首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Denitrification beds are a simple approach for removing nitrate (NO3) from a range of point sources prior to discharge into receiving waters. These beds are large containers filled with woodchips that act as an energy source for microorganisms to convert NO3 to nitrogen (N) gases (N2O, N2) through denitrification. This study investigated the biological mechanism of NO3 removal, its controlling factors and its adverse effects in a large denitrification bed (176 m × 5 m × 1.5 m) receiving effluent with a high NO3 concentration (>100 g N m−3) from a hydroponic glasshouse (Karaka, Auckland, New Zealand). Samples of woodchips and water were collected from 12 sites along the bed every two months for one year, along with measurements of gas fluxes from the bed surface. Denitrifying enzyme activity (DEA), factors limiting denitrification (availability of carbon, dissolved organic carbon (DOC), dissolved oxygen (DO), temperature, pH, and concentrations of NO3, nitrite (NO2) and sulfide (S2−)), greenhouse gas (GHG) production - as nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) - and carbon (C) loss were determined. NO3-N concentration declined along the bed with total NO3-N removal rates of 10.1 kg N d−1 for the whole bed or 7.6 g N m−3 d−1. NO3-N removal rates increased with temperature (Q10 = 2.0). In laboratory incubations, denitrification was always limited by C availability rather than by NO3. DO levels were above 0.5 mg L−1 at the inlet but did not limit NO3-N removal. pH increased steadily from about 6 to 7 along the length of the bed. Dissolved inorganic carbon (C-CO2) increased in average about 27.8 mg L−1, whereas DOC decreased slightly by about 0.2 mg L−1 along the length of the bed. The bed surface emitted on average 78.58 μg m−2 min−1 N2O-N (reflecting 1% of the removed NO3-N), 0.238 μg m−2 min−1 CH4 and 12.6 mg m−2 min−1 CO2. Dissolved N2O-N increased along the length of the bed and the bed released on average 362 g dissolved N2O-N per day coupled with N2O emission at the surface about 4.3% of the removed NO3-N as N2O. Mechanisms to reduce the production of this GHG need to be investigated if denitrification beds are commonly used. Dissolved CH4 concentrations showed no trends along the length of the bed, ranging from 5.28 μg L−1 to 34.24 μg L−1. Sulfate (SO42−) concentrations declined along the length of the bed on three of six samplings; however, declines in SO42− did not appear to be due to SO42− reduction because S2− concentrations were generally undetectable. Ammonium (NH4+) (range: <0.0007 mg L−1 to 2.12 mg L−1) and NO2 concentrations (range: 0.0018 mg L−1 to 0.95 mg L−1) were always very low suggesting that anammox was an unlikely mechanism for NO3 removal in the bed. C longevity was calculated from surface emission rates of CO2 and release of dissolved carbon (DC) and suggested that there would be ample C available to support denitrification for up to 39 years.This study showed that denitrification beds can be an efficient tool for reducing high NO3 concentrations in effluents but did produce some GHGs. Over the course of a year NO3 removal rates were always limited by C and temperature and not by NO3 or DO concentration.  相似文献   

3.
Floating treatment wetlands planted with emergent macrophytes (FTWs) provide an innovative option for treating urban stormwaters. Emergent plants grow on a mat floating on the water surface, rather than rooted in the bottom sediments. They are therefore able to tolerate the wide fluctuations in water depths that are typical of stormwater ponds. To better understand the treatment capabilities of FTWs, a series of replicated (n = 3) mesocosm experiments (12 × 0.7 m3 tanks using 0.36 m2 floating mats) were conducted over seven day periods to examine the influence of constituent components of FTWs (floating mat, soil media, and four different emergent macrophyte species) for removal of copper, zinc, phosphorus and fine suspended solids (FSS) from synthetic stormwater. The presence of a planted floating mat significantly (P < 0.05) improved removal of copper (>6-fold), fine suspended particles (∼3-fold reduction in turbidity) and dissolved reactive P (in the presence of FSS) compared to the control. Living plants provided a large submerged root surface-area (4.6-9.3 m2 of primary roots m−2 mat) for biofilm development and played a key role in the removal of Cu, P and FSS. Uptake of Cu and P into plant tissues during the trials could only account for a small fraction of the additional removal found in the planted FTWs, and non-planted floating mats with artificial roots providing similar surface area generally did not provide equivalent benefits. These responses suggest that release of bioactive compounds from the plant roots, or changes in physico-chemical conditions in the water column and/or soils in the planted FTWs indirectly enhanced removal processes by modifying metal speciation (e.g. stimulating complexation or flocculation of dissolved fractions) and/or the sorption characteristics of biofilms. The removal of dissolved zinc was enhanced by the inclusion of a floating mat containing organic soil media, with reduced removal when vegetated with all except one of the test species. The results indicate that planted FTWs are capable of achieving dissolved Cu and Zn mass removal rates in the order of 5.6-7.7 mg m−2 d−1 and 25-104 mg m−2 d−1, respectively, which compare favourably to removal rates reported for conventional surface flow constructed wetlands treating urban stormwaters. Although not directly measured in the present study, the removal of particulate-bound metals is also likely to be high given that the FTWs removed approximately 34-42% of the turbidity associated with very fine suspended particulates within three days. This study illustrates the promise of FTWs for stormwater treatment, and supports the need for larger-scale, longer-term studies to evaluate their sustainable treatment performance.  相似文献   

4.
A pilot plant involving a nitritation-anammox process was operated for treating digester supernatant. In the preceding nitritation process, ammonium-oxidizing bacteria were immobilized in gel carriers, and the growth of nitrite-oxidizing bacteria was suppressed by heat-shock treatment. For the following anammox process, in order to maintain the anammox biomass in the reactor, a novel process using anammox bacteria entrapped in gel carriers was also developed. The nitritation performance was stable, and the average nitrogen loading and nitritation rates were 3.0 and 1.7 kg N m−3 d−1, respectively. In the nitritation process, nitrate production was completely suppressed. For the anammox process, the startup time was about two months. Stable nitrogen removal was achieved, and an average nitrogen conversion rate of 5.0 kg N m−3 d−1 was obtained. Since the anammox bacteria were entrapped in gel carriers, stable nitrogen removal performance was attained even at an influent suspended solids concentration of 1500 mg L−1.  相似文献   

5.
After extensive analysis, Ulva lactuca dried algae, collected from the Monastir coastal zone, was proven to be successful as an adsorbent for the removal of certain inorganic pollutants. The main objective of this study was the nonlinear modeling of heavy metal removal from an aqueous solution, using a freely available and well analyzed biomaterial, as well as the evaluation of its efficacy on various metal ion sorptions. Although relatively low specific surface area, compared to more conventional adsorbents, the selected biomaterial displays very interesting retention capacities when used with aqueous inorganic pollutants. The pseudo, first and second-order kinetic models were used to investigate the kinetic retention mechanism. Assuming the nonlinear form, the results indicate that the retention mechanism is diffusion controlled. Concerning the heavy metal uptake capacity, it was found that the selected biomaterial has a retention capacity of 67 mg g−1 of Ni(II), 112 mg g−1 of Cu(II), 127 mg g−1of Cd(II) and 230 mg g−1 of Pb(II).  相似文献   

6.
Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m−3 d−1 and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L−1 (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m−3 d−1 and HRT of 15.6 days produced effluent with nitrate concentration of ∼0.025 mg N L−1 (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.  相似文献   

7.
Wang B  Lan CQ 《Bioresource technology》2011,102(10):5639-5644
Biomass productivity of 350 mg DCW L−1 day−1 with a final biomass concentration of 3.15 g DCW L−1 was obtained with Neochloris oleoabundans grown in artificial wastewater at sodium nitrate and phosphate concentrations of 140 and 47 mg L−1, respectively, with undetectable levels of residual N and P in effluents. In secondary municipal wastewater effluents enriched with 70 mg N L−1, the alga achieved a final biomass concentration of 2.1 g DCW L−1 and a biomass productivity of 233.3 mg DCW L−1 day−1. While N removal was very sensitive to N:P ratio, P removal was independent of N:P ratio in the tested range. These results indicate that N. oleoabundans could potentially be employed for combined biofuel production and wastewater treatment.  相似文献   

8.
Biodegradability of fluorene and the versatility of fluorene metabolite (i.e. phenol) in fluorene biodegradation by a sulfate-reducing enrichment culture were investigated. Batch experiments (with 5 mg l−1 fluorene) were designed via the central composite design to examine the effects of sulfate (5-35 mM) and biomass (5-50 mg l−1) concentrations (variables) on fluorene degradation (response). The experimental results revealed that fluorene removal was more influenced by the biomass concentration than the sulfate concentration. The optimal sulfate and biomass concentrations for fluorene biodegradation (90% removal) were found to be 14.4 mM and 37.8 mg l−1, respectively. Under the optimal conditions, a set of biodegradation experiments were repeated to evaluate both the biodegradability of fluorene metabolite and the potential effect of phenol accumulation on fluorene degradation. The outcomes indicated a slow phenol degradation rate, i.e. 0.02 mg l−1 d−1. Moreover, a small reduction in the fluorene biodegradation efficiency was observed in the presence and accumulation of phenol. However, this sulfate reducing culture is a valuable resource for the simultaneous degradation of fluorene and phenol.  相似文献   

9.
The purpose of this study is to investigate the nitrogen removal performance of the anaerobic ammonium oxidation (Anammox) process and the microbial community that enables the Anammox system to function well at ambient temperatures. A reactor with a novel spiral structure was used as the gas-solid separator. The reactor was fed with synthetic inorganic wastewater composed mainly of NH4+-N and NO2-N, and operated for 92 days. Stable nitrogen removal rates (NRR) of 16.3 and 17.5 kg-N m−3 d−1 were obtained at operating temperatures of 33 ± 1 and 23 ± 2 °C, respectively. To our knowledge, such a high NRR at ambient temperatures has not been reported previously. In addition, the experiments presented herein confirm that high influent NO2-N concentration of 460 mg L−1 did not noticeably inhibit the Anammox activity. Furthermore, the freshwater Anammox bacterium KU2, which was identified as the dominant bacterial species in the consortium by 16S rRNA gene analysis, is considered to be responsible for the stable nitrogen removal performance at ambient temperatures.  相似文献   

10.
Oxygen transfer capacity and removal of ammonium and organic matter were investigated in this study to evaluate the performance of a lab-scale tidal flow constructed wetland. Average oxygen supply under tidal operation (350 g m−2 d−1) was much higher than in conventional constructed wetlands (<100 g m−2 d−1), resulting in enhanced removal of BOD5 and NH4+. Theoretical oxygen demand from BOD5 removal and nitrification was approximately matched by the measured oxygen supply, which indicated aerobic consumption of BOD5 and NH4+ under tidal operation. When BOD5 removal increased from 148 g m−2 d−1 to 294 g m−2 d−1, neither exhausted oxygen from the aggregate matrix during feeding period (111 g m−2 d−1) nor effluent dissolved oxygen (DO) concentration (2.8 mg/L) changed significantly, demonstrating that the oxygen transfer potential of the treatment system had not been exceeded. However, even though DO had not been exhausted, inhibition of nitrification was observed under high BOD loading. The loss of nitrification was attributed to excessive heterotrophic biofilm growth believed to induce oxygen transfer limitations or oxygen competition in thickened biofilms.  相似文献   

11.
Wong BT  Lee DJ 《Bioresource technology》2011,102(12):6673-6679
The inhibitory effects of 90-189 mg l−1 of sulfide and 25-75 mg-N l−1 of nitrate on methanogenesis were investigated in a mixed methanogenic culture using butyrate as carbon source. In the initial phase of 90 mg l−1 S2− test, autotrophic denitrification of nitrate occurred with sulfide as the electron donor. Then the sulfate-reducing strains converted the produced sulfur back to sulfide via heterotrophic oxidation pathway. Methanogenesis was not markedly inhibited when 90 mg l−1 of sulfide was dosed alone. When 25-75 mg-N l−1 of nitrate was presented, initiation of methanogenesis was seriously delayed. Nitrogen oxides (NOx), the intermediates for nitrate reduction via denitrification pathway, inhibited methanogenesis. The 90 mg l−1 of sulfide favored heterotrophic dissimilatory nitrate reduction to ammonia (DNRA) pathway for nitrate reduction. Possible ways of maximizing methane production from an organic carbon-rich wastewater with high levels of sulfide and nitrate were discussed.  相似文献   

12.
Xu X  Gao B  Yue Q  Zhong Q 《Bioresource technology》2011,102(9):5278-5282
A sorption process for the removal of phosphate was evaluated under various conditions using a filter bed packed with giant reed (GR) based adsorbent. FTIR spectrum measurement validated the existence of grafted amine groups in the adsorbent and Raman spectrum displayed the characteristic peaks of different forms of phosphate. The column sorption capacity of the adsorbent for phosphate was 54.67 mg g−1 in comparison with the raw GR of 0.863 mg g−1. Influent pH demonstrated an essential effect on the performance of the filter bed as compared to other influent conditions (flow rates and influent concentrations) and the optimal pH was selected at 5.0-10.0. Eluents of HCl, NaOH and NaCl solutions with concentrations of 0.01-0.1 mol l−1 showed the excellent capacities for desorption of phosphate from the adsorbent, and their elution processes could be finished in 90 min.  相似文献   

13.
The formation of aerobic granules with low organic loading synthetic wastewater (150-200 mg L−1 of influent COD, acetate/propionate = 1/3) at low aeration rate (0.6 cm s−1 of superficial gas velocity) had been investigated in the anaerobic/oxic/anoxic SBR. Aerobic granules with smooth surface and compact structure were successfully obtained after 50 days. However, these aerobic granules were unstable when the d(0.9) of granules increased to more than 1 mm. The results suggested that the aerobic granules with small diameter (smaller than 1000 μm) were more favorable for treating the low substrate loading wastewater at the low aeration rate. The cycle test revealed that most of the influent COD was removed at the anaerobic stage. The effluent concentrations of N-NH4+ and P-PO43− were lower than 1 mg L−1, and the effluent concentration of nitrate gradually decreased with the granulation. Phosphate accumulating organisms were found to utilize O2 or NOx as electron acceptor for phosphorus removal in the study. Simultaneous nitrogen and phosphorus removal occurred inside the granules.  相似文献   

14.
The heavy use of fertilizers in agricultural lands can result in significant nitrate (NO3) loadings to the aquatic environment. We hypothesized that biological denitrification in agricultural ditches and streams could be enhanced by adding elemental sulfur (So) to the sediment layer, where it could act as a biofilm support and electron donor. Using a bench-scale stream mesocosm with a bed of So granules, we explored NO3 removal fluxes as a function of the effluent NO3 concentrations. With effluent NO3 ranging from 0.5 mg N L−1 to 4.1 mg N L−1, NO3 removal fluxes ranged from 228 mg N m−2 d−1 to 708 mg N m−2 d−1. This is as much as 100 times higher than for agricultural drainage streams. Sulfate (SO42−) production was high due to aerobic sulfur oxidation. Molecular studies demonstrated that the So amendment selected for Thiobacillus species, and that no special inoculum was required for establishing a So-based autotrophic denitrifying community. Modeling studies suggested that denitrification was diffusion limited, and advective flow through the bed would greatly enhance NO3 removal fluxes. Our results indicate that amendment with So is an effective means to stimulate denitrification in a stream environment. To minimize SO42− production, it may be better to place So deeper in the sediment layer.  相似文献   

15.
Denitrification beds are a simple and relatively inexpensive technology for removing nitrate from point source discharges. To date, operational beds have used wood media as the carbon source, as it provides a sustained nitrate removal rate (2-10 g N m−3 of media d−1) while maintaining permeability. In pilot-scale (2.9 m−3) denitrification beds receiving municipal wastewater effluent dosed with KNO3, we looked at improving nitrate removal by using alternative carbon media (maize cobs) and increasing bed temperature through passive solar heating. The influence of flow regime (horizontal-point, horizontal-diffuse, downflow and upflow) on short-circuit flow was also investigated.The long-term nitrate removal rate (21.8 g N m−3 d−1) of the maize cob beds over the 15-month period of the trial was 2-11-fold higher than sustained removal rates reported by other researchers for wood-based beds. While passive solar heating raised the mean bed temperature by 3.4 °C, it did not cause a measurable increase in the nitrate removal rate due to the variability in the removal rate exceeding the expected increase due to temperature.Horizontal flow had more short-circuiting than vertical flow. Short-circuiting in the horizontal flow was attributed to flow being concentrated near the top surface due to the buoyancy effect of warmer water. Greater short-circuiting in the solar heated horizontal and upflow beds than in the corresponding unheated beds was attributed to the buoyancy effect being more pronounced in the solar heated beds.Overall, downflow was deemed the most effective of the four tested flow regimes. It provided the highest increase in bed temperature due to solar heating, had the highest nitrate removal rate in the latter part of the trial and had more plug-flow characteristics. While passive solar heating raised bed temperature, we were unable to demonstrate a significant difference (at 95% CL) in nitrate removal rate between the unheated and solar heated beds because of the high variability in nitrate removal rate and the increase in short-circuiting in the solar heated horizontal and upflow beds.  相似文献   

16.
Industrial wastewater treatment comprises several processes to fulfill the discharge permits or to enable the reuse of wastewater. For tannery wastewater, constructed wetlands (CWs) may be an interesting treatment option. Two-stage series of horizontal subsurface flow CWs with Phragmites australis (UP series) and Typha latifolia (UT series) provided high removal of organics from tannery wastewater, up to 88% of biochemical oxygen demand (BOD5) (from an inlet of 420 to 1000 mg L−1) and 92% of chemical oxygen demand (COD) (from an inlet of 808 to 2449 mg L−1), and of other contaminants, such as nitrogen, operating at hydraulic retention times of 2, 5 and 7 days. No significant (P < 0.05) differences in performance were found between both the series. Overall mass removals of up to 1294 kg COD ha−1 d−1 and 529 kg BOD5 ha−1 d−1 were achieved for a loading ranging from 242 to 1925 kg COD ha−1 d−1 and from 126 to 900 kg BOD5 ha−1 d−1. Plants were resilient to the conditions imposed, however P. australis exceeded T. latifolia in terms of propagation.  相似文献   

17.
Wetlands are capable of reducing nutrient loadings to receiving water bodies, and hence many artificial wetlands have been constructed for wastewater nutrient removal. In this study, diffusive equilibrium in thin films (DETs) and equilibrium phosphorus concentration (EPC0) analysis were used to examine the role of sediment as a nutrient source or sink in a constructed treatment wetland in summer. The effect of dredging on sediment-water nutrient exchange was also studied. Soluble reactive phosphorus (SRP), ammonium (NH4+) and sulphate (SO42−) concentration profiles were measured by DET across the sediment-water interface (SWI) in both a settling pond and iris reed bed within the wetland. The SRP concentrations in the sediment pore-waters of the settling pond were extremely high (up to 29,500 μg l−1) near the SWI. This is over an order of magnitude higher than the levels found in the water column, which in turn are over an order of magnitude higher than environmental levels proposed to limit eutrophication in rivers. The profiles demonstrated an average net release of SRP and NH4+ from the settling pond sediment to the overlying water of 58 mg m−2 d−1 (±32 mg m−2 d−1 (1 sd)) and 16 mg m−2 d−1 (±25 mg m−2 d−1 (1 sd)), respectively. The DET SO42− concentration profiles revealed that the sediment was anoxic within 2 cm of the SWI. Dredging of the reed bed made no significant difference to the P release characteristics across the SWI. The EPC0s were much lower than the SRP concentration of the overlying water, indicating that the sediment had the potential to act as a phosphate sink. The apparent contradiction of the DET and EPC0 results is attributed to the fact that DET measurements are made in situ, where as EPC0 measurements are ex situ. These results show that substantial releases of P can occur from wetland sediments, and also highlight the need for caution when interpreting ex situ EPC0 analytical results.  相似文献   

18.
Both 1,2-naphthoquinone (1,2-NPQ) and 1,4-naphthoquinone (1,4-NPQ) are reactive metabolites of naphthalene that are thought to be responsible for the naphthalene-induced cytotoxicity and genotoxicity. The aim of this study was to investigate the cumulative tissue dose of 1,2-NPQ and 1,4-NPQ in human serum derived from blood donors in Taiwan via measurements of albumin adducts by a methodology, which employs trifluoroacetic acid anhydride and methanesulfonic acid to selectively cleave cysteinyl adducts on proteins. Both 1,2-NPQ and 1,4-NPQ adducts were detected in all male and female subjects (n = 22). The median levels of 1,2-NPQ adduct in human subjects were estimated to be 268 (range 139-857) and 203 (range 128-1352) (pmol/g) in male (n = 11) and female (n = 11) subjects, respectively. In contrast, the median levels of 1,4-NPQ adduct were estimated to be 45.0 (range 22.0-117) and 38.9 (range 21.5-172) (pmol/g) in male and female subjects, respectively. We noticed that levels of 1,2-NPQ adduct were significantly correlated with those of 1,4-NPQ adduct (correlation coefficient r = 0.643, p < 0.01). Results from in vitro experiments confirmed that the production of naphthoquinones-derived adducts on serum albumin increased with increased concentration of naphthoquinones (0-100 μM). Linear relationships were observed over the range of concentration. Time-course experiments suggested that both 1,2-NPQ and 1,4-NPQ-derived adducts rapidly reached maximum values at 10 min mark and remained constant thereafter. The reaction rate constant analyses indicated that the second-order rate constants, representing in vitro reactions between naphthoquinones and cysteine residues of serum albumin, were estimated to be 0.0044/0.0002 L(g protein)−1 h−1, respectively. Overall, the cumulative tissue doses of 1,4-NPQ (217-316 nM h) in male and female subjects were ∼3-fold greater than those of 1,2-NPQ (76-98 nM h) in the study population. The initial concentrations of serum 1,2-NPQ and 1,4-NPQ in the study population were estimated to be between 145-188 and 807-1175 nM, respectively. We conclude that the relatively large amounts of naphthoquinones present in human serum may point to toxicological consequences.  相似文献   

19.
The anaerobic digestion of pure glycerol, which produces a baseline acetic acid to propionic acid ratio of 0.2, was studied in laboratory scale reactors (3 l working volume) at mesophilic temperature (37 °C) with 3000 mg chemical oxygen demand (COD) l−1d−1. During the experiment tVFA and C2-C6 VFA analysis and daily biogas yield measurement were carried out. Following 10 days of a 15% d−1 increase in the organic loading rate (OLR) of 3.0-10.5 g COD l−1d−1, the concentration of propionic acid increased to 6200-8000 mg l−1. Then the inoculum was divided into three parts feeding with 100% glycerol, 50% glycerol + 50% acetic acid, and 50% glycerol + 50% thick stillage, (presented in % of 2.60 g COD l−1d−1 OLR), respectively. The application of co-substrates reduced the recovery period by 5 days compared to feeding with pure glycerol. When the reactors were loaded with glycerol again (10% OLR raise per day) the previously applied co-substrates had a positive effect on the VFA composition and the biogas yield as well.  相似文献   

20.
In this study, two Membrane Biological Reactors (MBR) with submerged flat membranes, one at lab-scale conditions and the other at pilot-plant conditions, were operated at environmental temperature to treat an industrial wastewater characterised by low phenol concentrations (8-16 mg L−1) and high salinity (∼150-160 mS cm−1). During the operation of both reactors, the phenol loading rate was progressively increased and less than 1 mg phenol L−1 was detected even at very low HRTs (0.5-0.7 days). Membrane fouling was minimized by the cross flow aeration rate inside the MBRs and by intermittent permeation. Microbial community analysis of both reactors revealed that members of the genera Halomonas and Marinobacter (gammaproteobacteria) were major components. Growth-linked phenol degradation by pure cultures of Marinobacter isolates demonstrated that this bacterium played a major role in the removal of phenol from the bioreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号