共查询到20条相似文献,搜索用时 15 毫秒
1.
Lyle JM Clewell A Richmond K Richards OC Hope DA Schultz SC Kirkegaard K 《The Journal of biological chemistry》2002,277(18):16324-16331
Protein primers are used to initiate genomic synthesis of several RNA and DNA viruses, although the structural details of the primer-polymerase interactions are not yet known. Poliovirus polymerase binds with high affinity to the membrane-bound viral protein 3AB but uridylylates only the smaller peptide 3B in vitro. Mutational analysis of the polymerase identified four surface residues on the three-dimensional structure of poliovirus polymerase whose wild-type identity is required for 3AB binding. These mutants also decreased 3B uridylylation, arguing that the binding sites for the membrane tether and the protein primer overlap. Mutation of flanking residues between the 3AB binding site and the polymerase active site specifically decreased 3B uridylylation, likely affecting steps subsequent to binding. The physical overlap of sites for protein priming and membrane association should facilitate replication initiation in the membrane-associated complex. 相似文献
2.
Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase
The active RNA-dependent RNA polymerase of poliovirus, 3Dpol, is generated by cleavage of the 3CDpro precursor protein, a protease that has no polymerase activity despite containing the entire polymerase domain. By intentionally disrupting a known and persistent crystal packing interaction, we have crystallized the poliovirus polymerase in a new space group and solved the complete structure of the protein at 2.0 A resolution. It shows that the N-terminus of fully processed 3Dpol is buried in a surface pocket where it makes hydrogen bonds that act to position Asp238 in the active site. Asp238 is an essential residue that selects for the 2' OH group of substrate rNTPs, as shown by a 2.35 A structure of a 3Dpol-GTP complex. Mutational, biochemical, and structural data further demonstrate that 3Dpol activity is exquisitely sensitive to mutations at the N-terminus. This sensitivity is the result of allosteric effects where the structure around the buried N-terminus directly affects the positioning of Asp238 in the active site. 相似文献
3.
Molecular motors play a central role in cytoskeletal-mediated cellular processes and thus present an excellent target for cellular control by pharmacological agents. Yet very few such compounds have been found. We report here the structure of blebbistatin, which inhibits specific myosin isoforms, bound to the motor domain of Dictyostelium discoideum myosin II. This reveals the structural basis for its specificity and provides insight into the development of new agents. 相似文献
4.
5.
Tolbert WD Ekstrom JL Mathews II Secrist JA Kapoor P Pegg AE Ealick SE 《Biochemistry》2001,40(32):9484-9494
S-Adenosylmethionine decarboxylase belongs to a small class of amino acid decarboxylases that use a covalently bound pyruvate as a prosthetic group. It is an essential enzyme for polyamine biosynthesis and provides an important target for the design of anti-parasitic and cancer chemotherapeutic agents. We have determined the structures of S-adenosylmethionine decarboxylase complexed with the competitive inhibitors methylglyoxal bis(guanylhydrazone) and 4-amidinoindan-1-one-2'-amidinohydrazone as well as the irreversible inhibitors 5'-deoxy-5'-[N-methyl-N-[(2-aminooxy)ethyl]amino]adenosine, 5'-deoxy-5'-[N-methyl-N-(3-hydrazinopropyl)amino]adenosine, and the methyl ester analogue of S-adenosylmethionine. These structures elucidate residues important for substrate binding and show how those residues interact with both covalently and noncovalently bound inhibitors. S-Adenosylmethionine decarboxylase has a four-layer alphabeta betaalpha sandwich fold with residues from both beta-sheets contributing to substrate and inhibitor binding. The side chains of conserved residues Phe7, Phe223, and Glu247 and the backbone carbonyl of Leu65 play important roles in binding and positioning the ligands. The catalytically important residues Cys82, Ser229, and His243 are positioned near the methionyl group of the substrate. One molecule of putrescine per monomer is observed between the two beta-sheets but far away from the active site. The activating effects of putrescine may be due to conformational changes in the enzyme, to electrostatic effects, or both. The adenosyl moiety of the bound ligand is observed in the unusual syn conformation. The five structures reported here provide a framework for interpretation of S-adenosylmethionine decarboxylase inhibition data and suggest strategies for the development of more potent and more specific inhibitors of S-adenosylmethionine decarboxylase. 相似文献
6.
Tellez AB Wang J Tanner EJ Spagnolo JF Kirkegaard K Bullitt E 《Journal of molecular biology》2011,412(4):737-750
Catalytic activities can be facilitated by ordered enzymatic arrays that co-localize and orient enzymes and their substrates. The purified RNA-dependent RNA polymerase from poliovirus self-assembles to form two-dimensional lattices, possibly facilitating the assembly of viral RNA replication complexes on the cytoplasmic face of intracellular membranes. Creation of a two-dimensional lattice requires at least two different molecular contacts between polymerase molecules. One set of polymerase contacts, between the “thumb” domain of one polymerase and the back of the “palm” domain of another, has been previously defined. To identify the second interface needed for lattice formation and to test its function in viral RNA synthesis, we used a hybrid approach of electron microscopic and biochemical evaluation of both wild-type and mutant viral polymerases to evaluate computationally generated models of this second interface. A unique solution satisfied all constraints and predicted a two-dimensional structure formed from antiparallel arrays of polymerase fibers that use contacts from the flexible amino-terminal region of the protein. Enzymes that contained mutations in this newly defined interface did not form lattices and altered the structure of wild-type lattices. When reconstructed into virus, mutations that disrupt lattice assembly exhibited growth defects, synthetic lethality or both, supporting the function of the oligomeric lattice in infected cells. Understanding the structure of polymerase lattices within the multimeric RNA-dependent RNA polymerase complex should facilitate antiviral drug design and provide a precedent for other positive-strand RNA viruses. 相似文献
7.
The specificity of Ca2+ signalling 总被引:2,自引:0,他引:2
A calcium signal is a sudden increase in concentration of calcium ions (Ca2+) in the cytosol. Such signals are crucial for the control of many important functions of the body. In the brain, for example, Ca2+ signals are responsible for memory, in muscle cells they switch on contraction, whereas in gland cells they are responsible for regulation of secretion. In many cases Ca2+ signals can control several different processes in the same cell. As an example, we shall deal with one particular cell type, namely the pancreatic acinar cell, which is responsible for the secretion of the enzymes essential for the digestion of food. In this cell, Ca2+ signals do not only control the normal enzyme secretion, but also regulate growth (cell division) and programmed cell death (apoptosis). Until recently, it was a mystery how the same type of signal could regulate such diverse functions in one and the same cell. Recent technical advances have shown that different patterns of Ca2+ signals can be created, in space and time, which allow specific cellular responses to be elicited. 相似文献
8.
9.
James A Birchler 《Genome biology》2009,10(11):243-3
The discovery of a novel RNA-dependent RNA polymerase activity with a eukaryote-wide distribution raises new questions about the roles and mechanisms of gene silencing by small RNAs. 相似文献
10.
Gang Wang Siew Pheng Lim Yen-Liang Chen Jürg Hunziker Ranga Rao Feng Gu Cheah Chen Seh Nahdiyah Abdul Ghafar Haoying Xu Katherine Chan Xiaodong Lin Oliver L. Saunders Martijn Fenaux Weidong Zhong Pei-Yong Shi Fumiaki Yokokawa 《Bioorganic & medicinal chemistry letters》2018,28(13):2324-2327
To identify a potent and selective nucleoside inhibitor of dengue virus RNA-dependent RNA polymerase, a series of 2′- and/or 4′-ribose sugar modified uridine nucleoside phosphoramidate prodrugs and their corresponding triphosphates were synthesized and evaluated. Replacement of 2′-OH with 2′-F led to be a poor substrate for both dengue virus and human mitochondrial RNA polymerases. Instead of 2′-fluorination, the introduction of fluorine at the ribose 4′-position was found not to affect the inhibition of the dengue virus polymerase with a reduction in uptake by mitochondrial RNA polymerase. 2′-C-ethynyl-4′-F-uridine phosphoramidate prodrug displayed potent anti-dengue virus activity in the primary human peripheral blood mononuclear cell-based assay with no significant cytotoxicity in human hepatocellular liver carcinoma cell lines and no mitochondrial toxicity in the cell-based assay using human prostate cancer cell lines. 相似文献
11.
12.
13.
The structural basis for the ligand specificity of family 2 carbohydrate-binding modules 总被引:6,自引:0,他引:6
Simpson PJ Xie H Bolam DN Gilbert HJ Williamson MP 《The Journal of biological chemistry》2000,275(52):41137-41142
The interactions of proteins with polysaccharides play a key role in the microbial hydrolysis of cellulose and xylan, the most abundant organic molecules in the biosphere, and are thus pivotal to the recycling of photosynthetically fixed carbon. Enzymes that attack these recalcitrant polymers have a modular structure comprising catalytic modules and non-catalytic carbohydrate-binding modules (CBMs). The largest prokaryotic CBM family, CBM2, contains members that bind cellulose (CBM2a) and xylan (CBM2b), respectively. A possible explanation for the different ligand specificity of CBM2b is that one of the surface tryptophans involved in the protein-carbohydrate interaction is rotated by 90 degrees compared with its position in CBM2a (thus matching the structure of the binding site to the helical secondary structure of xylan), which may be promoted by a single amino acid difference between the two families. Here we show that by mutation of this single residue (Arg-262-->Gly), a CBM2b xylan-binding module completely loses its affinity for xylan and becomes a cellulose-binding module. The structural effect of the mutation has been revealed using NMR spectroscopy, which confirms that Trp-259 rotates 90 degrees to lie flat against the protein surface. Except for this one residue, the mutation only results in minor changes to the structure. The mutated protein interacts with cellulose using the same residues that the wild-type CBM2b uses to interact with xylan, suggesting that the recognition is of the secondary structure of the polysaccharide rather than any specific recognition of the absence or presence of functional groups. 相似文献
14.
Current assays for the activity of viral RNA-dependent RNA polymerases (RdRps) are inherently end-point measurements, often requiring the use of radiolabeled or chemically modified nucleotides to detect reaction products. In an effort to improve the characterization of polymerases that are essential to the life cycle of RNA viruses and develop antiviral therapies that target these enzymes, a continuous nonradioactive assay was developed to monitor the activity of RdRps by measuring the release of pyrophosphate (PP(i)) generated during nascent strand synthesis. A coupled-enzyme assay method based on the chemiluminescent detection of PP(i), using ATP sulfurylase and firefly luciferase, was adapted to monitor poliovirus 3D polymerase (3D(pol)) and the hepatitis C virus nonstructural protein 5B (NS5B) RdRp reactions. Light production was dependent on RdRp and sensitive to the concentration of oligonucleotide primer directing RNA synthesis. The assay system was found to be amenable to sensitive kinetic studies of RdRps, requiring only 6nM 3D(pol) to obtain a reliable estimate of the initial velocity in as little as 4 min. The assay can immediately accommodate the use of both homopolymer and heteropolymer RNA templates lacking uridylates and can be adapted to RNA templates containing uridine by substituting alpha-thio ATP for ATP. The low background signal produced by other NTPs can be corrected from no enzyme (RdRp) controls. The effect of RdRp/RNA template preincubation was assessed using NS5B and a homopolymer RNA template and a time-dependent increase of RdRp activity was observed. Progress curves for a chain terminator (3(')-deoxyguanosine 5(')-triphosphate) and an allosteric NS5B inhibitor demonstrated the predicted time- and dose-dependent reductions in signal. This assay should facilitate detailed kinetic studies of RdRps and their potential inhibitors using either standard or single-nucleotide approaches. 相似文献
15.
Transgenic expression of the RNA-dependent RNA polymerase 3D(pol) inhibited infection of Theiler's murine encephalitis virus (TMEV), a picornavirus from which it was derived. Here, we infected 3D(pol) transgenic mice with another picornavirus, as well as an alphaherpesvirus and a rhabdovirus. 3D(pol) transgenic FVB mice had significantly lower viral loads and survived longer after infection with all three types of viruses than nontransgenic FVB mice. Viral inhibition among three different types of virus by transgenic 3D(pol) suggests that the mechanism of action is not the direct interference with picornaviral 3D(pol) but instead may be the changing of host cells to an antiviral state before or after viral infection occurs, as basal interferon levels were higher in 3D(pol) transgenic mice before infection. Further study of this mechanism may open new possibilities for future antiviral therapy. 相似文献
16.
Norovirus proteinase-polymerase and polymerase are both active forms of RNA-dependent RNA polymerase
下载免费PDF全文

Belliot G Sosnovtsev SV Chang KO Babu V Uche U Arnold JJ Cameron CE Green KY 《Journal of virology》2005,79(4):2393-2403
In vitro mapping studies of the MD145 norovirus (Caliciviridae) ORF1 polyprotein identified two stable cleavage products containing the viral RNA-dependent RNA polymerase (RdRp) domains: ProPol (a precursor comprised of both the proteinase and polymerase) and Pol (the mature polymerase). The goal of this study was to identify the active form (or forms) of the norovirus polymerase. The recombinant ProPol (expressed as Pro(-)Pol with an inactivated proteinase domain to prevent autocleavage) and recombinant Pol were purified after synthesis in bacteria and shown to be active RdRp enzymes. In addition, the mutant His-E1189A-ProPol protein (with active proteinase but with the natural ProPol cleavage site blocked) was active as an RdRp, confirming that the norovirus ProPol precursor could possess two enzymatic activities simultaneously. The effects of several UTP analogs on the RdRp activity of the norovirus and feline calicivirus Pro(-)Pol enzymes were compared and found to be similar. Our data suggest that the norovirus ProPol is a bifunctional enzyme during virus replication. The availability of this recombinant ProPol enzyme might prove useful in the development of antiviral drugs for control of the noroviruses associated with acute gastroenteritis. 相似文献
17.
18.
Using a hairpin primer/template RNA derived from sequences present at the 3' end of the poliovirus genome, we investigated the RNA-binding and elongation activities of highly purified poliovirus 3D polymerase. We found that surprisingly high polymerase concentrations were required for efficient template utilization. Binding of template RNAs appeared to be the primary determinant of efficient utilization because binding and elongation activities correlated closely. Using a three-filter binding assay, polymerase binding to RNA was found to be highly cooperative with respect to polymerase concentration. At pH 5.5, where binding was most cooperative, a Hill coefficient of 5 was obtained, indicating that several polymerase molecules interact to retain the 110-nt RNA in a filter-bound complex. Chemical crosslinking with glutaraldehyde demonstrated physical polymerase-polymerase interactions, supporting the cooperative binding data. We propose a model in which poliovirus 3D polymerase functions both as a catalytic polymerase and as a cooperative single-stranded RNA-binding protein during RNA-dependent RNA synthesis. 相似文献
19.
Mastrangelo E Pezzullo M Tarantino D Petazzi R Germani F Kramer D Robel I Rohayem J Bolognesi M Milani M 《Journal of molecular biology》2012,419(3-4):198-210
Caliciviridae are RNA viruses with a single-stranded, positively oriented polyadenylated genome, responsible for a broad spectrum of diseases such as acute gastroenteritis in humans. Recently, analyses on the structures and functionalities of the RNA-dependent RNA polymerase (RdRp) from several Caliciviruses have been reported. The RdRp is predicted to play a key role in genome replication, as well as in synthesis and amplification of additional subgenomic RNA. Starting from the crystal structures of human Norovirus (hNV) RdRp, we performed an in silico docking search to identify synthetic compounds with predicted high affinity for the enzyme active site. The best-ranked candidates were tested in vitro on murine Norovirus (MNV) and hNV RdRps to assay their inhibition of RNA polymerization. The results of such combined computational and experimental screening approach led to the identification of two high-potency inhibitors: Suramin and NF023, both symmetric divalent molecules hosting two naphthalene-trisulfonic acid heads. We report here the crystal structure of MNV RdRp alone and in the presence of the two identified inhibitors. Both inhibitory molecules occupy the same RdRp site, between the fingers and thumb domains, with one inhibitor head close to residue 42 and to the protein active site. To further validate the structural results, we mutated Trp42 to Ala in MNV RdRp and the corresponding residue (i.e., Tyr41 to Ala) in hNV RdRp. Both NF023 and Suramin displayed reduced inhibitory potency versus the mutated hNV RdRp, thus hinting at a conserved inhibitor binding mode in the two polymerases. 相似文献
20.
Richards OC Spagnolo JF Lyle JM Vleck SE Kuchta RD Kirkegaard K 《Journal of virology》2006,80(15):7405-7415
The 22-amino-acid protein VPg can be uridylylated in solution by purified poliovirus 3D polymerase in a template-dependent reaction thought to mimic primer formation during RNA amplification in infected cells. In the cell, the template used for the reaction is a hairpin RNA termed 2C-cre and, possibly, the poly(A) at the 3' end of the viral genome. Here, we identify several additional substrates for uridylylation by poliovirus 3D polymerase. In the presence of a 15-nucleotide (nt) RNA template, the poliovirus polymerase uridylylates other polymerase molecules in an intermolecular reaction that occurs in a single step, as judged by the chirality of the resulting phosphodiester linkage. Phosphate chirality experiments also showed that VPg uridylylation can occur by a single step; therefore, there is no obligatory uridylylated intermediate in the formation of uridylylated VPg. Other poliovirus proteins that could be uridylylated by 3D polymerase in solution were viral 3CD and 3AB proteins. Strong effects of both RNA and protein ligands on the efficiency and the specificity of the uridylylation reaction were observed: uridylylation of 3D polymerase and 3CD protein was stimulated by the addition of viral protein 3AB, and, when the template was poly(A) instead of the 15-nt RNA, the uridylylation of 3D polymerase itself became intramolecular instead of intermolecular. Finally, an antiuridine antibody identified uridylylated viral 3D polymerase and 3CD protein, as well as a 65- to 70-kDa host protein, in lysates of virus-infected human cells. 相似文献