首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Büchel C 《Biochemistry》2003,42(44):13027-13034
Fucoxanthin-chlorophyll proteins were purified from the centric diatom Cyclotella meneghiniana. Two major fractions were observed that differed in their polypeptide composition and oligomeric state. Trimers consist of mainly 18 kDa polypeptides. Higher oligomers are tightly assembled from different trimers, which contain mostly 19 kDa subunits. In both oligomeric states, the excitation energy coupling between fucoxanthin and chlorophyll a was preserved, and chlorophyll c was shown to transfer energy efficiently to chlorophyll a. Circular dichroism spectra showed close interaction between fucoxanthin and chlorophyll a, and different chlorophyll a molecules were demonstrated to interact excitonically. The assembly of trimers of antenna proteins with a distinct subunit composition into higher oligomeric states was not reported so far and differs from the situation found in higher plants. The differences in the supramolecular structure of the fucoxanthin-chlorophyll proteins reflect the dissimilar arrangement of the thylakoid membranes in diatoms, which lack the grana-stroma distinction.  相似文献   

2.
We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls.  相似文献   

3.
Diatoms possess fucoxanthin chlorophyll proteins (FCP) as light-harvesting systems. These membrane intrinsic proteins bind fucoxanthin as major carotenoid and Chl c as accessory chlorophyll. The relatively high sequence homology to higher plant light-harvesting complex II gave rise to the assumption of a similar overall structure. From centric diatoms like Cyclotella meneghiniana, however, two major FCP complexes can be isolated. FCPa, composed of Fcp2 and Fcp6 subunits, was demonstrated to be trimeric, whereas FCPb, known to contain Fcp5 polypeptides, is of higher oligomeric state. No molecular structure of either complex is available so far. Here we used electron microscopy and single particle analysis to elucidate the overall architecture of FCPb. The complexes are built from trimers as basic unit, assembling into nonameric moieties. The trimer itself is smaller, i.e. more compact than LHCII, but the main structural features are conserved.  相似文献   

4.
Fucoxanthin–chlorophyll proteins (FCP) are the major light-harvesting proteins of diatom algae, a major contributor to marine carbon fixation. FCP complexes from representatives of centric (Cyclotella meneghiniana) and pennate (Phaeodactylum tricornutum) diatoms were prepared by sucrose gradient centrifugation and studied by means of electron microscopy followed by single particle analysis. The oligomeric FCP from a centric diatom were observed to take the form of unusual chain-like or circular shapes, a very unique supramolecular assembly for such antennas. The existence of the often disputed oligomeric form of FCP in pennate diatoms has been confirmed. Contrary to the centric diatom FCP, pennate diatom FCP oligomers are very similar to oligomeric antennas from related heterokont (Stramenopila) algae. Evolutionary aspects of the presence of novel light-harvesting protein arrangement in centric diatoms are discussed.  相似文献   

5.
The light-harvesting proteins in plastids of different lineages including algae and land plants represent a superfamily of chlorophyll-binding proteins that seem to be phylogenetically related, although some of the light-harvesting complex (LHC) proteins bind different carotenoids. LHCs can be divided into chlorophyll a/b-binding proteins found in green algae, euglenoids, and higher plants and into chlorophyll a/c-binding proteins of various algal taxa. LHC proteins from diatoms are named fucoxanthin-chlorophyll a/c-binding proteins (FCP). In contrast to chlorophyll a/b-binding proteins, there is no information so far about the way FCPs integrate into thylakoid membranes. The diatom FCP preproteins have a bipartite presequence that is necessary to enable transport into the four membrane-bound diatom plastids, but similar to chlorophyll a/b-binding proteins there is apparently no presequence present for targeting to the thylakoid membrane. By establishing an in vitro import assay for diatom thylakoids, we demonstrated that thylakoid integration of diatom FCP depends on the presence of stromal factors and GTP. This indicates that a pathway involving signal recognition particles (SRP) is involved in membrane integration just as shown for LHCs in higher plants. We also demonstrate integration of diatom FCP into thylakoids of higher plants and vice versa SRP-dependent targeting of LHCs from pea and Arabidopsis into diatom thylakoids. The similar SRP-dependent modes of thylakoid integration of land plant LHCs and FCPs support recent analyses indicating a common origin of chlorophyll a/b- and a/c-binding proteins.  相似文献   

6.
The thylakoid membrane of photoautotrophic organisms contains the main components of the photosynthetic electron transport chain. Detailed proteome maps of the thylakoid protein complexes of two marine diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, were created by means of two-dimensional blue native (BN)/SDS-PAGE coupled with mass spectrometry analysis. One novel diatom-specific photosystem I (PS I)-associated protein was identified. A second plastid-targeted protein with possible PS I interaction was discovered to be restricted to the centric diatom species T. pseudonana. PGR5/PGRL homologues were found to be the only protein components of PS I-mediated cyclic electron transport common to both species. For the first time, evidence for a possible PS I localization of LI818-like light harvesting proteins (Lhcx) is presented. This study also advances the current knowledge on the light harvesting antenna composition and Lhcx expression in T. pseudonana on the protein level and presents details on the molecular distribution of Lhcx in diatoms. Above mentioned proteins and several others with unknown function provide a broad basis for further mutagenesis analysis, aiming toward further understanding of the composition and function of the photosynthetic apparatus of diatoms. The proteomics approach of this study further served as a tool to confirm and improve genome-derived protein models.  相似文献   

7.
Recent blue-native gel electrophoresis studies gave evidence for the existence of dimeric and trimeric PSI complexes in green plants. We used single particle electron microscopy to investigate all the larger particles from the thylakoid membrane of pea (Pisum sativum var. Charmette). Peak fractions with monomeric, dimeric and trimeric Photosystem I were obtained after solubilization with digitonin and size-exclusion chromatography. The analysis showed that only a few percent of dimers and trimers were present. In the best resolved trimers some of the monomers were oriented upside down. Many classes were fuzzy, indicating a non-specific or flexible orientation. From these results we conclude that the green plant PSI is monomeric within the green plant membrane.  相似文献   

8.
Chloroplast transglutaminase (chlTGase) activity is considered to play a significant role in response to a light stimulus and photo‐adaptation of plants, but its precise function in the chloroplast is unclear. The characterisation, at the proteomic level, of the chlTGase interaction with thylakoid proteins and demonstration of its association with photosystem II (PSII) protein complexes was accomplished with experiments using maize thylakoid protein extracts. By means of a specific antibody designed against the C‐terminal sequence of the maize TGase gene product, different chlTGase forms were immunodetected in thylakoid membrane extracts from three different stages of maize chloroplast differentiation. These bands co‐localised with those of lhcb 1, 2 and 3 antenna proteins. The most significant, a 58 kDa form present in mature chloroplasts, was characterised using biochemical and proteomic approaches. Sequential fractionation of thylakoid proteins from light‐induced mature chloroplasts showed that the 58 kDa form was associated with the thylakoid membrane, behaving as a soluble or peripheral membrane protein. Two‐dimensional gel electrophoresis discriminated, for the first time, the 58‐kDa band in two different forms, probably corresponding to the two different TGase cDNAs previously cloned. Electrophoretic separation of thylakoid proteins in native gels, followed by LC‐MS mass spectrometry identification of protein complexes indicated that maize chlTGase forms part of a specific PSII protein complex, which includes LHCII, ATPase and pSbS proteins. The results are discussed in relation to the interaction between these proteins and the suggested role of the enzyme in thylakoid membrane organisation and photoprotection.  相似文献   

9.
Diatoms differ from higher plants by their antenna system, in terms of both polypeptide and pigment contents. A rapid isolation procedure was designed for the membrane-intrinsic light harvesting complexes (LHC) of the diatom Phaeodactylum tricornutum to establish whether different LHC subcomplexes exist, as well to determine an uneven distribution between them of pigments and polypeptides. Two distinct fractions were separated that contain functional oligomeric complexes. The major and more stable complex ( approximately 75% of total polypeptides) carries most of the chlorophyll a, and almost only one type of carotenoid, fucoxanthin. The minor complex, carrying approximately 10-15% of the total antenna chlorophyll and only a little chlorophyll c, is highly enriched in diadinoxanthin, the main xanthophyll cycle carotenoid. The two complexes also differ in their polypeptide composition, suggesting specialized functions within the antenna. The diadinoxanthin-enriched complex could be where the de-epoxidation of diadinoxanthin into diatoxanthin mostly occurs.  相似文献   

10.
(1) Five minor chlorophyll-protein complexes were isolated from thylakoid membranes of the green alga Acetabularia by SDS-polyacrylamide gel electrophoresis, after SDS or octylglucoside solubilization. None of them were related to CP I (Photosystem I reaction center core) or CP II (chlorophyll ab light-harvesting complex). (2) Two complexes (CPa-1 and CPa-2) contained only chlorophyll (Chl) a, with absorption maxima of 673 and 671 nm, and fluorescence emission maxima of 683 nm compared to 676 nm for CP II. The complexes had apparent molecular masses of 43–47 and 38–40 kDa, and contained a single polypeptide of 41 and 37 kDa, respectively. They each account for about 3% of the total chlorophyll. (3) Three complexes had identical spectra, with Chl ab ratios of 3–4 compared to 2 for thylakoid membranes, and a pronounced shoulder around 485 nm indicating enrichment in carotenoids. One of them was the complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432) and the other two were slightly different oligomeric forms of CP 29. They could be formed from CP 29 during reelectrophoresis; but about half the complex was isolated originally in an oligomeric form. Together they account for at least 7% of the total chlorophyll. Their function is unknown.  相似文献   

11.
Thylakoids of the diatom Cyclotella meneghiniana were separated by discontinuous gradient centrifugation into photosystem (PS) I, PSII, and fucoxanthin-chlorophyll protein (FCP) fractions. FCPs are homologue to light harvesting complexes of higher plants with similar function in e.g. brown algae and diatoms. Still, it is unclear if FCP complexes are specifically associated with either PSI or PSII, or if FCP complexes function as one antenna for both photosystems. However, a trimeric FCP complex, FCPa, and a higher FCP oligomer, FCPb, have been described for C. meneghiniana, already. In this study, biochemical and spectroscopical evidences are provided that reveal a different subset of associated Fcp polypeptides within the isolated photosystem complexes. Whereas the PSII associated Fcp antenna resembles FCPa since it contains Fcp2 and Fcp6, at least three different Fcp polypeptides are associated with PSI. By re-solubilisation and a further purification step Fcp polypeptides were partially removed from PSI and both fractions were analysed again by biochemical and spectroscopical means, as well as by HPLC. Thereby a protein related to Fcp4 and a so far undescribed 17 kDa Fcp were found to be strongly coupled to PSI, whereas presumably Fcp5, a subunit of the FCPb complex, is only loosely bound to the PSI core. Thus, an association of FCPb and PSI is assumed.  相似文献   

12.
Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679?nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis.  相似文献   

13.
The chlorophyll (Chl)-containing membrane protein complexes from the green alga Scenedesmus obliquus have been isolated from the thylakoid membranes by solubilization with dodecyl-beta-maltoside and fractionation using a sucrose density gradient. The Chl-containing protein fractions were characterized by absorption spectroscopy, tricine SDS PAGE, BN-PAGE, and dynamic light scattering (DLS). BN-PAGE showed the presence of seven protein complexes with molecular weights in the range of 68, 118, 157, 320, 494, 828 and 955 kDa, respectively. Furthermore, light scattering reveals the simultaneous presence of particles of different sizes in the 3-4 nm and 6.0-7.5 nm range, respectively. The smaller size is related to the hydrodynamic radius of the trimer Light Harvesting Complex (LHCII), whereas the larger size is associated with the presence of photosystem I and photosystem II reaction centers. Additionally, functional information regarding protein-protein interactions was deconvoluted using coupling 2-D BN-PAGE, MALDI-TOF MS and a detailed mapping of S. obliquus photosynthetic proteome of the solubilized thylakoid membranes is therefore presented.  相似文献   

14.
The centric diatom Cyclotella cryptica and two strains of the pennate diatom Phaeodactylum tricornutum were grown under low and high light intensities (300 lux and 3,000 lux) over 4-6 weeks. Growth was monitored by repetitive cell count. The culture media were replaced weekly to avoid morphological and biochemical alterations caused by nutrient depletion. The ultrastructure of the cells was examined by transmission electron microscopy. Alterations in the light-harvesting antenna systems were investigated by Western immunoblotting. Both diatoms reduced the plastid area, i.e. decreased the amount of thylakoid lamellae, under high light intensity. The thylakoids still ran in groups of three with parallel orientation within the chloroplasts. The girdle band lamellae were not affected. The amounts of storage compounds and vacuoles increased. SDS-PAGE of total cell protein followed by Western immunoblotting with antisera directed against subunits of the light-harvesting antenna systems of C. cryptica (cc-antiserum) and the cryptophyte Cryptomonas maculata (cmac-antiserum) revealed that both diatoms reduced the amount of antenna polypeptides under increased light intensity. The cc-antiserum immunodecorated two bands with relative molecular masses (Mr) of 18,000 and 22,000 in C. cryptica. Both decreased under high light conditions to 67.2 +/- 6.1%. Five to seven bands in the Mr range of 14,000-27,000 were recognized in P. tricornutum. They decreased to 83 +/- 5.3%. Furthermore, the immunolabeling pattern for both strains differed under the two light regimes. The cmac-antiserum immunodecorated two polypeptides with Mr of 24,000 and 23,000 in C. cryptica, while both strains of P. tricornutum had five polypeptides in the Mr range of 14,000-24,000 that showed some differences in staining intensities between the two strains and in response to the light intensity applied.  相似文献   

15.
In the present study, the influence of Mg2+ ions and low pH values on the aggregation state of the diatom FCP and the LHCII of vascular plants was studied. In addition, the concentration of thylakoid membrane lipids associated with the complexes was determined. The results demonstrate that the FCP, which contained a significantly higher concentration of the negatively charged lipids SQDG and PG, was less sensitive to Mg2+ and low pH values than the LHCII which was characterized by lower amounts of SQDG and a higher concentration of MGDG. High MgCl2 concentrations and pH values below pH 6 induced significant changes of the absorption and 77K fluorescence emission spectra of the LHCII, indicating a strong aggregation of the light-harvesting complex. This aggregation was also visible as a pellet after centrifugation on a sucrose cushion. Although the FCP responded with changes of the absorption and fluorescence spectra to low pH and Mg2+ incubation, these spectral changes were less pronounced than those observed for the LHCII. In addition, the FCP complexes did not show a visible pellet after incubation with either low pH values or high Mg2+ concentrations. Only the combined action of Mg2+ and pH 5 led to FCP aggregates of a size that could be pelleted by centrifugation. The decreased sensitivity of FCP aggregation to Mg2+ and low pH is discussed with respect to the differences in the concentration of the lipids surrounding the FCP and LHCII and the different thylakoid membrane organizations of diatoms and vascular plants.  相似文献   

16.
Photosystem II is a multimeric protein complex of the thylakoid membrane in chloroplasts. Approximately half of the at least 26 different integral membrane protein subunits have molecular masses lower than 10 kDa. After one-dimensional (1D) or two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) separation, followed by enzymatic digestion of detected proteins, hardly any of these low-molecular-weight (LMW) subunits are detectable. Therefore, we developed a method for the analysis of highly hydrophobic LMW proteins. Intact proteins are extracted from acrylamide gels using a mixture of formic acid and organic solvent, precipitated with acetone, and analyzed by “top-down” mass spectrometry (MS). After offline nanoESI (electrospray ionization) MS, all LMW one-helix proteins from photosystem II were detected. In the four detected photosystem II supercomplexes of Nicotiana tabacum wild-type plants, 11 different one-helix proteins were identified as PsbE, -F, -H, -I, -K, -L, -M, -Tc, -W, and two isoforms of PsbX. The proteins PsbJ, -Y1, and -Y2 were localized in the buffer front after blue native (BN) PAGE, indicating their release during solubilization. Assembled PsbW is detected exclusively in supercomplexes, whereas it is absent in photosystem II core complexes, corroborating the protein’s function for assembly of the light-harvesting complexes. This approach will substantiate gel-blot immunoanalysis for localization and identification of LMW protein subunits in any membrane protein complex.  相似文献   

17.
We generated Synechocystis sp. PCC 6803 strains, designated F-His and J-His, which express histidine-tagged PsaF and PsaJ subunits, respectively, for simple purification of the photosystem I (PSI) complex. Six histidine residues were genetically added to the C-terminus of the PsaF subunit in F-His cells and the N-terminus of the PsaJ subunit in J-His cells. The histidine residues introduced had no apparent effect on photoautotrophic growth of the cells or the activity of PSI and PSII in thylakoid membranes. PSI complexes could be simply purified from the F-His and J-His cells by Ni2+-affinity column chromatography. When thylakoid membranes corresponding to 20 mg chlorophyll were used, PSI complexes corresponding to about 7 mg chlorophyll could be purified in both strains. The purified PSI complexes could be separated into monomers and trimers by ultracentrifugation in glycerol density gradient and high activity was recorded for trimers isolated from the F-His and J-His strains. Blue-Native PAGE and SDS-PAGE analysis of monomers and trimers indicated the existence of two distinct monomers with different subunit compositions and no contamination of PSI with other complexes, such as PSII and Cyt b6f. Further analysis of proteins and lipids in the purified PSI indicated the presence of novel proteins in the monomers and about six lipid molecules per monomer unit in the trimers. These results demonstrate that active PSI complexes can be simply purified from the constructed strains and the strains are very useful tools for analysis of PSI.  相似文献   

18.
The exposure of the flavivirus tick-borne encephalitis (TBE) virus to an acidic pH is necessary for virus-induced membrane fusion and leads to a quantitative and irreversible conversion of the envelope protein E dimers to trimers. To study the structural requirements for this oligomeric rearrangement, the effect of low-pH treatment on the oligomeric state of different isolated forms of protein E was investigated. Full-length E dimers obtained by solubilization of virus with the detergent Triton X-100 formed trimers at low pH, whereas truncated E dimers lacking the stem-anchor region underwent a reversible dissociation into monomers without forming trimers. These data suggest that the low-pH-induced rearrangement in virions is a two-step process involving a reversible dissociation of the E dimers followed by an irreversible formation of trimers, a process which requires the stem-anchor portion of the protein. This region contains potential amphipathic alpha-helical and conserved structural elements whose interactions may contribute to the rearrangements which initiate the fusion process.  相似文献   

19.
The main chlorophyll a/b light-harvesting complex of photosystem II, LHCIIb, has earlier been shown to be capable of undergoing light-induced reversible structural changes and chlorophyll a fluorescence quenching in a way resembling those observed in granal thylakoids when exposed to excess light [Barzda, V., et al. (1996) Biochemistry 35, 8981-8985]. The nature and mechanism of this unexpected structural flexibility has not been elucidated. In this work, by using density gradient centrifugation and nondenaturing green gel electrophoresis, as well as absorbance and circular dichroic spectroscopy, we show that light induces a significant degree of monomerization, which is in contrast with the preferentially trimeric organization of the isolated complexes in the dark. Monomerization is accompanied by a reversible release of Mg ions, most likely from the outer loop of the complexes. These data, as well as the built-in thermal and light instability of the trimeric organization, are explained in terms of a simple theoretical model of thermo-optic mechanism, effect of fast thermal transients (local T-jumps) due to dissipated photon energies in the vicinity of the cation binding sites, which lead to thermally assisted elementary structural transitions. Disruption of trimers to monomers by excess light is not confined to isolated trimers and lamellar aggregates of LHCII but occurs in photosystem II-enriched grana membranes, intact thylakoid membranes, and whole plants. As indicated by differences in the quenching capability of trimers and monomers, the appearance of monomers could facilitate the nonphotochemical quenching of the singlet excited state of chlorophyll a. The light-induced formation of monomers may also be important in regulated proteolytic degradation of the complexes. Structural changes driven by thermo-optic mechanisms may therefore provide plants with a novel mechanism for regulation of light harvesting in excess light.  相似文献   

20.
通过改进硅藻主要捕光天线(FCP)的分离和提取方法, 得到高纯度、高均一性的三角褐指藻FCP蛋白,并通过电泳、液相色谱、质谱和吸收荧光光谱学等手段研究三角褐指藻FCP的氨基酸序列、色素组成和捕光特点等, 初步预测三角褐指藻的结构和功能特点。结果表明三角褐指藻FCP含有198个氨基酸, 与高等植物LHCII的序列Identity约为24%。三维结构预测显示FCP具有与LHCII相似的三次跨膜螺旋框架结构, 但跨膜螺旋较短, 且无膜表面螺旋结构。FCP中主要结合了叶绿素a、叶绿素c、岩藻黄素, 不含叶绿素b, Chl. a/c为3.0。光谱学分析表明岩藻黄素可以在水下弱光环境中有效地捕获绿光, 并高效地传递至叶绿素。而岩藻黄素在400-500 nm区域吸收的光能, 向叶绿素传递效率较低, 预示着岩藻黄素在强光下也有一定的光保护功能。FCP中有4个叶绿素结合的保守氨基酸位点, 可能是其叶绿素结合位置, 但岩藻黄素的结合位置因其结构和结合位点的变化而无法预测。研究为进一步探索FCP的结构和功能特性奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号