首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen transfer capacity and removal of ammonium and organic matter were investigated in this study to evaluate the performance of a lab-scale tidal flow constructed wetland. Average oxygen supply under tidal operation (350 g m−2 d−1) was much higher than in conventional constructed wetlands (<100 g m−2 d−1), resulting in enhanced removal of BOD5 and NH4+. Theoretical oxygen demand from BOD5 removal and nitrification was approximately matched by the measured oxygen supply, which indicated aerobic consumption of BOD5 and NH4+ under tidal operation. When BOD5 removal increased from 148 g m−2 d−1 to 294 g m−2 d−1, neither exhausted oxygen from the aggregate matrix during feeding period (111 g m−2 d−1) nor effluent dissolved oxygen (DO) concentration (2.8 mg/L) changed significantly, demonstrating that the oxygen transfer potential of the treatment system had not been exceeded. However, even though DO had not been exhausted, inhibition of nitrification was observed under high BOD loading. The loss of nitrification was attributed to excessive heterotrophic biofilm growth believed to induce oxygen transfer limitations or oxygen competition in thickened biofilms.  相似文献   

2.
3.
Industrial wastewater treatment comprises several processes to fulfill the discharge permits or to enable the reuse of wastewater. For tannery wastewater, constructed wetlands (CWs) may be an interesting treatment option. Two-stage series of horizontal subsurface flow CWs with Phragmites australis (UP series) and Typha latifolia (UT series) provided high removal of organics from tannery wastewater, up to 88% of biochemical oxygen demand (BOD5) (from an inlet of 420 to 1000 mg L−1) and 92% of chemical oxygen demand (COD) (from an inlet of 808 to 2449 mg L−1), and of other contaminants, such as nitrogen, operating at hydraulic retention times of 2, 5 and 7 days. No significant (P < 0.05) differences in performance were found between both the series. Overall mass removals of up to 1294 kg COD ha−1 d−1 and 529 kg BOD5 ha−1 d−1 were achieved for a loading ranging from 242 to 1925 kg COD ha−1 d−1 and from 126 to 900 kg BOD5 ha−1 d−1. Plants were resilient to the conditions imposed, however P. australis exceeded T. latifolia in terms of propagation.  相似文献   

4.
This study investigated three lab-scale hybrid wetland systems with traditional (gravel) and alternative substrates (wood mulch and zeolite) for removing organic, inorganic pollutants and coliforms from a synthetic wastewater, in order to investigate the efficiency of alternative substrates, and monitor the stability of system performance. The hybrid systems were operated under controlled variations of hydraulic load (q, 0.3-0.9 m3/m2 d), influent ammoniacal nitrogen (NH4-N, 22.0-80.0 mg/L), total nitrogen (TN, 24.0-84.0 mg/L) and biodegradable organics concentration (BOD5, 14.5-102.0 mg/L). Overall, mulch and zeolite showed promising prospect as wetland substrates, as both media enhanced the removal of nitrogen and organics. Average NH4-N, TN and BOD5 removal percentages were over 99%, 72% and 97%, respectively, across all three systems, indicating stable removal performances regardless of variable operating conditions. Higher Escherichia coli removal efficiencies (99.9%) were observed across the three systems, probably due to dominancy of aerobic conditions in vertical wetland columns of the hybrid systems.  相似文献   

5.
Xu N  Zhou S  Yuan Y  Qin H  Zheng Y  Shu C 《Bioresource technology》2011,102(17):7777-7783
A novel bioelectrochemical reactor with anodic biooxidation coupled to cathodic bioelectro-Fenton was developed for the enhanced treatment of highly concentrated organic wastewater. Using swine wastewater as a model, the anode-cathode coupled system was demonstrated to be both efficient and energy-saving. Without any external energy supply to the system, BOD5, COD, NH3-N and TOC in the wastewater could be greatly reduced at both 1.1 g COD L−1 d−1 and 4.6 g COD L−1 d−1 of OLR, with the overall removal rates ranging from 62.2% to 95.7%. Simultaneously, electricity was generated at around 3-8 W m−3 of maximum output power density. Based on electron balance calculation, 60-65% of all the electrons produced from anodic biooxidation were consumed in the cathodic bioelectro-Fenton process. This coupled system has a potential for enhanced treatment of high strength wastewater and provides a new way for efficient utilization of the electron generated from biooxidation of organic matters.  相似文献   

6.
The operation of tidal flow was studied using a pilot‐scale system treating high strength piggery wastewater. Located on a farm in Staffordshire, UK, the system consisted of five wetland treatment stages vegetated with common reeds of Phragmites australis. Wastewater samples were collected from the inlet and outlet of each stage and analyzed for BOD5, COD, NH4‐N, NO3‐N, NO2‐N, SS, PO4‐P and pH. Average hydraulic and organic loadings on the system were 0.12 m3/m2 d and 240 g BOD/m2 d, respectively, which is considerably higher than the typical loadings on conventional subsurface flow systems. On average, BOD5 and COD were reduced by 82 % and 80 % from initial concentrations of 2000 mg/L and 2750 mg/L, respectively, across the whole system. The first‐order kinetics constant for BOD5 removal (KBOD in m/d) in this tidal flow system is approximately 2.5 times the rate constant obtainable in a typical horizontal flow system, demonstrating a more efficient removal of organic matter in tidal flow wetlands. The overall efficiency of the system was found to increase with time before stabilizing towards the end of a start‐up period. Straight‐line correlations were established between the loading and removal of BOD5 and COD. Contributions by individual stages to the overall treatment were analyzed. SEM images of wetland media demonstrated the formation of biofilms and microbial activities inside the matrices of the wetland system, which accounted for the degradations of organic pollutants.  相似文献   

7.
Dewatered alum sludge, a widely generated by-product of drinking water treatment plants using aluminium salts as coagulants was used as main substrate in a pilot on-site constructed wetland system treating agricultural wastewater for 11 months. Treatment performance was evaluated and spreadsheet analysis was used to establish correlations between water quality variables. Results showed that removal rates (in g/m2 d) of 4.6-249.2 for 5 day biochemical oxygen demand (BOD5), 35.6-502.0 for chemical oxygen demand (COD), 2.5-14.3 for total phosphorus (TP) and 2.7-14.6 for phosphate (PO4P) were achieved. Multiple regression analysis showed that effluent BOD5 and COD can be predicted to a reasonable accuracy (R2 = 0.665 and 0.588, respectively) by using input variables which can be easily monitored in real time as sole predictor variables. This could provide a rapid and cheap alternative to such laborious and time consuming analyses and also serve as management tools for day-to-day process control.  相似文献   

8.
A multi-media biological aerated filter (MBAF) with clinoptilolite media was used to treat synthetic wastewater. Coal ash bioceramsite with supplemental metallic iron was added to the clinoptilolite media of MBAFs in a brick-wall embedded design. Performance parameters, such as hydraulic, organic, N and P loading capacity and microbial community composition were studied for different quantity of supplemental metallic iron contained in three MBAFs. The MBAFs with more metallic iron were found to have superior hydraulic and organic loading, and higher N and P capacities. COD, NH3-N and TP removal dropped by 7-10%, 6-7% and 4-5%, respectively, with when hydraulic loading was raised from 2.8 to 7.5 m3 m−2 d−1. NH3-N removal also decreased 8-9% when ammonia loading was elevated from 0.078 to 0.156 kg NH3-N m−3 d−1. Real-time PCR revealed a relatively stable bacterial community composed primarily of eubacteria that formed after an initial 120 d operational period. Doubling the amount of metallic iron in the bioceramsite media resulted in a twofold increase of eubacteria in the MBAF, but a decrease in the ratio of anaerobic ammonia-oxidizing bacteria to total bacteria.  相似文献   

9.
This study aimed to evaluate the contaminant removal efficiency of shallow horizontal subsurface flow treatment wetlands (SSF TWs) as a function of (1) primary treatment (hydrolytic upflow sludge blanket (HUSB) reactor vs. conventional settling) and (2) operation strategy (alternation of saturated/unsaturated phases vs. permanently saturated). An experimental plant was constructed, operated and surveyed for the main water quality parameters over a period of 2.5 years. The plant had 3 treatment lines: a control line (settler-wetland permanently saturated), a batch line (settler-wetland operated with saturated/unsaturated phases) and an anaerobic line (HUSB reactor-wetland permanently saturated). In each line wetlands had a surface area of 2.80 m2, a water depth of 25 cm and a granular medium D60 = 7.3 mm, and were planted with common reed. During the study period the wetlands were operated at a hydraulic and organic load of 28.5 mm/d and about 4.7 g BOD/m2 d, respectively. Effluent average redox potential was lower for the anaerobic line (−45 ± 78 mV) than for the other two lines (3 ± 92.7 and −5 ± 71 mV for control and batch, respectively). Overall, chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and ammonium mass removal efficiencies were slightly greater for the batch line (88%, 96% and 87%, respectively) than for the control line (83%, 94% and 80%) and the anaerobic line (80%, 87% and 73%). During cold seasons, COD and ammonium removal in the batch line was around 30% and 50% higher than in the control line, respectively. The results of this study indicate that the implementation of a HUSB reactor as primary treatment did not enhance the treatment capacity of the system (in comparison with a conventional settler). The efficiency of treatment wetland systems with horizontal subsurface flow can be improved using a batch operation strategy.  相似文献   

10.
Wetlands are capable of reducing nutrient loadings to receiving water bodies, and hence many artificial wetlands have been constructed for wastewater nutrient removal. In this study, diffusive equilibrium in thin films (DETs) and equilibrium phosphorus concentration (EPC0) analysis were used to examine the role of sediment as a nutrient source or sink in a constructed treatment wetland in summer. The effect of dredging on sediment-water nutrient exchange was also studied. Soluble reactive phosphorus (SRP), ammonium (NH4+) and sulphate (SO42−) concentration profiles were measured by DET across the sediment-water interface (SWI) in both a settling pond and iris reed bed within the wetland. The SRP concentrations in the sediment pore-waters of the settling pond were extremely high (up to 29,500 μg l−1) near the SWI. This is over an order of magnitude higher than the levels found in the water column, which in turn are over an order of magnitude higher than environmental levels proposed to limit eutrophication in rivers. The profiles demonstrated an average net release of SRP and NH4+ from the settling pond sediment to the overlying water of 58 mg m−2 d−1 (±32 mg m−2 d−1 (1 sd)) and 16 mg m−2 d−1 (±25 mg m−2 d−1 (1 sd)), respectively. The DET SO42− concentration profiles revealed that the sediment was anoxic within 2 cm of the SWI. Dredging of the reed bed made no significant difference to the P release characteristics across the SWI. The EPC0s were much lower than the SRP concentration of the overlying water, indicating that the sediment had the potential to act as a phosphate sink. The apparent contradiction of the DET and EPC0 results is attributed to the fact that DET measurements are made in situ, where as EPC0 measurements are ex situ. These results show that substantial releases of P can occur from wetland sediments, and also highlight the need for caution when interpreting ex situ EPC0 analytical results.  相似文献   

11.
Straightened channels and altered and drained adjacent riparian wetlands have adversely impacted streams and rivers throughout the US Midwest. This research investigated the biological connection and water quality of a 0.07 ha diversion wetland and adjacent stream at the Olentangy River Wetland Research Park in central Ohio. Before the flowthrough conditions were established, we demonstrated with mark and recapture techniques that the wetland already was a biorefuge for fish under extreme conditions; two species (Centrarchidae) captured in the stream before a total drawdown of the stream were found in the wetland a year later. In addition, water at the bottom remained at around 4 °C over the winter likely due to groundwater input, which possibly provided a warmer shelter for fish. Stream water quality of the lower section, downstream of the wetland outlet, generally improved with hydrologic pulsing in spring after flow-through reconnection due to the trapping of nutrients in the wetland. Mean removal per flood pulse for nitrate-nitrite, total nitrogen (TN), soluble reactive phosphorus (SRP), total phosphorus (TP) were 1.81 g-N m−2 per pulse, 1.02 g-N m−2 per pulse, 0.014 g-P m−2 per pulse, and 0.004 g-P m−2 per pulse, respectively. The wetland exported 2.8 g-C m−2 per pulse of organic carbon. A greater attenuation of NO3 and TP occurred in the marshy outlet channel section of the wetland than the open water section. The diversion wetland successfully removed nitrate and phosphorus during storm pulses in spring. Similar designs should be applied to other locations to examine their function under different climatic and hydrological conditions.  相似文献   

12.
We assessed the functional success of restored wetlands by determining if the patterns in dissolved oxygen (DO), temperature, and pH were similar to those conditions observed in natural wetlands. The Beaver Creek Wetlands Complex consists of dozens of marshes and ponds built in a former Licking River floodplain, in the hills of east Kentucky, USA. In natural wetland ecosystems, aquatic primary production is highest in emergent and submerged vegetations zones; where daybreak dissolved oxygen (DO) is often near zero, and DO may rise to well over 100% saturation past mid-day. Open-water areas, dominated by phytoplankton, have less dramatic diel DO fluctuations—often without pre-dawn anoxia. Compared to open water, temperatures fluctuate less dramatically in vascular vegetation, due to shading and suppression of wind and waves. Measurements of ecosystem metabolism (diel changes in DO and pH) in three aquatic habitats of the constructed wetlands (emergent vegetation, submerged vegetation, open water) were compared to these natural ideals. In Beaver Creek Wetlands, water temperature patterns were not as dramatic as in natural habitats, nor did they did follow a similar trend. Waters in emergent vegetation (29.5 °C) were warmest; submerged vegetation coolest (26.5 °C); open-water intermediate (27.4 °C). Diel DO and pH patterns were not similar to natural habitats. Highest net primary production (NPP) and gross primary production (GPP) were measured in emergent vegetation waters (mean GPP = 7.58 g m−2 d−1); lowest in submerged vegetation (mean GPP = 5.48 g m−2 d−1); and intermediate in open-water (mean GPP = 6.95 g m−2d−1). Diel pH changes were greatest in the highly productive emergent waters (median maximum daily difference of 0.36), and not as pronounced in submerged vegetation and open-water (median maximum change = 0.16 and 0.22, respectively). Water-column respiration was generally about double NPP. Like natural ecosystems, near anoxic DO concentrations were consistently measured in emergent and submerged plants before dawn; whereas open-water zones were generally >4 mg l−1. These restored wetland systems may need more time to be functionally equivalent to natural marshes.  相似文献   

13.
Hybrid constructed wetland systems have recently been used to treat wastewaters where high demand for removal of ammonia is required. However, these systems have not been used too often for small on-site treatment systems. This is because in many countries ammonia is not limited in the discharge from small systems. Hybrid systems have a great potential to reduce both ammonia and nitrate concentrations at the same time. In our study we employed a three-stage constructed wetland system consisting of saturated vertical-flow (VF) bed (2.5 m2, planted with Phragmites australis), free-drained VF bed (1.5 m2, planted with P. australis) and horizontal-flow (HF) bed (6 m2, planted with Phalaris arundinacea) in series. All wetlands were originally filled with crushed rock (4-8 mm). However, nitrification was achieved only after the crushed rock was replaced with sand (0-4 mm) in the free-drain wetland. Also, original size of crushed rock proved to be too vulnerable to clogging and therefore, in the first wetlands the upper 40 cm was replaced by coarser fraction of crushed rock (16-32 mm) before the second year of operation started. The system was fed with mechanically pretreated municipal wastewater and the total daily flow was divided into two batches 12 h apart. The evaluation of the results from the period 2007 to 2008 indicated that such a system has a great potential for oxidation of ammonia and reduction of nitrate. The ammonia was substantially reduced in the free-drained VF bed and nitrate was effectively reduced in the final HF bed. The inflow mean NH4-N concentration of 29.9 mg/l was reduced to 6.5 mg/l with the average removal efficiency of 78.3%. At the same time the average nitrate-N concentration rose from 0.5 to only 2.7 mg/l at the outflow. Removal of BOD5 and COD amounted to 94.5% and 84.4%, respectively, with respective average outflow concentrations of 10 and 50 mg/l. Phosphorus was removed efficiently despite the fact that the system was not aimed at P removal and therefore no special media were used. Phosphorus removal amounted in 2008 to 65.4%, but the average outflow concentration of 1.8 mg/l is still high. The results of the present study indicate very efficient performance of the hybrid constructed wetlands, but optimal loading parameters still need to be adjusted. The capital cost of the experimental system is comparable to the conventional on-site treatment plant but the operations and maintenance costs are about one third of the conventional plant.  相似文献   

14.
An optode device for net-photosynthesis measurements, based on oxygen-depending quenching of fluorescence from O2-specific sensors, and PAM fluorometry have been used to study diurnal courses of net-photosynthesis and the Fv/Fm ratio of the submerged plant Lagarosiphon major. Plants were pre-cultivated and studied in large mesocosm flow-through outdoor tanks under 50% and 80% shade cloth, respectively. Growth under the different shade cloths resulted in similar light compensation points (∼20 μmol photons m−2 s−1), but strongly different light saturation levels, with about 150 μmol m−2 s−1 for plants grown under 80% shade cloth and about 350 μmol m−2 s−1 for plants grown under 50% shade cloth. Plants under both growth conditions showed a transient reduction of the maximum Fv/Fm value in the afternoon (down to 70% of the morning control values under 80% shade cloth and down to 85% under 50% shade cloth), which was not accompanied by a reduction of the net photosynthetic rate. This indicated that the fluorescence parameter Fv/Fm must not be a reliable indicator of the rate of photosynthesis under all conditions. The new photo-optical device became evidenced as a valuable tool not only for laboratory experiments, but also for field studies of gas exchange of submerged plants.  相似文献   

15.
Organic and nitrogen removal efficiencies in subsurface horizontal flow wetland system (HSF) with cattail (Typha augustifolia) treating young and partially stabilized solid waste leachate were investigated. Hydraulic loading rate (HLR) in the system was varied at 0.01, 0.028 and 0.056 m3/m2 d which is equivalent to hydraulic retention time (HRT) of 28, 10 and 5 d. Average BOD removals in the system were 98% and 71% when applied to young and partially stabilized leachate at HLR of 0.01 m3/m2 d. In term of total kjeldahl nitrogen, average removal efficiencies were 43% and 46%. High nitrogen in the stabilized leachate adversely affected the treatment performance and vegetation in the system. Nitrogen transforming bacteria were found varied along the treatment pathway. Methane emission rate was found to be highest at the inlet zone during young leachate treatment at 79–712 mg/m2 d whereas CO2 emission ranged from 26–3266 mg/m2 d. The emission of N2O was not detected.  相似文献   

16.
Biodiversity and ecosystem functioning experiments have demonstrated that plant biomass of species grown in mixtures is often greater than plant biomass of monocultures (i.e., mixtures over yield). While we understand that plant species utilize resources differently, how a combination of species increases resource use and productivity is not well known, especially in wetland ecosystems. Here, we used a mesocosm experiment to explore diversity effects on plant biomass production and to examine the role of N partitioning as a mechanism for overyielding in wetland ecosystems. Plant functional groups (FGs) represented the unit of diversity, and we included five levels of diversity (0-4 FGs). To test for N partitioning, we used a stable isotope technique to determine niche breadth and proportion similarity of inorganic N use (NO3 and NH4+) for individual FGs as well as mixtures containing 3 and 4 FGs. We found that total plant biomass increased in the first season from an average of 290 ± 60 SE g ash-free dry mass (AFDM) m−2 at the 1 FG level to 490 ± 70 g AFDM m−2 at the 4 FG level and in the second season from an average of 560 ± 80 g AFDM m−2 at the 1 FG level to 1000 ± 90 g AFDM m−2 at the 4 FG level indicating overyielding. Plant species comprising the majority of mesocosm biomass demonstrated preferential uptake of 15NO3, while species with relatively less biomass (e.g., Acorus calamus and Carex crinita) preferred 15NH4+. Concentrations of 15N in biomass increased with FG richness, but only in the 15NO3 treatment. Niche breadth did not vary among levels of FG richness. We observed a greater niche overlap with an increase of FGs, with species taking up greater proportion of 15NO3 than 15NH4+. Our results indicate that plant overyielding in wetland mesocosms is not the result of niche partitioning of N chemical forms, but is associated with greater uptake of NO3.  相似文献   

17.
A fully factorial pond experiment was designed using two irradiance levels and two phosphorus concentrations to investigate irradiance and phosphorus effects on the growth of three submerged macrophytes: common waterweed (Elodea canadensis), Eurasian water milfoil (Myriophyllum spicatum), and water stargrass (Zosterella dubia). Results revealed that higher irradiance (230 μmol s−1 m−2 vs. 113 μmol s−1 m−2 at 2 m depth) had significant positive effects on submerged macrophyte growth: increasing the number of individuals (seven-fold), the number of species surviving (two-fold), aboveground biomass (11-fold), belowground biomass (10-fold), and total biomass (11-fold), whereas elevated sediment phosphorus (2.1–3.3 mg g−1 vs. 0.7 mg g−1 dry sediment) did not have any significant impact. However, responses to irradiance differ among macrophyte species due to their morphology and physiology. Waterweed increased in numbers of individuals and total biomass under high irradiance while biomass per individual remained the same (∼0.02 g). The other species increased both in numbers and biomass per individual. These results suggest that increased irradiance rather than decreased phosphorus loading is the main driver of changes in submerged macrophytes in North American temperate lake ecosystems.  相似文献   

18.
The treatment capacity of constructed wetlands is expected to be high in tropical areas because of the warm temperatures and the associated higher rates of microbial activity. A pilot scale horizontal subsurface flow constructed wetland system filled with river sand and planted with Phragmites vallatoria (L.) Veldkamp was set up in the southern part of Vietnam to assess the treatment capacity and the removal rate kinetics under tropical conditions. The system received municipal wastewater at four hydraulic loading rates (HLRs) of 31, 62, 104 and 146 mm day?1. Removals of TSS, BOD5 and COD were efficient at all HLRs with mean removal rates of 86–95%, 65–83% and 57–84%, respectively. Removals of N and P decreased with HLRs and were: NH4-N 0–91%; TN 16–84% and TP 72–99%. First-order area-based removal rate constants (k, m year?1) estimated from sampling along the length of the wetland from inlet to outlet at the four HLRs were in the range of 25–95 (BOD5), 22–30 (COD), 31–115 (TSS), 5–24 (TN and TKN) and 41–84 (TP) at background concentrations (C*) of 5, 10, 0, 1.5 and 0 mg L?1, respectively. The estimated k-values should not be used for design purposes, as site-specific differences and stochastic variability can be high. However, the study shows that domestic wastewater can be treated in horizontal subsurface flow constructed wetland systems to meet even the most stringent Vietnamese standards for discharge into surface waters.  相似文献   

19.
A bioreactor cascade with a submerged biofilm is proposed to treat young landfill leachate of jbel chakir landfill site south west from capital Tunis, Tunisia. The prototype was run under different organic loading charges varying from 0.6 to 16.3 kg TOC m−3 day−1. Without initial pH adjustment total organic carbon (TOC) removal rate varied between 65% and 97%. The total reduction of COD reached 92% at a hydraulic retention time of 36 h. However, the removal of total kjeldahl nitrogen for loading charges of 0.5 kg N m−3 day−1 reached 75%. The adjustment of pH to 7.5 improved nitrogen removal to a rate of 85% for loading charge of 1 kg N m−3 day−1. The main bacterial groups responsible for a simultaneous removal of organic carbon and nitrogen belonged to Bacillus, Actinomyces, Pseudomonas and Burkholderia genera. These selected isolates showed a great capacity of degradation at different leachate concentrations of total organic carbon.  相似文献   

20.
Egeria densa, a submerged aquatic macrophyte native to South America, has successfully invaded many reservoirs in Brazil and elsewhere. Ecophysiological responses of E. densa to light availability were assessed in microcosm experiments. Under low light conditions, we found that apical shoots expanded more rapidly than those under higher light exposure, allowing the plant to reach the higher light conditions of the surface. E. densa showed low km (15.6-34.8 μmol m−2 s−1 PAR) and light compensation point values (7.5-16.2 μmol m−2 s−1 PAR), indicating that it is able to effectively exploit the low radiation levels available at high depths and turbid waters. This may represent a competitive advantage over other submerged species, and it helps to explain the successful spread of E. densa in Brazilian reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号