共查询到20条相似文献,搜索用时 8 毫秒
1.
Analysis of membrane-localized binding kinetics with FRAP 总被引:1,自引:1,他引:0
2.
Yinghao Wu 《Protein science : a publication of the Protein Society》2014,23(12):1789-1799
Membrane proteins are among the most functionally important proteins in cells. Unlike soluble proteins, they only possess two translational degrees of freedom on cell surfaces, and experience significant constraints on their rotations. As a result, it is currently challenging to characterize the in situ binding of membrane proteins. Using the membrane receptors CD2 and CD58 as a testing system, we developed a multiscale simulation framework to study the differences of protein binding kinetics between 3D and 2D environments. The association and dissociation processes were implemented by a coarse‐grained Monte‐Carlo algorithm, while the dynamic properties of proteins diffusing on lipid bilayer were captured from all‐atom molecular dynamic simulations. Our simulations show that molecular diffusion, linker flexibility and membrane fluctuations are important factors in adjusting binding kinetics. Moreover, by calibrating simulation parameters to the measurements of 3D binding, we derived the 2D binding constant which is quantitatively consistent with the experimental data, indicating that the method is able to capture the difference between 3D and 2D binding environments. Finally, we found that the 2D dissociation between CD2 and CD58 is about 100‐fold slower than the 3D dissociation. In summary, our simulation framework offered a generic approach to study binding mechanisms of membrane proteins. 相似文献
3.
4.
The immunological synapse is a stable intercellular structure that specializes in substance and signal transfer from one immune cell to another. Its formation is regulated in part by the diffusion of adhesion and signaling molecules into, and their binding of countermolecules in the contact area. The stability of immunological synapses allows receptor-ligand interactions to approximate chemical equilibrium despite other dynamic aspects. We have developed a mathematical model that describes the coupled reaction-diffusion process in an established immunological synapse. In this study, we extend a previously described contact area fluorescence recovery after photobleaching (FRAP) experiment to test the validity of the model. The receptor binding activity and lateral mobility of fluorescently labeled, lipid-anchored ligands in the bilayer resulted in their accumulation, as revealed by a much higher fluorescence intensity inside the contact area than outside. After complete photobleaching of the synapse, fluorescence recovery requires ligands to dissociate and rebind, and to diffuse in and out of the contact area. Such a FRAP time course consequently provides information on reaction and diffusion, which can be extracted by fitting the model solution to the data. Surprisingly, reverse rates in the two-dimensional contact area were at least 100-fold slower than in three-dimensional solution. As previously reported in immunological synapses, a significant nonrecoverable fraction of fluorescence was observed with one of two systems studied, suggesting some ligands either dissociated or diffused much more slowly compared with other ligands in the same synapse. The combined theory and experiment thus provides a new method for in situ measurements of kinetic rates, diffusion coefficients, and nonrecoverable fractions of interacting molecules in immunological synapses and other stable cell-bilayer junctions. 相似文献
5.
Vincent Schram Jean-François Tocanne André Lopez 《European biophysics journal : EBJ》1994,23(5):337-348
Fluorescence Recovery After Photobleaching experiments were simulated using a computer approach in which a membrane lipid leaflet was mimicked using a triangular lattice obstructed with randomly distributed immobile and non-overlapping circular obstacles. Influence of the radius r and area fraction c of these obstacles and of the radius R of the observation area on the relative diffusion coefficient D
* (Eq. (1)) and mobile fraction M was analyzed. A phenomenological equation relating D
* to r and c was established. Fitting this equation to the FRAP data we obtained with the probe NBD-PC embedded in bacteriorhodopsin/egg-PC multilayers suggests that this transmembrane protein rigidifies the surrounding lipid phase over a distance of about 18 Å (two lipid layers) from the protein surface. In contrast, analysis of published diffusion constants obtained for lipids in the presence of gramicidin suggests that in terms of lateral diffusion, this relatively small polypeptide does not significantly affect the surrounding lipid phase. With respect to the mobile fraction M, and for point obstacles above the percolation threshold, an increase in R led to a decrease in M which can be associated with the existence of closed domains whose average size and diffusion properties can be determined. Adaptation of this model to the re-interpretation of the FRAP data obtained by Yechiel and Edidin (J Cell Biol (1987) 115:755–760) for the plasma membrane of human fibroblasts consistently leads to the suggestion that the lateral organization of this membrane would be of the confined type, with closed lipid domains of 0.5 µm2 in area.Abbreviations and notations used BR
bacteriorhodopsin
- DMPC
dimyristoylphosphatidylcholine
- diOC18
dioctadecyloxatricarbocyanine
- egf-PC
egg-yolk phosphatidylcholine
- NBD-PC
1-acyl2-[t2-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine
- MOPS
3-[N-morpholino]propane sulfonic acid
- FRAP
Fluoresence Recovery After photobleaching
- D
observed diffusion coefficient
-
D0
diffusion coefficient in the absence of obstacles
-
D
*
relative diffusion constant (Eq. 1)
-
M
mobile fraction
-
c
obstacle area fraction
-
r
obstacle radius
-
R
observation area radius
-
r
d
diffusion area radius
Correspondence to: A. Lopez 相似文献
6.
Cholesterol and glycosphingolipid-enriched membrane domains, termed lipid rafts, were proposed to play important roles in trafficking and signaling events. These functions are inhibited following putative disruption of rafts by cholesterol depletion, commonly induced by treatment with methyl-beta-cyclodextrin (MbetaCD). However, several studies showed that the lateral diffusion of membrane proteins is inhibited by MbetaCD, suggesting that it may have additional effects on membrane organization unrelated to cholesterol removal. Here, we investigated this possibility by comparison of the effects of cholesterol depletion by MbetaCD and by metabolic inhibition (compactin), and of treatment with alpha-CD, which does not bind cholesterol. The studies employed two series of proteins (Ras and influenza hemagglutinin), each containing as internal controls related mutants that differ in raft association. Mild MbetaCD treatment retarded the lateral diffusion of both raft and non-raft mutants, whereas similar cholesterol reduction (30-33%) by metabolic inhibition enhanced selectively the diffusion of the raft-associated mutants. Moreover, alpha-CD also inhibited the diffusion of raft and non-raft mutants, despite its lack of effect on cholesterol content. These findings suggest that the widely used treatment with CD to reduce cholesterol has additional, cholesterol-independent effects on membrane protein mobility, which do not necessarily distinguish between raft and non-raft proteins. 相似文献
7.
W. Doster Ch. Holzhey H. Miesmer F. Post R. A. Tahir-Kheli 《Journal of biological physics》1990,17(4):281-295
The kinetics of ligand binding to heme proteins studied by flash photolysis display an algebraic time dependence at low temperatures in contrast exponential recombination observed under physiological conditions. This result shows that protein structures should be viewed as a time average of interconverting microstates which are frozen in at low temperatures. We propose a quasi-one-dimensional model of heterogeneous structural diffusion coupled to ligand binding which describes freezing transition as an inherent property of protein fluctuations. The structural hopping rates are derived from a temperature invariant spectrum of activation energies. The model predicts power law kinetics of the form t
- at long times. The exponent is constant (0.5) at high temperatures but decreases below a critical temperature in the frozen regime. These results are compared to experiments performed with myoglobin and -chains of hemoglobin. 相似文献
8.
Fluorescence recovery after photobleaching (FRAP) measurements offer an important tool towards analysing diffusion processes within living biological cells. A model is presented that aims to provide a rigorous theoretical framework from which binding information of proteins from FRAP data can be extracted. A single binding reaction is considered and a set of mathematical equations is introduced that incorporates the concentration of free proteins, vacant binding sites and bound complexes in addition to the on- and off-rates of the proteins. To allow a realistic FRAP model, characteristics of the instruments used to perform FRAP measurements are included in the equation. The proposed model has been designed to be applied to biological samples with a confocal scanning laser microscope (CSLM) equipped with the feature to bleach regions characterised by a radially Gaussian distributed profile. Binding information emerges from FRAP simulations considering the diffusion coefficient, radial extent of the bleached volume and bleach constant as parameters derived from experimental data. The proposed model leads to FRAP curves that depend on the on- and off-rates. Analytical expressions are used to define the boundaries of on- and off-rate parameter space in simplified cases when molecules can move on an infinite domain. A similar approach is ensued when movement is restricted in a compartment with a finite size. The theoretical model can be used in conjunction to experimental data acquired by CSLM to investigate the biophysical properties of proteins in living cells. 相似文献
9.
Lateral motion of membrane proteins and biological function 总被引:16,自引:0,他引:16
Daniel Axelrod 《The Journal of membrane biology》1983,75(1):1-10
10.
Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins 下载免费PDF全文
Weljie AM Yamniuk AP Yoshino H Izumi Y Vogel HJ 《Protein science : a publication of the Protein Society》2003,12(2):228-236
Pulsed-field gradient (PFG) diffusion NMR spectroscopy studies were conducted with several helix-loop-helix regulatory Ca(2+)-binding proteins to characterize the conformational changes associated with Ca(2+)-saturation and/or binding targets. The calmodulin (CaM) system was used as a basis for evaluation, with similar hydrodynamic radii (R(h)) obtained for apo- and Ca(2+)-CaM, consistent with previously reported R(h) data. In addition, conformational changes associated with CaM binding to target peptides from myosin light chain kinase (MLCK), phosphodiesterase (PDE), and simian immunodeficiency virus (SIV) were accurately determined compared with small-angle X-ray scattering results. Both sets of data demonstrate the well-established collapse of the extended Ca(2+)-CaM molecule into a globular complex upon peptide binding. The R(h) of CaM complexes with target peptides from CaM-dependent protein kinase I (CaMKI) and an N-terminal portion of the SIV peptide (SIV-N), as well as the anticancer drug cisplatin were also determined. The CaMKI complex demonstrates a collapse analogous to that observed for MLCK, PDE, and SIV, while the SIV-N shows only a partial collapse. Interestingly, the covalent CaM-cisplatin complex shows a near complete collapse, not expected from previous studies. The method was extended to related calcium binding proteins to show that the R(h) of calcium and integrin binding protein (CIB), calbrain, and the calcium-binding region from soybean calcium-dependent protein kinase (CDPK) decrease on Ca(2+)-binding to various extents. Heteronuclear NMR spectroscopy suggests that for CIB and calbrain this is likely because of shifting the equilibrium from unfolded to folded conformations, with calbrain forming a dimer structure. These results demonstrate the utility of PFG-diffusion NMR to rapidly and accurately screen for molecular size changes on protein-ligand and protein-protein interactions for this class of proteins. 相似文献
11.
WEI XINHUA YONG ZHAO XIAOMING DONG YAXIAN SU ZILI MA CHANGXIN ZHU SHIJINPANGDept. of Cell Biology Beijing Medical University Beijing China.Beijing Vacuum Physics Lboratory Academia Sinica Beijing China. 《Cell research》1993,(1)
The variation of membrane surface and lateral diffusion of membrane protein was studied after the interaction of laminin with its membrane receptor in mouse macrophages. A pattern of membrane surface which showed smaller and bigger peaks was obtained by scanning tunneling microscope(STM), looking like the domains of lipid groups and proteins in the model of fluid mosaic biomembrane. Some even more higher and wider peaks projected out from the membrane surface in STM image after the interacting of laminin with membrane receptor were, probably, the complexes of laminin and membrane receptor. Furthermore, the decreased lateral diffusion coefficient value (D) was obtained by fluorescence recovery after photobleaching (FRAP) after the laminin was reacted with membrane receptor. This phenomenon provides an evidence that the complexes of laminin and its membrane receptor were located on the membrane of macrophages. So we could consider that the laminin is combined with membrane receptor leading to the variation in the properties of membrane surface. 相似文献
12.
Timothy J Stasevich Florian Mueller David T Brown James G McNally 《The EMBO journal》2010,29(7):1225-1234
The linker histone H1 has a fundamental role in DNA compaction. Although models for H1 binding generally involve the H1 C‐terminal tail and sites S1 and S2 within the H1 globular domain, there is debate about the importance of these binding regions and almost nothing is known about how they work together. Using a novel fluorescence recovery after photobleaching (FRAP) procedure, we have measured the affinities of these regions individually, in pairs, and in the full molecule to demonstrate for the first time that binding among several combinations is cooperative in live cells. Our analysis reveals two preferred H1 binding pathways and we find evidence for a novel conformational change required by both. These results paint a complex, highly dynamic picture of H1–chromatin binding, with a significant fraction of H1 molecules only partially bound in metastable states that can be readily competed against. We anticipate the methods we have developed here will be broadly applicable, particularly for deciphering the binding kinetics of other nuclear proteins that, similar to H1, interact with and modify chromatin. 相似文献
13.
Immobilized-biomembrane affinity chromatography for binding studies of membrane proteins 总被引:1,自引:0,他引:1
Gottschalk I Lagerquist C Zuo SS Lundqvist A Lundahl P 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2002,768(1):31-40
Analyses of specific interactions between solutes and a membrane protein can serve to characterize the protein. Frontal affinity chromatography of an interactant on a column containing the membrane protein immobilized in a lipid environment is a simple and robust approach for series of experiments with particular protein molecules. Regression analysis of the retention volumes at a series of interactant concentrations shows the affinity of the protein for the interactant and the amount of active binding sites. The higher the affinity, the fewer sites are required to give sufficient retention. Competition experiments provide the affinities of even weakly binding solutes and the non-specific retention of the primary interactant. Hummel and Dreyer size-exclusion chromatography allows complementary analyses of non-immobilized membrane materials. Analyses of the human facilitative glucose transporter GLUT1 by use of the inhibitor cytochalasin B (radioactively labeled) and the competitive substrate D-glucose (non-labeled) showed that GLUT1 interconverted between two states, exhibiting one or two cytochalasin B-binding sites per two GLUTI monomers, dependent on the membrane composition and environment. Similar analyses of a nucleoside transporter, a photosynthetic reaction center, nicotinic acetylcholine receptors and a P-glycoprotein, alternative techniques, and immobilized-liposome chromatographic approaches are presented briefly. 相似文献
14.
Investigation of the binding characteristics between ligands and epidermal growth factor receptor by cell membrane chromatography 下载免费PDF全文
Liu Yang Man Zhu Yuan Kang Tianfeng Yang Weina Ma 《Journal of molecular recognition : JMR》2018,31(6)
The binding property between a ligand and its receptor is very important for numerous biological processes. In this study, we developed a high epidermal growth factor receptor (EGFR)‐expression cell membrane chromatography (CMC) method to investigate the binding characteristics between EGFR and the ligands gefitinib, erlotinib, canertinib, afatinib, and vandetanib. Competitive binding analysis using gefitinib as the marker was used to investigate the interactions that occurred at specific binding sites on EGFR. The ability of displacement was measured from the HEK293‐EGFR/CMC column on the binding sites occupied by gefitinib for these ligands, which revealed the following order: gefitinib (KD, 8.49 ± 0.11 × 10?7 M) > erlotinib (KD, 1.07 ± 0.02 × 10?6 M) > canertinib (KD, 1.41 ± 0.07 × 10?6 M) > afatinib (KD, 1.80 ± 0.12 × 10?6 M) > vandetanib (KD, 1.99 ± 0.03 × 10?6 M). This order corresponded with the values estimated by frontal displacement analysis and the scores obtained with molecular docking. Furthermore, thermodynamic analysis indicated that the hydrogen bond or Van der Waals force was the main interaction force in the process of EGFR binding to all 5 ligands. Overall, these results demonstrate that a CMC method could be an effective tool to investigate the binding characteristics between ligands and receptors. 相似文献
15.
Baker A Saulière A Dumas F Millot C Mazères S Lopez A Salomé L 《European biophysics journal : EBJ》2007,36(8):849-860
G-protein-coupled receptor function involves interactions between the receptor, G-proteins and effectors in the cell plasma
membrane. The main biochemical processes have been individually identified but the mechanisms governing the successive protein–protein
interactions of this complex multi-molecular machinery have yet to be established. We discuss advances in understanding the
functional dynamics of the receptor resulting from diffusion measurements, and in the context of the plasma membrane organization.
Aurélie Baker and Aude Saulière contributed equally to this work.
Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet France, 14–19 October, 2006. 相似文献
16.
Milan Kodíček Zbyněk Hrkal Zdeněk Vodráẑka 《International journal of biological macromolecules》1983,5(4):194-198
The kinetics of haem binding to human serum albumin and haemopexin were studied by means of the stopped flow technique. The reaction could be divided into three kinetically clearly distinguished steps: (1) extremely fast reaction of haem with nonspecific binding sites on the surface of the apoprotein molecule; this type of haem binding site seems to exist in proteins in general; (2) by meaas of equilibrium with its monomer, haem is transferred to the specific binding site; this second order reaction takes about 1–2 s, the reaction rate constant amounts to ≈106 l mol?1 s?1 both for albumin and haemopexin: (3) conformational changes of haemoprotein molecule, accompanied by changes of absorption spectra in the Soret region; this series of slow monomolecular reactions takes about 20 min. These results are discussed in connection with the mechanism of haem transport from blood to liver cells. 相似文献
17.
Seven‐helix transmembrane proteins, including the G‐protein‐coupled receptors (GPCRs), mediate a broad range of fundamental cellular activities through binding to a wide range of ligands. Understanding the structural basis for the ligand‐binding selectivity of these proteins is of significance to their structure‐based drug design. Comparison analysis of proteins' ligand‐binding sites provides a useful way to study their structure‐activity relationships. Various computational methods have been developed for the binding‐site comparison of soluble proteins. In this work, we applied this approach to the analysis of the primary ligand‐binding sites of 92 seven‐helix transmembrane proteins. Results of the studies confirmed that the binding site of bacterial rhodopsins is indeed different from all GPCRs. In the latter group, further comparison of the binding sites indicated a group of residues that could be responsible for ligand‐binding selectivity and important for structure‐based drug design. Furthermore, unexpected binding‐site dissimilarities were observed among adrenergic and adenosine receptors, suggesting that the percentage of the overall sequence identity between a target protein and a template protein alone is not sufficient for selecting the best template for homology modeling of seven‐helix membrane proteins. These results provided novel insight into the structural basis of ligand‐binding selectivity of seven‐helix membrane proteins and are of practical use to the computational modeling of these proteins. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 31–38, 2011. 相似文献
18.
Sourav Ganguly Pushpendra Singh Raman Manoharlal Amitabha Chattopadhyay 《Biochemical and biophysical research communications》2009,387(4):661-184
Lateral diffusion of lipids and proteins in yeast plasma membranes has been reported to be anomalously slow, and implicated as a possible reason for polarization in yeast. In order to gain insight into the observed slow diffusion in yeast membranes, we explored lateral diffusion of two proteins of different origin. We compared lateral dynamics of the Candida drug resistance protein-1 (Cdr1p), and the human serotonin1A receptor (5-HT1AR) by fluorescence recovery after photobleaching (FRAP). Our results show that while Cdr1p-GFP displays slow diffusion, the diffusion of 5-HT1AR-EYFP is significantly faster. Interestingly, upon ergosterol depletion, the mobility of Cdr1p-GFP did not exhibit appreciable change, while 5-HT1AR-EYFP mobility showed an increase. On the other hand, upon actin cytoskeleton destabilization, the mobile fraction of 5-HT1AR-EYFP showed considerable increase, while the mobility of Cdr1p-GFP was not altered. Our results represent the first report on the dynamics of the important drug resistance protein Cdr1p and provide novel insight on diffusion of membrane proteins in yeast membranes. 相似文献
19.
Summary Lateral diffusion measurements have been made on lipids and proteins in the plasma membrane of live protoplasts derived from rose (Rosa sp. Paul's Scarlet) suspension-cultured cells. Two different fluorescent lipid probes exhibited markedly different diffusion rates, indicating possible heterogeneity in the lipid domain of the membrane. Membrane proteins were labeled directly with covalently-reactive fluorophores, and factors that might perturb the lateral diffusion of these labeled proteins were investigated. Treatment of the protoplasts with various cytoskeleton-disrupting drugs generally had little effect on protein diffusion, although treatment with oryzalin, a microtubule-disrupting drug, did slightly reduce the mobile fraction of membrane proteins. Elevation of the CaCl2 concentration in the medium from 1 mM to 10 mM significantly reduced the mobile fraction of membrane proteins and also increased the fraction of protoplasts that were able to regenerate cell walls and divide in culture. These results are discussed in relation to reported evidence of lipid domains in the plasma membranes of other cells and protoplasts. The relative importance of lipid domains and membrane-cytoskeleton interaction in governing protein diffusion is considered.Abbreviations D
lateral diffusion coefficient
- RCA
Ricinus communis agglutinin
- BPA
Bauhinia purpurea agglutinin
- DTAF
dichlorotriazinylaminofluorescein
- FTSC
fluorescein-5-thiosemicarbazide
- C18-Fl
5-(N-octadecanoyl)aminofluorescein
- LY-Chol
Lucifer yellow conjugate of cholesterol, i.e., dilithium 4-amino-N-[(-(carbo(5-cho-lesten-3-yl)oxy)hydrazinocarbonyl)amino]-1,8-naphthalimide-3,6-disulfonate
- APM
amiprophosmethyl
- DMSO
dimethylsulfoxide
- FPR
fluorescence photobleaching recovery
- sd
standard deviation
- FRAF
fluorescence redistribution after fusion
- M
mobile fraction 相似文献
20.
Pulsed‐field gradient diffusion has been used to study the binding of two tachykinin peptides, [Tyr8]‐substance P (SP) and [Tyr0]‐neurokinin A (NKA) to two membrane‐mimicking micelles, dodecylphosphocholine, and sodium dodecylsulfate. The structure of these peptides bound to the micelles have also been studied by using two‐dimensional nmr and restrained simulated annealing calculations. No major difference in the structures of each peptide in the two micellar media was found. The difference between the micelle‐bound structure of [Tyr8]SP and that of SP was also minor. The longer helical conformation on the C‐terminus for [Tyr0]NKA was observed, compared with that for NKA. The relationship between the difference in the biological potencies of [Tyr8]SP and SP and the differences in their structure, especially the interaction of the side chains of the two aromatic residues, and the difference in their binding affinities to membrane was discussed. In addition, differences between the result of restrained molecular dynamics simulations of [Tyr8]SP in the presence of an explicit micelle and the present results were observed and discussed. © 1999 John Wiley & Sons, Inc. Biopoly 50: 555–568, 1999 相似文献