameters, which may have a significant impact on their community composition. To study this in greater detail, the community structure of methano- and methylo-trophic bacteria was investigated in a rice field in northern Italy during the summer 1999 and compared to a microcosm study described previously. We used PCR-based denaturing gradient gel electrophoresis applying 16S rDNA (9alpha and 10gamma) and mxaF (methanol-dehydrogenase) primer sets. In parallel, population size and activity of MOB were determined. This study provides the first comprehensive investigation of different compartments (bulk soil, rhizosphere, rhizoplane, and homogenate) throughout an entire rice-growing season in the field. Lower cell numbers of MOB were detected in the field compared to the microcosms, possibly due to lower CH4 concentrations in the soil pore water. In both studies, growth of MOB occurred predominantly at the root surface (rhizoplane) and in the root (homogenate), whereas cell numbers in bulk soil showed only minor changes throughout the season. Molecular analysis detected only few changes in alpha-proteobacterial methylotrophs during the season, whereas a higher variability was detected in gamma-proteobacteria. Nevertheless, the sequences of electrophoretic bands showed that the diversity in the field study and in the microcosms was comparable. Activity patterns of MOB and the population structure of methylotrophic bacteria agreed well between both studies, even though the detected quantities differed. Extrapolations of microcosm data to the field scale are thus possible, but should be used carefully when concerning quantitative changes.  相似文献   

4.
Abstract The effects of organic additions on nitrification and dentrification were examined in sediment microcosms. The organic material, heat killed yeast, had a C/N ratio of 7.5 and was added to sieved, homogenized sediments. Four treatments were compared: no addition (control), 30 g dry weight (dw) m−2 mixed throughout the 10 cm sediment column (30M), 100 g dw m−2 mixed throughout sediments (100M), and 100 g dw m−2 mixed into top 1 cm (100S). After the microcosms had been established for 7–11 days, depth of O2 penetration, sediment-water fluxes and nitrification rates were measured. Nitrification rates were measured using three different techniques: N-serve and acetylene inhibition in intact cores, and nitrification potentials in slurris. Increased organic additions decreased O2 penetration from 2.7 to 0.2 mm while increasing both O2 consumption, from 30 to 70 mmol O2 m−2 d−1, and NO3 flux into sediments. Nitrification rates in intact cores were similar for the two methods. Highest rates occurred in the 30M treatment, while the lowest rate was measured in the 100S treatment. Total denitrification rates (estimated from nitrification and nitrate fluxes) increased with increased organic addition, because of the high concentrations of NO3 (40 μM) in the overlaying water. The ratio of nitrification: denitrification was used as an indication of the importance of nitrification as the NO3 supply for denitrificaion. This ratio decreased from 1.55 to 0.05 iwth increase organic addition.  相似文献   

5.
The effects of disturbance on interspecific relationships between abundance and occupancy are tested using the results of a factorial experiment carried out with microcosm communities of protists. A positive relationship was documented whether marked disturbance was present or not; the pattern was neither a product of disturbance, nor was it destroyed by disturbance. Coefficients of determination, and the slopes and intercepts of abundance-occupancy relationships did not appear to change systematically with treatment. This robustness of the relationship may reflect the tendency for species to maintain approximately the same relative abundances and levels of occupancy in a broad range of circumstances. Received: 4 October 1996 / Accepted: 29 April 1997  相似文献   

6.
A mature, high-biodiversity coral reef microcosm and its chambered subsets were used to examine the relationship between calcification and photosynthesis and its most critical biotic components. Whole ecosystem calcification at 4.0±0.2 kg (40±2 mol) CaCO3 m−2 year−1 is related to its primary components (stony coral 17.6%, Halimeda 7.4%, Tridacna 9.0%, algal turf, coralline and foraminifera 29.4%, and miscellaneous invertebrates 36%). Through analysis of the microcosm's daily carbonate system, it is demonstrated that bicarbonate ion, not carbonate ion, is the principal component of total alkalinity reduction in the water column (thus, bicarbonate ion is the principal measured component of calcification as normally measured on reef transects). While chamber-isolated free-living algae remove carbon dioxide, and raise pH and carbonate ion equivalent to that in the microcosm as a whole, no total alkalinity reduction (calcification) occurs. On the other hand, chamber isolated stony corals remove considerable bicarbonate, with very little pH or carbonate ion elevation. Combining the non-calcifying free-living macroalgae Chondria with stony corals in chamber subsets, it is possible to remove more carbon dioxide (elevating pH) and thereby increase coral calcification rates by 60 and 120% above zooxanthellae-mediated rates to 20.6 kg (206 mol) and 18.5 kg (185 mol) CaCO3 m−2 year−1 for Acropora and Montipora, respectively. These findings, which support the McConnaughey and Whelan hypothesis of bicarbonate ion neutralization in coral calcification, are easily demonstrated in the controlled microcosm environment.  相似文献   

7.
A microcosm experiment was carried out to study the influence of lead and zinc, individually and in mixtures, on a free-living nematode community of a Tunisian lagoon. Three levels (low, medium and high) of each heavy metal were used, separately and in combinations, for sediment contamination and effects were examined after two months. Results from the multiple comparison tests showed significant differences between nematode assemblages from undisturbed controls and those from lead and/or zinc treatments. Most univariate measures, including diversity and species richness, decreased significantly in the treated microcosms. Results from multivariate analyses of the species abundance data revealed significant effects of both metals, separately or in mixtures, at all the doses tested on nematode assemblages. All treatments were significantly different from the control and from each other. Both univariate and multivariate analyses of the data showed that the differential response occurred in all treatments but the communities from microcosms contaminated with lead and zinc separately were much more strongly affected. This result is suggestive of antagonistic interactions between Pb and Zn. The responses of nematode species to the lead and zinc treatments were varied: Calomicrolaimus honestus was eliminated at all lead doses tested and seemed to be intolerant species to Pb contamination whereas Oncholaimus campylocercoides increased significantly at low and medium lead contamination, was eliminated in Pb-highly amended sediment treatments and increased at all zinc doses used. This species could be categorized as “opportunistic” at low and medium lead doses and “zinc-resistant” species. Hypodontolaimus colesi was eliminated in all replicates treated with Zn even at low concentration and appeared to be a very sensitive species to zinc contamination.  相似文献   

8.
Filtrates from the bacterium Shewanella sp. IRI-160 (termed IRI-160AA) have been shown to inhibit population growth and kill a variety of dinoflagellates grown in culture. Here we test the immediate efficacy of IRI-160AA in laboratory microcosms initiated from three natural dinoflagellate blooms (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum). We measured target dinoflagellate abundance, total chlorophyll-a, photosystem II (PSII) photochemistry, and changes to the prokaryotic and eukaryotic community composition over 2–3 days of IRI-160AA incubation. Naked dinoflagellates were impacted more, while abundance of the thecate P. minimum was not affected. However, dinoflagellate growth inhibition was generally lower than that observed in uni-algal cultures, and took longer to occur. Eukaryotic community composition in IRI-160AA treated microcosms was significantly different from control incubations, and was driven predominantly by increases in heterotrophic protists (e.g. Euplotes sp. and Paraphysomonas sp.). Similarly, significant changes to the prokaryotic community structure were evident. Microcosms of G. instriatum with higher algicide concentrations indicated that algicidal activity was enhanced in a dose dependent manner. Furthermore, total ciliate abundance as well as a bactivorous chyrsophyte (Paraphysomonas sp.) increased in a dose dependent manner. Total diatom abundance increased at lower IRI-160AA concentrations, but increased less with increasing dose. Overall, the bio-activity of IRI-160AA on naturally occurring dinoflagellates in mixed natural microbial communities is encouraging from the applied perspective of using the active compound(s) in IRI-160AA as natural agent(s) to manage harmful dinoflagellate blooms.  相似文献   

9.
Scaling the effects of predation and disturbance in a patchy environment   总被引:3,自引:0,他引:3  
Jill Lancaster 《Oecologia》1996,107(3):321-331
The effects of hydraulic disturbances on the impact of two predatory benthic invertebrates on their prey were examined in a stream at two distinct spatial scales. At the scale of small habitat patches (0.0625 m2), hydraulic patch type was an important determinant of the microdistribution of prey and predators. Prey abundances were similar across all patch types at baseflow, but local densities were higher in patches identified as low-flow refugia after periods of high and fluctuating flow. The microdistribution pattern of predatory larvae of a caddisfly, Plectrocnemia conspersa, was similar to that of its prey, whereas predatory larvae of an alderfly, Sialis fuliginosa, did not shift their microdistribution significantly with discharge and were always most abundant in lowflow refugia. There was little evidence of an aggregative response of predators with prey, even though both predators and prey are mobile. Both predator species showed similar patch-specific patterns of per capita consumption rates: uniform consumption rates across hydraulic patch types at low and moderate flows, but highest in flow refugia during high flows. Species-specific patterns, however, were apparent in the magnitude and direction of differences between consumption rates during disturbance events, and in comparable patches at base flow: At high flow, consumption rates for P. conspersa were exaggerated (3.9 times higher) in flow refugia but at par in other patches; for S. fuliginosa they were at par in flow refugia but reduced in other patches (up to 3.3. times lower). These differences may be related to species-specific foraging behaviours (search vs ambush predators) and the influence of prey movements on feeding success. Using the patch-scale results only, it is difficult to predict the effects of physical disturbance on predation intensity at the larger scales of whole habitats, populations or communities. At the large scale (>200 m2), net predator impacts were estimated over the stream reach, using a spatially explicit model that accounts, in an additive way, for habitat heterogeneity and patch-specific responses of predators and prey. The relationship between predator impact over the whole reach and hydraulic disturbance differed for the two predators. The predator impact of S. fuliginosa decreased with increasing hydraulic disturbance, as predicted by the harsh-benign hypothesis. There was no directional trend for P. conspersa, however, and maximum predator impact may occur at intermediate disturbance levels. For the prey community in this stream, predation pressure from S. fuliginosa appears to fluctuate directly with the discharge hydrograph, whereas predation from P. conspersa may be more persistent. Flow refugia may play a dual role in the sructure of stream communities by preventing catastrophic mortality of animals (predators and prey) from physical forces during disturbances, and by maintaining (or perhaps increasing) predation pressure. Summing the effects of species interactions in small habitat patches to the larger scale of a whole stream reach indicates that the scale of approach influences the observed patterns and their implied underlying process.  相似文献   

10.
Many ecological studies have used diversity indices to assess the impact of environmental disturbance. In particular, ground beetles have been advocated as a good group for assessing disturbance. Most studies on various organisms have used only one or two indices. For our study of the impact of tillage disturbance on carabid beetles in farm fields in southern Ontario, Canada, we used seven different diversity indices (richness, Shannon–Wiener, Berger–Parker, Q-statistic, Margalef, and evenness). Few studies have used deviation from diversity abundance models as a measure of disturbance; however, we use three that are applicable to our data (geometric, log-normal and log-series). The indices and models were used to test the null hypothesis that there is no change in diversity with increasing tillage disturbance, and that there is no difference in diversity with different crops or years. We were not able to reject the null hypothesis that there is any diversity difference among farms. We also found that there was no single diversity index or model that was better than any other at detecting disturbance. These results are supplemented by a meta-analysis of 45 published data sets for the same taxon but in different habitats. The meta-analysis supports the conclusions from our field research that diversity indices and models are not useful for detecting the possible effect of disturbance on assemblages of carabid beetles.  相似文献   

11.
It has been hypothesised that larger habitats should support more complex food webs. We consider three mechanisms which could lead to this pattern. These are increased immigration rates, increased total productivity and spatial effects on the persistence of unstable interactions. Experiments designed to discriminate between these mechanisms were carried out in laboratory aquatic microcosm communities of protista and bacteria, by independently manipulating habitat size, total productivity and immigration rate. Larger habitats supported more complex food webs, with more species, more links per species and longer maximum and mean food chains, even in the absence of differences in total energy input. Increased immigration rate resulted in more complex food webs, but habitats with higher energy input per unit area supported less complex food webs. We conclude that spatial effects on the persistence of unstable interactions, and variation in immigration rates, are plausible mechanisms by which habitat size could affect food web structure. Variation in total productivity with habitat area seems a less likely explanation for variation in food web structure.  相似文献   

12.
Summary We examined the impact of pocket gopher disturbances on the dynamics of a shortgrass prairie community. Through their burrowing activity, pocket gophers (Thomomys bottae) cast up mounds of soil which both kill existing vegetation and create sites for colonization by competitively-inferior plant species. Three major patterns emerge from these disturbances: First, we show that 10 of the most common herbaceous perennial dicots benefit from pocket gopher disturbance; that is, a greater proportion of seedlings are found in the open space created by pocket gopher disturbance than would be expected based on the availability of disturbed habitat. Additionally, these seedlings exhibited higher growth rates than adjacent seedlings of the same species growing in undisturbed habitat. Second, we tested two predictions of the Intermediate Disturbance Hypothesis and found that species diversity was greatest for plots characterized by disturbances of intermediate age. However, we did not detect significant differences in diversity between plots characterized by intermediate and high levels of disturbance, indicating that many species are adapted to or at least tolerant of high levels of disturbance. Third, we noted that the abundance of grasses decreased with increasing disturbance, while the abundance of dicots increased with increasing disturbance.  相似文献   

13.
Peter M. Kotanen 《Oecologia》1996,108(4):652-662
Revegetation following a disturbance event initially should be constrained by the abundance and types of propagules available at the disturbed site. I tested this idea by conducting two experiments in which I created artificial soil disturbances by excavating or burying pre-existing grassland vegetation. In the first experiment, I varied disturbance intensity (depth), to investigate the consequences for revegetation when numbers of surviving propagules (dormant seeds and bulbs) were altered. In the second experiment, I varied the timing of disturbance, to investigate the consequences when disturbed sites experienced differing exposures to seasonal patterns of clonal growth and seed dispersal. I sampled these experiments from 1991 to 1993, and have interpreted their results using measurements of the seed bank, the bulb bank, and the seed rain. In the first (depth) experiment, bulbs declined in abundance with burial depth and were scarcer in deeper excavations. In contrast, numbers of annual graminoids initially showed no trends with respect to disturbance depth. These results reflect the depth distributions of the seed and bulb banks. Since bulbs occur deeply in the soil, progressively deeper disturbances left fewer survivors. Similarly, perennial graminoids could grow through the shallowest burials. In contrast, since the annual-graminoid-dominated seed bank is concentrated near the soil surface, disturbance depth mattered less to these species: any disturbance removing the surface layer was equally destructive. In the second (timing) experiment, more annual graminoids initially occurred in older plots. This result reflects seasonal patterns of seed production: plots exposed to more of the annual-graminoid-dominated seed rain supported higher densities of annual graminoids as a result. In subsequent years, the vegetation of most plots in both experiments was increasingly dominated by annual graminoids, again as a consequence of their great abundance in the seed rain. These results indicate that interactions between soil disturbances and sources of propagules play an important role in controlling early stages of succession in newly created gaps. They also suggest that disturbance may play different roles in communities characterized by species with different reproductive strategies. Understanding sources of colonists will improve our ability to predict the effects of disturbance.  相似文献   

14.
Heavy rainfall caused a severe disturbance on the Thalassia testudinum meadows at Morrocoy National Park in December 1999, affecting its associated infauna and inducing responses to stress in opportunistic polychaetes belonging to the Spionidae Family. The changes were evaluated at four seagrass beds, examining the structure and species composition of the Spionid macrofauna over eight samplings: four prior and four after the disturbance. Immediately after the heavy rainfall the Spionids showed transient changes, expressed as large increases of species density and richness, reaching values of 875 individuals m− 2 (against the usual 20 individuals m− 2) and 7 species (against the previous 1–3 species) during February 2000. These abundance pulses were represented by selected species at each location. Opportunistic species, having limited dispersion (Streblospio gynobranchiata and polydorids) were commonly found in continentally-influenced locations whereas species having dispersal mechanisms were commonly found in stations under oceanic influence (species of the Genus Prionospio). Likewise, the observed recovery patterns indicate different rhythms: while the oceanic communities showed a fast recovery, the continentally ones returned to their original states slowly. Hence, the patterns observed in the benthic polychaete communities associated with the T. testudinum beds from Morrocoy N.P. clearly indicate that the recolonization processes, succession dynamics and recovery time depend on the spatial scale of disturbance, the life history of species involved and the particular conditions of the habitat.  相似文献   

15.
Physical soil disturbance and the hydrology of temporary pools affect the biomass, species composition and richness of plant communities. Disturbance liberates sites for the random recruitment of new individuals. The addition of seeds modifies the structure of the communities. In order to verify these hypotheses concerning the vegetation of temporary pools, an experiment was carried out using 72 soil samples collected from a pool in Western Morocco and placed in containers. Three types of laboratory treatments were applied, each combined with control treatments: soil disturbance (control/disturbed), hydrology (flooded, saturated and dry) and seed addition (sowing/no sowing). The total biomass, the annual and perennial species richness were calculated for each sample to test the effects of disturbance, hydrology and seed addition on the biomass and species richness of the various plant communities. The results show that disturbance reduces the total biomass, especially of perennials, but without significantly increasing the richness of annuals. Seed addition does not affect the total biomass and reduces total richness only in saturated soil, where biomass production is high. The most extreme stress conditions (drought and flooding) limit the abundance of species and therefore competition. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

16.
17.
Brewer  J. Stephen 《Plant Ecology》1999,140(2):159-165
The effects of removal of live plants and litter (using herbicide, clipping, and raking) on seedling establishment were examined in Utricularia juncea (bladderwort), an annual carnivorous plant of low frequency in wet, nutrient-poor pine savannas of the southeastern United States. In addition, the spatial distribution of this species in relation to crayfish disturbances was determined. The creation of competition-free gaps in the groundcover canopy in May 1996 (using herbicide) promoted establishment of this species at two sites by September 1997. Standing dead and litter left in herbicide-treated plots inhibited establishment. Density was near zero in undisturbed plots. Natural occurrences of this species were associated with crayfish mounds, which bury plant litter as they erode and increase in area. These results suggest that Utricularia juncea is a fugitive species that depends on disturbances or litter-free microsites to become established in wet, nutrient-poor seepage savannas in southern Mississippi. It is hypothesized that the production of carnivorous traps combined with relatively high allocation to reproductive structures (>90%) and the production of a persistent seed bank make it well-adapted to nutrient-poor and disturbed habitats.  相似文献   

18.
We developed an individual-based stochastic-empirical model to simulate the carbon dynamics of live and dead trees in a Central Amazon forest near Manaus, Brazil. The model is based on analyses of extensive field studies carried out on permanent forest inventory plots, and syntheses of published studies. New analyses included: (1) growth suppression of small trees, (2) maximum size (trunk base diameter) for 220 tree species, (3) the relationship between growth rate and wood density, and (4) the growth response of surviving trees to catastrophic mortality (from logging). The model simulates a forest inventory plot, and tracks recruitment, growth, and mortality of live trees, decomposition of dead trees (coarse litter), and how these processes vary with changing environmental conditions. Model predictions were tested against aggregated field data, and also compared with independent measurements including maximum tree age and coarse litter standing stocks. Spatial analyses demonstrated that a plot size of ~10 ha was required to accurately measure wood (live and dead) carbon balance. With the model accurately predicting relevant pools and fluxes, a number of model experiments were performed to predict forest carbon balance response to perturbations including: (1) increased productivity due to CO2 fertilization, (2) a single semi-catastrophic (10%) mortality event, (3) increased recruitment and mortality (turnover) rates, and (4) the combined effects of increased turnover, increased tree growth rates, and decreased mean wood density of new recruits. Results demonstrated that carbon accumulation over the past few decades observed on tropical forest inventory plots (~0.5 Mg C ha–1 year–1) is not likely caused by CO2 fertilization. A maximum 25% increase in woody tissue productivity with a doubling of atmospheric CO2 only resulted in an accumulation rate of 0.05 Mg C ha–1 year–1 for the period 1980–2020 for a Central Amazon forest, or an order of magnitude less than observed on the inventory plots. In contrast, model parameterization based on extensive data from a logging experiment demonstrated a rapid increase in tree growth following disturbance, which could be misinterpreted as carbon sequestration if changes in coarse litter stocks were not considered. Combined results demonstrated that predictions of changes in forest carbon balance during the twenty-first century are highly dependent on assumptions of tree response to various perturbations, and underscores the importance of a close coupling of model and field investigations.  相似文献   

19.
Establishing nature conservation reserves is an effective and widely accepted practice to protect biodiversity. In order to promote the effectiveness and efficiency of the reserve, spatial attributes of the reserve should be considered. Connectedness (contiguity) is one of these important spatial attributes. Currently in the biological literature there are only a few formal/exact optimization approaches to endogenously designing a connected nature reserve. This article adds a new approach by adapting a spatial unit allocation model to the reserve design problem. Using concepts from network flow theory, the model defines a sink site from which no flow directs out and ensures contiguity by specifying the outflow and inflow relationship of the potential sites. Computational performance of the model is tested using hypothetical problems with various sizes including up to 400 potential sites. Results show that the time needed to solve the problem to optimality increases exponentially both as number of potential sites increases and as species distribution gets more sparse. An empirical application involving 80 potential sites and 15 bird species in part of Fox River watershed, Illinois USA is presented. Factors influencing an IP model’s computational performance and potential extensions of the model were discussed.  相似文献   

20.
We used developmental instability, water potential, and variable fluorescence to determine if populations of winged sumac (Rhus copallinum) were being negatively effected by military training disturbance. We established nine sites that represented a land-use disturbance gradient with three impact levels (low, medium, and high), the effects mostly due to mechanized infantry training maneuvers. Although mean values of developmental instability, water potential, and variable fluorescence differed significantly among sites, the patterns did not consistently differentiate sites relative to the disturbance gradient. At the population level, some measures of developmental instability and variable fluorescence were positively correlated. All nine sites consisted of habitat mosaics, with the abundance of higher quality habitat patches and canopy gaps closely related to habitat impacts. It may be that R. copallinum is selecting similar micro-environments at all sites and therefore minimizing inter-site variation in stress measures, despite large differences in overall habitat condition. Our results call for caution in developing ecological indicators using the response of physiological and morphological measures from a single plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号