首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondria play a pivotal role in the regulation of apoptosis. An imbalance in apoptosis can lead to disease. Unscheduled apoptosis has been linked to neurodegeneration while inhibition of apoptosis can cause cancer. An early and key event during apoptosis is the release of factors from mitochondria. In apoptosis the mitochondrial outer membrane becomes permeable, leading to release of apoptogenic factors into the cytosol. One such factor, cytochrome c, is an electron carrier of the respiratory chain normally trapped within the mitochondrial intermembrane space. Many apoptotic studies investigate mitochondrial outer membrane permeabilization (MOMP) by monitoring the release of cytochrome c. Here, we describe three reliable techniques that detect cytochrome c release from mitochondria, through subcellular fractionation or immunocytochemistry and fluorescence microscopy, or isolated mitochondria and recombinant Bax and t-Bid proteins in vitro. These techniques will help to identify mechanisms and characterize factors regulating MOMP.  相似文献   

2.
Deficient activation of apoptosis signaling pathways may be responsible for treatment failure of malignant diseases. In primary leukemia samples the detection of deficient mitochondrial apoptosis signaling would enable identification of chemo-resistant cells. To investigate the key events of apoptosis at the mitochondrial level, we developed a flow cytometric method for simultaneous detection of mitochondrial cytochrome c release and caspase-3 processing using conformation sensitive monoclonal antibodies. This method proved to identify deficient mitochondrial apoptosis signaling in leukemia cells overexpressing Bcl-2 by a pattern of apoptosis resistance, deficient cytochrome c reduction and partial processing of caspase-3. In primary leukemia cells, reduction of cytochrome c and caspase-3 activation was induced by treatment with anticancer drugs in vitro. In leukemia cells of a patient with resistant disease, a pattern of deficient apoptosis signaling as in Bcl-2 transfected cells was observed, suggesting that deficient mitochondrial signaling contributed to the clinical phenotype of drug resistance in this patient. Flow cytometric analysis of mitochondrial apoptosis signaling may provide a useful tool for the prediction of drug resistance and treatment failure in primary leukemia.  相似文献   

3.
In this study we show that panaxadiol, a ginseng saponin with a dammarane skeleton, induces apoptotic cell death by depolarization of mitochondrial membrane potential in human hepatoma SK-HEP-1 cells. Sequential activation of caspases-9, -3, and -7, but not of caspase-8, occurs after mitochondrial membrane depolarization and cytochrome c release from the mitochondria of panaxadiol-treated cells. Moreover, Cdk2 kinase activity, but not Cdc2 kinase activity, is markedly upregulated in the early stages of apoptosis. Olomoucine or roscovitine, specific Cdks inhibitors, effectively prevent mitochondrial membrane depolarization as well as apoptotic cell death in panaxadiol-treated cells. Thus, panaxadiol-treatment induces cell death-dependent activation of Cdk2 kinase activity, which is functionally associated with depolarization of mitochondrial membrane potential and subsequent cytochrome c release.  相似文献   

4.
The role of mitochondrial membrane potential in ischemic heart failure   总被引:1,自引:0,他引:1  
The molecular events occurring during myocardial infarction and cardioprotection are described with an emphasis on the changes of the mitochondrial membrane potential (ΔΨm). The low ΔΨm values of the normal beating heart (100–140 mV) are explained by the allosteric ATP-inhibition of cytochrome c oxidase (CcO) through feedback inhibition by ATP at high [ATP]/[ADP] ratios. During ischemia the mechanism is reversibly switched off by signaling through reactive oxygen species (ROS). At reperfusion high ΔΨm values cause a burst of ROS production leading to apoptosis and/or necrosis. Ischemic preconditioning is suggested to cause additional phosphorylation of CcO, protecting the enzyme from immediate dephosphorylation via ROS signaling.  相似文献   

5.
It has been suggested that release of cytochrome c (Cyt c) from mitochondria during apoptotic death is through opening of the mitochondrial permeability transition pore followed by swelling-induced rupture of the mitochondrial outer membrane. However, this remains controversial and may vary with cell type and model system. We determined that in mouse cerebellar granule neurons, Cyt c redistribution preceded the loss of mitochondrial membrane potential during the apoptotic process, suggesting that the pore did not open prior to release. Furthermore, when mitochondria were morphologically assessed by electron microscopy, they were not obviously swollen during the period of Cyt c release. This indicates that the pore mechanism of action, if any, is not through mitochondrial outer membrane rupture. While bongkrekic acid, an inhibitor of pore opening, modestly delayed apoptotic death, it also caused a significant (p < 0.05) suppression of protein synthesis. An equivalent suppression of protein synthesis by cycloheximide had a similar delaying effect, suggesting that bongkrekic acid was acting non-specifically. These findings suggest that mitochondrial permeability transition pore is not involved in Cyt c release from mitochondria during the apoptotic death of cerebellar granule neurons.  相似文献   

6.
'Tissue' transglutaminase (tTG) selectively accumulates in cells undergoing apoptosis both in vivo and in vitro. Considering the central role played by mitochondria in apoptosis, we investigated the relationships existing amongst tTG expression, apoptosis and mitochondrial function. To this aim we studied the mechanisms of apoptosis in a neuronal cell line (SK-N-BE (2)) in which the tTG-expression was driven by a constitutive promoter. Furthermore, a tet-off inducible promoter was also used in 3T3 fibroblastic cells used as control. Both cell lines, when expressing tTG, appeared 'sensitized' to apoptosis. Strikingly, we found major differences in the morphological features of mitochondria among cell lines in the absence of apoptotic stimuli. In addition, these ultrastructural characteristics were associated with specific functional features: (i) constitutively hyperpolarized mitochondria and (ii) increased reactive oxygen intermediates production. Importantly, after mitochondrial-mediated apoptosis by staurosporine, a rapid loss of mitochondrial membrane potential was found in tTG cells only. Taken together, these results seem to suggest that, via hyperpolarization, tTG might act as a 'sensitizer' towards apoptotic stimuli specifically targeted to mitochondria. These results could also be of pathogenetic relevance for those diseases that are characterized by increased tTG and apoptotic rate together with impaired mitochondrial function, e.g. in some neurodegenerative disease.  相似文献   

7.
目的:探讨在低渗透压形成的静牵张应力环境下线粒体跨膜电位与细胞增殖分化及凋亡的关系。方法:用成骨样细胞MG63细胞株进行体外培养、扩增,在对数生长期采用不同的低渗透压对细胞进行刺激,检测不同作用务件下线粒体跨膜电位(ΔΨm)、细胞增殖比例(S期百分比)以及凋亡指数。结果:240mOsm组ΔΨm呈上升趋势,4h达到峰值,6h逐渐下降,但仍高于对照组;163 mOsm组ΔΨm在6 h时明显降低。277和240 mOsm组S期百分比在6 h和8 h达到峰值(26.54±0.71,28.10±0.39:26.96±0.33,28.55±0.26)。三个实验组的凋亡峰均提前,且大于对照组,尤以163 mOsm组为最(54.87±0.78)。结论:成骨样细胞MG63ΔΨm的变化与时间和力学刺激强度有一定的依赖性,预示线粒体跨膜电位的变化与细胞增殖活性之间存在一定的关系。  相似文献   

8.
《Free radical research》2013,47(7):784-793
Abstract

Cerium oxide nanoparticles (CNPs) of spherical shape have unique antioxidant capacity primarily due to alternating + 3 and + 4 oxidation states and crystal defects. Several studies revealed the protective efficacies of CNPs in cells and tissues against the oxidative damage. However, its effect on mitochondrial functioning, downstream effectors of radical burst and apoptosis remains unknown. In this study, we investigated whether CNPs treatment could protect the primary cortical cells from loss of mitochondrial membrane potential (Δψm) and Δψm-dependent cell death. CNPs with spherical morphology and size range 7–10 nm were synthesized and utilized at a concentration of 25 nM on primary neuronal culture challenged with 50 μM of hydrogen peroxide (H2O2). We showed that optimal dose of CNPs minimized ROS content of the cells and also curbed related surge in cellular calcium flux. Importantly, CNPs treatment prevented apoptotic loss of cell viability. Reduction in the apoptosis could be successfully attributed to the maintenance of Δψm and restoration of major redox equivalents NADH/NAD+ ratio and cellular ATP. These findings, therefore, suggest possible route of CNPs protective efficacies in primary cortical culture.  相似文献   

9.
Sequential activation of cyclin-dependent kinases (Cdks) controls mammalian cell cycle. Here we demonstrate that the upregulation of cyclin-dependent kinase 2 (Cdk2) activity coincides with the loss of mitochondrial membrane potential (MMP) in paclitaxel-induced apoptosis. Ectopic expression of the dominant negative Cdk2 (Cdk2-dn) and a specific Cdk2 inhibitor, p21WAF1/CIP1, effectively suppresses the loss of MMP, the release of cytochrome c, and subsequent activation of caspase-3 in paclitaxel-treated cells. Whereas forced activation of Cdk2 by overexpression of cyclin A dramatically promotes these events. We further show that Cdk2 activation status does not interfere with a procedure that lies downstream of cytochrome c release induced by Bax protein. These findings suggest that Cdk2 kinase can regulate apoptosis at earlier stages than mitochondrial permeability transition and cytochrome c release.  相似文献   

10.
During apoptosis, an important pathway leading to caspase activation involves the release of cytochrome c from the intermembrane space of mitochondria. Using a cell-free system based on Xenopus egg extracts, we examined changes in the outer mitochondrial membrane accompanying cytochrome c efflux. The pro-apoptotic proteins, Bid and Bax, as well as factors present in Xenopus egg cytosol, each induced cytochrome c release when incubated with isolated mitochondria. These factors caused a permeabilization of the outer membrane that allowed the corelease of multiple intermembrane space proteins: cytochrome c, adenylate kinase and sulfite oxidase. The efflux process is thus nonspecific. None of the cytochrome c-releasing factors caused detectable mitochondrial swelling, arguing that matrix swelling is not required for outer membrane permeability in this system. Bid and Bax caused complete release of cytochrome c but only a limited permeabilization of the outer membrane, as measured by the accessibility of inner membrane-associated respiratory complexes III and IV to exogenously added cytochrome c. However, outer membrane permeability was strikingly increased by a macromolecular cytosolic factor, termed PEF (permeability enhancing factor). We hypothesize that PEF activity could help determine whether cells can recover from mitochondrial cytochrome c release.  相似文献   

11.
Chiu PY  Luk KF  Leung HY  Ng KM  Ko KM 《Life sciences》2008,82(21-22):1092-1101
The effects of schisandrin B stereoisomers, (+/-)gamma-schisandrin [(+/-)gamma-Sch] and (-)schisandrin B [(-)Sch B], on hypoxia/reoxygenation-induced apoptosis were investigated in H9c2 cardiomyocytes. Changes in cellular reduced glutathione (GSH) levels, Ca(2+)-induced mitochondrial permeability transition (MPT), and mitochondrial membrane potential (Deltapsi(m)) values, were examined in (+/-)gamma-Sch-pretreated and (-)Sch B-pretreated cells, without or with hypoxia/reoxygenation challenge. The (+/-)gamma-Sch and (-)Sch B (2.5-5.0 microM) pretreatments protected against hypoxia/reoxygenation-induced apoptosis of H9c2 cells in a concentration-dependent manner, with (-)Sch B being more potent. The degrees of protection decreased, however, at the higher drug concentrations of 7.5 microM in both (+/-)gamma-Sch-pretreated and (-)Sch B-pretreated cells. The anti-apoptotic effects of the drugs were further evidenced by the suppression of hypoxia/reoxygenation-induced mitochondrial cytochrome c release and the subsequent cleavage of caspase 3 and poly-ADP-ribose polymerase after (-)Sch B pretreatment. Both (+/-)gamma-Sch and (-)Sch B pretreatments increased GSH levels in H9c2 cells, with (-)Sch B being more potent. Hypoxia/reoxygenation challenge caused a depletion in cellular GSH and the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B was associated with enhancement of cellular GSH in H9c2 cells, as compared to the drug-unpretreated control. Whereas hypoxia/reoxygenation challenge increased the extent of Ca(2+)-induced MPT pore opening and decreased Deltapsi(m) in H9c2 cardiomyocytes, cytoprotection against hypoxia/reoxygenation-induced apoptosis afforded by (+/-)gamma-Sch/(-)Sch B pretreatments was associated with a decreased sensitivity to Ca(2+)-induced MPT and an increased Deltapsi(m) in both unchallenged and challenged cells, as compared to the respective drug-unpretreated controls. The degrees of protection against apoptosis correlated negatively with the extents of Ca(2+)-induced MPT (r=-0.615, P<0.01) and positively with the values of Deltapsi(m) (r=0.703, P<0.01) in (+/-)gamma-Sch/(-)Sch B-pretreated and hypoxia/reoxygenation challenged cells. The results indicate that (+/-)gamma-Sch/(-)Sch B pretreatment protected against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes and that the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B may at least in part be mediated by a decrease in cellular sensitivity to Ca(2+)-induced MPT, which may in turn result from enhancement of cellular GSH levels by drug pretreatments.  相似文献   

12.
Nitric oxide (NO) has a number of physiological and pathophysiological effects in the nervous system. One target of NO is the mitochondrion, where it inhibits respiration and ATP synthesis, which may contribute to NO-mediated neuronal injury. Our recent studies suggested that impaired mitochondrial function impairs mitochondrial trafficking, which could also contribute to neuronal injury. Here, we studied the effects of NO on mitochondrial movement and morphology in primary cultures of forebrain neurons using a mitochondrially targeted enhanced yellow fluorescent protein. NO produced by two NO donors, papa non-oate and diethylamine/NO complex, caused a rapid cessation of mitochondrial movement but did not alter morphology. Movement recovered after removal of NO. The effects of NO on movement were associated with dissipation of the mitochondrial membrane potential. Increasing cGMP levels using 8-bromoguanosine 3',5'-cyclic monophosphate, did not mimic the effects on mitochondrial movement. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of NO-induced activation of soluble guanylate cyclase, did not block the effects of NO. Thus, neither increasing nor decreasing cGMP levels had an effect on mitochondrial movement. Based on these data, we conclude that NO is a novel modulator of mitochondrial trafficking in neurons, which may act through the inhibition of mitochondrial function.  相似文献   

13.
A catalytic amount of cytochrome c (cyto-c) added to the incubation medium of isolated mitochondria promotes the transfer of reducing equivalents from extramitochondrial nicotinamide adenine dinucleotide in its reduced state (NADH) to molecular oxygen inside the mitochondria, a process coupled to the generation of a membrane potential. This mimics in many aspects the early stages of those apoptotic pathways characterized by the persistence of mitochondrial membrane potential but with cyto-c already exported into the cytosol. In cyclosporin-sensitive and calcium-induced mitochondrial permeability transition (MPT) a release of cyto-c can also be observed. However, in MPT uncoupled respiration associated with mitochondrial swelling and preceded by the complete dissipation of the membrane potential which cannot be restored with ATP addition or any other source of energy is immediately activated. The results obtained and discussed with regard to intactness of mitochondrial preparations indicate that MPT could be an apoptotic event downstream but not upstream of cyto-c release linked to the energy-requiring processes. In the early stages of apoptosis cytosolic cyto-c participates in the activation of caspases and at the same time can promote the oxidation of cytosolic NADH, making more energy available for the correct execution of the cell death program. This hypothesis is not in contrast with available data in the literature showing that cyto-c is present in the cytosol of both control and apoptosis-induced cultured cell lines.  相似文献   

14.
In order to elucidate the mechanisms involved in apoptosis induction by iron deprivation, we compared cells sensitive (38C13) and resistant (EL4) to apoptosis induced by iron deprivation. Iron deprivation was achieved by incubation in a defined iron-free medium. We detected the activation of caspase-3 as well as the activation of caspase-9 in sensitive cells but not in resistant cells under iron deprivation. Iron deprivation led to the release of cytochrome c from mitochondria into the cytosol only in sensitive cells but it did not affect the cytosolic localization of Apaf-1 in both sensitive and resistant cells. The mitochondrial membrane potential (m) was dissipated within 24 h in sensitive cells due to iron deprivation. The antiapoptotic Bcl-2 protein was found to be associated with mitochondria in both sensitive and resistant cells and the association did not change under iron deprivation. On the other hand, under iron deprivation we detected translocation of the proapoptotic Bax protein from the cytosol to mitochondria in sensitive cells but not in resistant cells. Taken together, we suggest that iron deprivation induces apoptosis via mitochondrial changes concerning proapoptotic Bax translocation to mitochondria, collapse of the mitochondrial membrane potential, release of cytochrome c from mitochondria, and activation of caspase-9 and caspase-3.  相似文献   

15.
N-Acetylcysteine (NAC), besides being a precursor of glutathione, has an array of other effects including an ability to scavenge free radicals, modulate gene expression and signal transduction pathways, and regulate cell survival and apoptosis. At concentrations lower than 20 mmol/L, NAC is nontoxic to cultured cells and can protect against apoptosis induced by a number of agents. A few recent reports, however, have indicated that NAC can also increase apoptosis. MK886, a 5-lipoxygenase activating protein (FLAP) inhibitor, induces apoptosis in many cell lines by an unknown mechanism that is independent of FLAP and lipoxygenase activity but is possibly related to effects on kinases such as Akt. In Jurkat T lymphocytes, NAC pretreatment (10 mmol/L) enhanced MK886-induced apoptosis by 2.4-fold. Following NAC-MK886 treatment, there was a significant increase in caspase-3 activity, and a decrease in mitochondrial transmembrane potential compared to MK886 alone. However, the extent of cytochrome c release was comparable between MK886 alone and MK886-NAC treatments. The enhancement of MK886-induced apoptosis by 10 mmol/L NAC appears to be partly related to a decrease in pH caused by this concentration of NAC, because an acidic environment favors activation of effector caspases and triggering of mitochondrial apoptosis. However, because neutralized NAC also enhanced apoptosis (1.6-fold), a direct role for NAC in augmenting the apoptotic pathways initiated by MK886 is suggested.  相似文献   

16.
Conformational transitions in cytochrome c (cyt c) are being realized to be responsible for its multi-functions. Among a number of conformational transitions in cyt c, the alkaline transition has attracted much attention. The cDNA of human cyt c is cloned by RT-PCR and a high-effective expression system for human cyt c has been developed in this study. The equilibrium and kinetics of the alkaline transition of human cyt c have been systematically investigated for the first time, and compared with those of yeast and horse cyt c from an evolutionary perspective. The pKa value for the alkaline transition of human cyt c is apparently higher than that of yeast and horse. Kinetic studies suggest that it is increasingly difficult for the alkaline transition of cyt c from yeast, horse and human. Molecular modeling of human cyt c shows that the omega loop where the lysine residue is located apparently further away from heme in human cyt c than in yeast iso-1 and horse heart cyt c. These results regarding alkaline conformational transition provide valuable information for understanding the molecular basis for the biological multi-functions of cyt c.  相似文献   

17.
Higuchi Y  Miura T  Kajimoto T  Ohta Y 《FEBS letters》2005,579(14):3009-3013
GD3 is an intracellular mediator of apoptotic signaling. Although GD3 is known to directly act on mitochondria, the dynamic responses of individual mitochondria to GD3 remain to be elucidated. In the current study, the membrane potential of single mitochondria is observed in the presence of GD3 or its analogues. Here, we report that (1) GD3 specifically induces gradual depolarizations of the inner membrane by a mechanism that differs from the permeability transition, and (2) the GD3-induced depolarizations are suppressed by cyclosporin A. These results suggest that GD3 depolarizes mitochondria by a mechanism distinct from but relevant to the permeability transition.  相似文献   

18.
Multidrug resistance (MDR) is a critical problem in the chemotherapy of cancers. Human hepatocellular carcinoma (HCC) responds poorly to chemotherapy owing to its potent MDR. Chemotherapeutic drugs primarily act by inducing apoptosis of cancer cells, and defects in apoptosis may result in MDR. Mitochondrial permeability transition (mPT) is implicated as an important event in the control of cell death or survival and mPT represents a target for the development of cytotoxic drugs. This study aimed to investigate the effects of selective opener (Atractyloside glycoside, ATR) and inhibitor (Cyclosporine A, CsA) of mitochondrial permeability transition pore (mPTP) on a CDDP-resistant HCC cell line (SK-Hep1 cells). In this study, a stable MDR phenotype characterization of SK-Hep1 cell line (SK-Hep1/CDDP cells) was established and used to investigate the role of mPTP in MDR. Results suggested that ATR accelerated the decrease of mitochondrial membrane potential (ΔΨm), reduced the Bax activity, and increased the apoptosis of SK-Hep1/CDDP cells; while CsA inhibited mPTP opening, reduced and delayed the decline of mitochondrial membrane potential, and increased the Bax activity, leading to increased tolerance of SK-Hep1/CDDP cells to apoptosis induction. However, mPTP activity had no effect on the expression of MDR1 in cells,meanwhile the P-gp translocation to mitochondria was increased, and functionally activated. In conclusion, selective modulation of mPTP can affect MDR in human HCC cells. Therefore, activation of mPTP may provide a new strategy to sensitize cancer cells to chemotherapeutic drugs and to reverse the MDR in cancer cells.  相似文献   

19.
Selenium is an essential trace element in mammals and is thought to play a chemopreventive role in human cancer, possibly by inducing tumor cell apoptosis. Mitochondria play a pivotal role in the induction of apoptosis in many cell types. The effects of selenite on mitochondrial function were therefore investigated. Selenite induced the oxidation and cross-linking of protein thiol groups, mitochondrial permeability transition (MPT), a decrease in the mitochondrial membrane potential, and the release of cytochrome c in mitochondria isolated from rat liver. Induction of the MPT by selenite was prevented by cyclosporin A, EGTA, or N-ethylmaleimide. These results thus indicate that selenite induces the MPT as a result of direct modification of protein thiol groups, resulting in the release of cytochrome c and a loss of mitochondrial membrane potential.  相似文献   

20.
Thirty years after Peter Mitchell was awarded the Nobel Prize for the chemiosmotic hypothesis, which links the mitochondrial membrane potential generated by the proton pumps of the electron transport chain to ATP production by ATP synthase, the molecular players involved once again attract attention. This is so because medical research increasingly recognizes mitochondrial dysfunction as a major factor in the pathology of numerous human diseases, including diabetes, cancer, neurodegenerative diseases, and ischemia reperfusion injury. We propose a model linking mitochondrial oxidative phosphorylation (OxPhos) to human disease, through a lack of energy, excessive free radical production, or a combination of both. We discuss the regulation of OxPhos by cell signaling pathways as a main regulatory mechanism in higher organisms, which in turn determines the magnitude of the mitochondrial membrane potential: if too low, ATP production cannot meet demand, and if too high, free radicals are produced. This model is presented in light of the recently emerging understanding of mechanisms that regulate mammalian cytochrome c oxidase and its substrate cytochrome c as representative enzymes for the entire OxPhos system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号