首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王强  袁兴中  刘红 《生态学报》2012,32(21):6726-6736
浅滩和深潭是山地河流中常见的河流生境结构。2011年7月,在重庆开县东河上游双河口-杉木桥河段,选择21个浅滩和深潭,调查大型底栖动物,研究影响不同生境中底栖动物组成、分布和多样性的生态机理。结果表明:调查河段浅滩和深潭中大型底栖动物分别为31种和24种,密度分别为450.62 个/m2和86.24 个/m2,生物量分别为2.88 g/m2和0.55 g/m2。浅滩有指示种11种,即纹石蛾(Hydropsyche sp.)、假蜉(Iron sp.)、假二翅蜉(Pseudocloeon sp.)、舌石蛾(Glossosoma sp.)、高翔蜉(Epeorus sp.1)、背刺蜉(Notacanthurus sp.)、Heterocloeon sp、锯形蜉(Serratella sp.)、朝大蚊(Antocha sp.)、等蜉(Isonychia sp.)、溪颏蜉(Rhithrogena sp.)。深潭指示种仅蜉蝣(Ephemera sp.)和黑大蚊(Hexatoma sp.)两种。刮食者为两类生境的优势功能摄食类群。浅滩中滤食者和刮食者比例显著高于深潭,而收集者和捕食者显著低于深潭。两类生境中大型底栖动物群落结构差异显著。浅滩中大型底栖动物的密度、生物量、丰富度指数、Shannon-Wiener 指数、改进的Shannon-Wiener指数均明显高于深潭。受地貌形态、水力特征和冲淤变化规律影响的生境稳定性和异质性差异是导致大型底栖动物群落差异的主要原因。  相似文献   

2.
Huge efforts have been made during the past decades to improve the water quality and to restore the physical habitat of rivers and streams in western Europe. This has led to an improvement in biological water quality and an increase in fish stocks in many countries. However, several rheophilic fish species such as brown trout are still categorized as vulnerable in lowland streams in Flanders (Belgium). In order to support cost‐efficient restoration programs, habitat suitability modeling can be used. In this study, we developed an ensemble of habitat suitability models using metaheuristic algorithms to explore the importance of a large number of environmental variables, including chemical, physical, and hydromorphological characteristics to determine the suitable habitat for reintroduction of brown trout in the Zwalm River basin (Flanders, Belgium), which is included in the Habitats Directive. Mean stream velocity, water temperature, hiding opportunities, and presence of pools or riffles were identified as the most important variables determining the habitat suitability. Brown trout mainly preferred streams with a relatively high mean reach stream velocity (0.2–1 m/s), a low water temperature (7–15°C), and the presence of pools. The ensemble of models indicated that most of the tributaries and headwaters were suitable for the species. Synthesis and applications. Our results indicate that this modeling approach can be used to support river management, not only for brown trout but also for other species in similar geographical regions. Specifically for the Zwalm River basin, future restoration of the physical habitat, removal of the remaining migration barriers and the development of suitable spawning grounds could promote the successful restoration of brown trout.  相似文献   

3.
In this study, we focused on the drivers of micro- and mesohabitat variation of drift in a small trout stream with the goal of understanding the factors that influence the abundance of prey for drift-feeding fish. We hypothesized that there would be a positive relationship between velocity and drift abundance (biomass concentration, mg/m3) across multiple spatial scales, and compared seasonal variation in abundance of drifting terrestrial and aquatic invertebrates in habitats that represent the fundamental constituents of stream channels (pools, glides, runs, and riffles). We also examined how drift abundance varied spatially within the water column. We found no relationship between drift concentration and velocity at the microhabitat scale within individual pools or riffles, suggesting that turbulence and short distances between high- and low-velocity microhabitats minimize changes in drift concentration through settlement in slower velocity microhabitats. There were also minimal differences in summer low-flow drift abundance at the mesohabitat scale, although drift concentration was highest in riffle habitats. Similarly, there was no differentiation of drifting invertebrate community structure among summer samples collected from pools, glides, runs, and riffles. Drift concentration was significantly higher in winter than in summer, and variation in drift within individual mesohabitat types (e.g., pools or riffles) was lower during winter high flows. As expected, summer surface samples also had a significantly higher proportion of terrestrial invertebrates and higher overall biomass than samples collected from within the water column. Our results suggest that turbulence and the short length of different habitat types in small streams tend to homogenize drift concentration, and that spatial variation in drift concentrations may be affected as much by fish predation as by entrainment rates from the benthos. Handling editor: Robert Bailey  相似文献   

4.
1. The effects of predation risk, fish density and discharge on habitat use by juvenile brown trout, Salmo trutta, in four artificial streams were studied. Each stream contained three habitats, riffles, runs and pools, the latter two each being further divided into shallow margins and deeper mid-regions. 2. The presence of northern pike, Esox Indus, caused trout to decrease use of pool midregions, where pike also occurred, and to increase use of other habitats. Increasing the number of trout caused trout to increase use of pools and the shallow margins of runs. Decreasing discharge reduced the area of the run and pool margins covered by water, thereby reducing use of these areas by trout. 3. Habitat selection indices for the different treatments were calculated. The data indicated that riffles and the mid-regions of runs were preferred habitats, whereas run margins and pools were inferior habitats used when intraspecific fish densities were high. 4. Despite density- and discharge-dependent habitat use by trout, the number of trout consumed by pike was independent of trout density and discharge. 5. The results reveal the flexibility of habitat use by trout and illustrate the potential danger of applying data on habitat use in one stream to others where habitat availability and bioric interactions may differ.  相似文献   

5.
Xu BC  Xu WZ  Huang J  Shan L  Li FM 《Plant science》2011,181(6):644-651
A better understanding of the growth and interspecific competition of native dominant species under water stress should aid in prediction of succession in plant communities. In addition, such research would guide the selection of appropriate conservation and agricultural utilization of plants in semiarid environments that have not been very well characterized. Biomass production and allocation, relative competitive ability and water use efficiency of one C4 herbaceous grass (Bothriochloa ischaemum) and one C3 leguminous subshrub (Lespedeza davurica), both important species from the semiarid Loess Plateau of China, were investigated in a pot-cultivation experiment. The experiment was conducted using a replacement series design in which B. ischaemum and L. davurica were grown with twelve plants per pot, in seven combinations of the two species (12:0, 10:2, 8:4, 6:6, 4:8, 2:10, and 0:12). Three levels of water treatments included sufficient water supply (HW), moderate water stress (MW) and severe water stress (LW). These treatments were applied after seedling establishment and remained until the end of the experiment. Biomass production and its partitioning, and transpiration water use efficiency (TWUE) were determined at the end of the experiment. Interspecific competitive indices (competitive ratio (CR), aggressiveness (A) and relative yield total (RYT)) were calculated from the dry weight for shoots, roots and total biomass. Water stress decreased biomass production of both species in monoculture and mixture. The growth of L. davurica was restrained in their mixtures for each water treatment. L. davurica had significantly (P < 0.05) greater root:shoot allocation than B. ischaemum for each water treatment and proportion within the replacement series. Aggressiveness (A) values for B. ischaemum with respect to L. davurica were negative only at the proportions of B. ischaemum to L. davurica being 8:4 and 10:2 in LW treatment. B. ischaemum had a significantly (P < 0.05) higher CR value under each water treatment, and water stress considerably reduced its relative CR while increased that of L. davurica. RYT values of the two species indicated some degree of resource complimentarity under both water sufficient and deficit conditions. The results suggest that it is advantageous for growing the two species together to maximize biomass production, and the suggested ratio was 10:2 of B. ischaemum to L. davurica because of significantly higher (P < 0.05) RYT and TWUE under low water availability condition.  相似文献   

6.
Whitledge  Gregory W.  Rabeni  Charles F. 《Hydrobiologia》2000,437(1-3):165-170
Benthic community metabolism was measured in three habitats (riffles, runs and pools) during spring (May), summer (July) and fall (October) in the Jacks Fork River, Missouri, using an in situ chamber technique. Net community productivity (NCP) and gross community productivity (GCP) were highest in riffles, lowest in pools and intermediate in runs. Rates of NCP and GCP during spring and fall were similar for both riffles and runs, but NCP and GCP increased significantly during summer in both habitats. Pool substrates were always heterotrophic and exhibited no significant seasonal changes in NCP or GCP. Community respiration (CR) was highest in riffles, intermediate in runs and lowest in pools, but interhabitat differences in CR were generally smaller than for NCP. Rates of CR during spring and fall were similar, but CR increased significantly during summer. Results indicate that the physical conditions associated with each habitat strongly affect benthic community metabolism in this stream and that the relative proportions of these habitats will influence the ratio of living algal:detrital organic matter potentially available for consumers.  相似文献   

7.
We examined the effects of chaparral wildfire on stream-breeding California newts (Taricha torosa) in a 750-m stretch of a perennial Santa Monica Mountain stream (Los Angeles County). Detailed field surveys of 1992 and 1993 established the composition (run, riffle, pool) of this habitat and determined the oviposition sites of newts. We also quantified California newt egg mass density and estimated the density of newt adults. A chaparral wildfire burned the entire study site on 2 November 1993. Using the same methods, we collected field survey data in 1994 and 1996. Erosion following the 1993 wildfire produced major changes in stream morphology and composition. Pools and runs represented approximately 40–50% of pre-fire stream area. In the spring following the fire, the stream consisted of less than 20% run and pool. Pools that did remain were often smaller and shallower. The average density of adult California newts did not differ among years. The total number of newt egg masses observed in the spring after the fire was approximately one-third of egg mass counts from pre-fire surveys. Most California newt egg masses were laid in pools and runs; California newts prefer deeper slow-moving water. We conclude that fire-induced landslides and siltation have eliminated pools and runs, thus reducing the amount of habitat suitable for oviposition. Habitat alterations caused by fire likely account for the observed reduction of egg masses at the stream. Received: 11 June 1996 / Accepted: 18 December 1996  相似文献   

8.
Few studies have been carried out on stream ecology in southern Africa although many species are endangered. This study investigated the stream fish assemblage and their habitat associations over a period of 3 months (October 2004 to January 2005), in view of the proposal to build a dam across the Nyagui River. Twenty-four fish species were collected and were separated into groups based on preferred microhabitats. The first group, dominated by Barbus paludinosus , comprised species collected from the upstream stations with slow flow, shallow depth (pools) and fine substrate type. Species associated with riffles, which included Chiloglanis neumanni , Labeobarbus marequensis and Opsaridium zambezense , comprised the second group on the downstream. The last group comprised species preferring pools with rock substrate and slow flow such as Pharyngochromis acuticeps and Pseudocranilabrus philander . The species were consistently associated with their habitat types throughout the sampling period. This relationship may be explained by the fish's morphological adaptations. Species richness increased from nine in the upstream section to twenty in the downstream section and this was related to increasing habitat complexity downstream. The construction of the Kunzvi Dam across the Nyagui River is likely to lead to loss of rheophilic species while cichlids and introduced species may increase.  相似文献   

9.
The use of stream-margin habitat by age-0 salmonids has been studied, but differences in use among various types of habitat along stream margins has not been addressed. We described the nighttime use of habitat features by age-0 brown trout (Salmo trutta) among three types of stream-margin habitat late in the growing season (August–September) and assessed the extent to which use of habitat features within each type differed over the sampling period. Differences in water depths, water velocities, distances from shore, and substrate at the locations of fish along the margins of pools, the margins of riffles, and in backwaters were studied. Variation in habitat use also was observed during the study period as fish increased in length. Our observations are important considerations when developing habitat suitability criteria for assessment of instream-flow needs of age-0 brown trout.  相似文献   

10.
Seven sites on three tributaries with intermittent flow regimes in the middle reaches of the Guadiana, i.e. Xévora, Caia and Degebe, were sampled approximately every 3 months from April 1995 to April 1997. The density and biomass of fish were greater in downstream rivers and sites. Along the Xévora River, a series of point abundance samples showed evidence of fish zonation along the river. Canonical correspondence analysis (CCA) suggested a simple relationship between the different species and their preferred habitat. The small-sized Rutilus alburnoides and Leuciscus pyrenaicus used most or all of the habitats with some cover and flowing water. Greater concentrations of larger fish were found in downstream reaches which generally had greater depths as stream width increased: large Barbus microcephalus , B. steindachneri and B. comiza preferred such sites on the Degebe River. Droughts in seasonal Mediterranean streams such as the Guadiana River are a predictable natural disturbance. In the summer, flow ceases and some stretches of river consist of isolated pools. This results in intense aggregations of fish and possible competition for food and/or space. Although some species are well adapted to natural droughts, habitat degradation and possibly the introduction of exotic species contribute to marked variability in species composition.  相似文献   

11.
The declining condition of river systems associated with rapid development of human societies has led to substantial declines in fish diversity. One cause of decline is the loss of in‐stream Structural Woody Habitat (SWH), an important component of stream ecosystems, particularly as fish habitat. As a result there has been an increase in the number of rehabilitation programs that introduce SWH into rivers. This paper assesses fish responses to SWH introduction in riffles and pools in the Hunter River, eastern Australia, using a Multiple‐Before‐After‐Control‐Impact (MBACI) experimental and analytical design. In the riffle experiment, species richness was comparable among all control and treatment riffles across the entire study period. However, there were significant differences in assemblage structure, fish abundance, and biomass between control and treated riffles. The introduction of SWH (bank embedded deflector jams) appeared to create additional habitat which was utilized by one native fish species (Retropinna semoni—Australian smelt) and one alien species (Gambusia holbrooki—mosquito fish). In pools there were no significant changes in fish species richness, abundance, or biomass following introduction of SWH (pool jams). These findings have important practical and cost implications in terms of the design and implementation of rehabilitation strategies using SWH to restore fish assemblages in degraded streams.  相似文献   

12.
SUMMARY 1. Stream reaches contain assortments of various habitat types that can be defined at different spatial scales, such as channel unit (e.g. pools, riffles) and subunit (patches within channel units). We described longitudinal (upstream–downstream) patterns of stream habitat structure by considering subunits as structural elements, and examined their effects on the abundance of masu salmon ( Oncorhynchus masou ) and rosyface dace ( Leuciscus ezoe ) in a third-order tributary of the Teshio River in northern Hokkaido, Japan.
2. Nine subunit types were determined on the basis of water depth, current velocity and substrate, using 0.5 × 0.5 m grids. Although both masu salmon and rosyface dace used pools as a major habitat, the former preferred a subunit type occurring at pool heads (PH subunit) while the latter preferred a slow-current edge type (SE-2 subunit).
3. Along the course of the stream, slow-edge subunits (SE-1, 2 and 3) increased in frequency downstream while fast-edge subunits (FE-1 and 2) decreased, suggesting a downstream development of slow-current edges. Regression analyses indicated that longitudinal variation in masu salmon abundance was explained by the area of PH, rather than pools. Masu salmon density increased with the area of PH. Rosyface dace abundance was explained by a combination of water depth and the area of SE-2, both effects being positive.
4. Longitudinal variations in the abundance of both species were related to the abundance of their preferred habitat at the subunit scale, rather than channel-unit scale. The results emphasise the importance of fine-scale patchiness when examining stream fish habitats.  相似文献   

13.
The lamina area damaged and biomass per leaves removed by invertebrate herbivores were measured across seasons on water hyacinth, Eichhornia crassipes (Mart.) Solms (Pontederiaceae). The amount of the leaf biomass per meter square lost through herbivory was also assessed in different sampling dates in the plant population. Ten leaves of water hyacinth were sampled in each of 18 site-habitat-date combinations. Sampling dates were chosen to follow the plant phenology. The lamina area damaged (surface abrasions and holes) was measured with the visual estimation method; biomass removed by herbivores (surface abrasions and holes) was calculated indirectly from the damaged lamina area. Significant differences in total damaged area and removed biomass per lamina were found between sampling dates at each site, with highest values in March (end of growth period). Total damaged area per lamina (surface abrasions + holes) varied between 11% in March and 6% in July (decay period). Total removed biomass (surface abrasions + holes) varied between 27% in March and 13% in July. Significant differences in biomass removed by herbivory were found between sampling dates at each site. Biomass of lamina removed by herbivores per m−2 varied between 26 and 13% in different seasons. The herbivore damage of discrete samples and the indirect method to calculate the biomass removed is useful in sites with aquatic free floating plants, where experimental exclusion of insects may be difficult to carry out.  相似文献   

14.
Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water temperature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species’ distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions.  相似文献   

15.
One of the largest contiguous seagrass ecosystems in the world is located on the shallow continental shelf adjacent to the west coast of Florida, USA and is comprised of seasonally ephemeral Halophila decipiens meadows. Little is known about the demography of the west Florida shelf H. decipiens, which may produce 4.56 × 108 g C day−1 or more during the peak growing season. We documented seagrass distribution, biomass, and productivity, and density of sediment seed reserves, seedlings, flowers and fruits on the southeastern portion of the west Florida shelf by sampling along a transect at three stations in 10, 15, and 20 m water depth. Biomass, flower, fruit, seedling, and seed bank densities tended to be highest at stations in 10–15 m water depth and lowest at 20 m. Flowers and fruit were most prevalent during summer cruises (June and August 1999, July 2000). Seedling germination occurred during summer, fall (October 1999), and winter (January 2000) sampling events, with the highest seedling densities present during the winter. Seed bank density remained consistent through time. A Category I hurricane with sustained winds of 120 km h−1 passed over the stations, but only limited impact on H. decipiens biomass was observed. The presence of a persistent seed bank provides for recovery after storm disturbance, annual reestablishment of populations, and continual maintenance of the 20,000 km2 of deep water seagrass habitat present on the west Florida shelf.  相似文献   

16.
We examined the hypothesis that secondary production of a community of stream crayfish (Orconectes spp.) depended upon the available suite of channel units (e.g., riffle, run, pool) and that age-specific use of channel units was the important underlying mechanism. Nine cohorts of each of three species over a 10-year period at two sites on the Jacks Fork River, Missouri, USA, were sampled. Cohort-production estimates were calculated for specific channel units: riffles, runs, pools, backwaters and emergent vegetation patches. Orconectes luteus was the most productive species with similar production across channel units. Production of O. ozarkae and O. punctimanus was significantly greater in vegetation patches than other channel units. There were no species by channel unit differences in production between the two sites. Although total site production for some species substantially changed over the 10-year period, relative production differences between habitats remained temporally stable. Differences in mean production between channel units were largely due to age-class habitat use rather than differences related to growth. Some channel units particularly susceptible to common anthropogenic activities that result in hydrograph alterations and homogenization of physical habitat, e.g., backwaters, vegetation patches, and pools, were particularly important as high production areas for two species. A variety of channel units appears necessary for maintaining the high secondary production and diversity of crayfish in this system. Handling editor: D. Dudgeon  相似文献   

17.
I evaluated the microhabitat distribution of the Arkansas River shiner, Notropis girardi, a candidate species for protection under the Endangered Species Act over a two-year period. Seasonal microhabitat samples were taken at three localities along the South Canadian River in central Oklahoma. The microhabitats sampled were defined subjectively based on structural and substrate characteristics: adjacent to stream banks, underwater sand ridges, or exposed sand islands, and within stream pools, midchannels, or backwaters. At each microhabitat, the following physicochemical measurements were made: depth, temperature, current speed, dissolved oxygen, conductivity, and pH. Notropis girardi used many microhabitats and the patterns varied seasonally and ontogenetically. Contingency tests indicated that bank, island, and sandridge habitats had significantly more N. girardi than the others (p<0.01), whereas midchannel habitats were used significantly less often than other habitat types. A greater number of individuals were found in microhabitats defined by depths of 0–50cm and current speeds of 0–50cms-1 although faster current speeds were used with high frequency. Selection of deeper water was only apparent during the summer. Juveniles selected shallow, slow flowing backwater habitat types more frequently than did adults. Habitats adjacent to underwater sand ridges were important to both adults and juveniles, but similar types such as islands and banks also were used. No single physicochemical feature was linked to high densities of this species. During its life cycle, N. girardi used most of the range of features encountered in the S. Canadian River; thus, maintenance of the riverine landscape (i.e. all of the attributes of rivers in the native range of N. girardi) will be necessary to ensure that this species has access to appropriate habitat types throughout its life cycle.  相似文献   

18.
Predation risk can affect habitat selection by water column stream fish and crayfish, but little is known regarding effects of predation risk on habitat selection by benthic fish or assemblages of fish and crayfish. I used comparative studies and manipulative field experiments to determine whether, (1) habitat selection by stream fish and crayfish is affected by predation risk, and (2) benthic fish, water column fish, and crayfish differ in their habitat selection and response to predation risk. Snorkeling was used to observe fish and crayfish in, (1) unmanipulated stream pools with and without large smallmouth bass predators (Micropterus dolomieui >200 mm total length, TL) and (2) manipulated stream pools before and after addition of a single large smallmouth bass, to determine if prey size and presence of large fish predators affected habitat selection. Observations of microhabitat use were compared with microhabitat availability to determine microhabitat selection. Small fish (60–100 mm TL, except darters that were 30–100 mm TL) and crayfish (40–100 mm rostrum to telson length; TL) had significantly reduced densities in pools with large bass, whereas densities of large fish and crayfish (> 100 mm TL) did not differ significantly between pools with and without large bass. Small orangethroat darters (Etheostoma spectabile), northern crayfish (Orconectes virilis), and creek chubs (Semotilus atromaculatus) showed significantly greater densities in pools without large bass. The presence of large smallmouth bass did not significantly affect depths selected by fish and crayfish, except minnows, which were found significantly more often at medium depths when bass were present. Small minnows and large and small crayfish showed the greatest response to additions of bass to stream pools by moving away from bass locations and into shallow water. Small darters and sunfish showed an intermediate response, whereas large minnows showed no significant response to bass additions. Response to predation risk was dependent on prey size and species, with preferred prey, crayfish and small minnows, showing the greatest response. Small benthic fish, such as darters, are intermediate between small water column fish and crayfish and large water column fish in their risk of predation from large smallmouth bass.  相似文献   

19.
To examine the effects of selective timber extraction on fish communities in Sabah, Malaysia, quantitative samples of fishes were taken from thirteen streams running through undisturbed rainforest or through forest that had been selectively logged 3–18 years previously. Multivariate analysis (canonical discriminant analysis and cluster analysis) indicated that mesohabitats within streams (riffles and pools) and differences in stream size were more important in determining community structure than logging history. Riffles in streams running through logged or undisturbed forest were indistinguishable using relative biomass or abundance data, as were pools from small streams (approximate order 2). Fish communities from pools in larger streams showed some separation in multivariate space corresponding to a complex set of relative changes in abundance and/or biomass between species. However it was difficult to unambiguously assign such changes to logging regime alone. There appeared to be some differences in fish communities between streams in recently-logged (3–7 years) and old-logged (17–18 years) areas related to abundance or biomass of three cyprinids (Garra borneensis, Lobocheilos bo and Osteochilus chini). Only one species, Pangio mariarum, was not found in streams in logged forest, but it was only found at one location in undisturbed forest. A number of other species showed significant differences in abundance or biomass between sites but most of these were only present at some sites and in low abundance. Principal components analysis of habitat data showed that riffle sites were homogeneous whatever their logging history as were pools in unlogged large streams. Pools in logged large streams were significantly more heterogeneous but in a random rather than systematic manner. It is concluded that the type of selective logging practices used locally have low impact on fish communities through mechanisms of persistence and/or rapid recolonisation.  相似文献   

20.
We investigated the influence of mesohabitats on fish communities and on attributes of a multimetric index of fish integrity in the River Meuse basin. Three consecutive 150 m sectors in a Meuse tributary (Ourthe, Belgium), each divided in two or three sub-sections presenting various percentages of mesohabitats (riffles, runs and pools), were sampled by electrofishing. In each sub-section, relative and absolute biomasses of each fish species were estimated. The presence of limnophilic cyprinids was inversely correlated (r 2 = 0.70 and 0.56 for absolute and relative biomass, respectively) with the percentage of riffles. Salmonids preferred runs and their absolute biomass was highly dependent (r 2 = 0.71) on the proportion of this mesohabitat, whereas biomass of limnophilic cyprinids was highly correlated (r 2 = 0.75 and r 2 = 0.82 for absolute and relative biomass, respectively) with pools. A positive correlation (r 2 = 0.58) was established between relative biomass of predators and the percentage of this mesohabitat. An IBI was calculated for the three sectors on the basis of results from the entire Meuse catchment. Scores of most metrics showed low variation among sectors but values of two metrics (% of individuals as tolerant, % of individuals as ubiquitous spawners) were greatest in sector 2, where pools predominated. Further, the lowest IBI score (51/65, integrity class: fair to good) was recorded in sector 2 where pools dominated, while sector 1 (where runs dominated) obtained the highest score (63/65, integrity class: excellent). Sector 3 which has a balanced proportion of riffles and runs obtained an intermediate score (57/65). Considering the response of IBI to the natural variation of mesohabitat proportions, it appears that an accurate sampling requires the prospection of a variety of mesohabitats (with a majority of runs) for the evaluation of river quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号