首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
对生长在添加有不同浓度的葡萄糖、硫代硫酸钠培养基中的蓝细菌Synechocystis sp.PCC 6803中的甘油酯及其脂肪酸组成进行比较.结果表明:硫代硫酸钠能有效地增加膜脂中硫代异鼠李糖二酰基甘油(SQDG)和磷脂酰甘油(PG)的百分含量,培养基中同时添加葡萄糖时能抵消硫代硫酸钠的这一效应.此外,硫代硫酸钠能显著增加单半乳糖甘油二酯(MGDG)、双半乳糖甘油二酯(DGDG)中十六碳酸(C16:0)的百分含量,这一效应也能为葡萄糖消除.硫代硫酸钠不能显著地改变SQDG中C16:0的百分含量,加入葡萄糖时能降低C16:0的百分含量.这些结果说明硫代硫酸钠可能充当一种还原剂使膜脂处于一种低的不饱和状态,同时加入葡萄糖时能降低硫代硫酸钠的还原力.此外,硫代硫酸钠还可作为SQDG合成中的硫供体.  相似文献   

2.
The genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803 contains a gene (slr2097, glbN) encoding a 123 amino-acid product with sequence similarity to globins. Related proteins from cyanobacteria, ciliates, and green algae bind oxygen and have a pronounced tendency to coordinate the heme iron with two protein ligands. To study the structural and functional properties of Synechocystis sp. PCC 6803 hemoglobin, slr2097 was cloned and overexpressed in Escherichia coli. Purification of the hemoglobin was performed after addition of hemin to the clarified cell lysate. Recombinant, heme-reconstituted ferric Synechocystis sp. PCC 6803 hemoglobin was found to be a stable helical protein, soluble to concentrations higher than 500 microM. At neutral pH, it yielded an electronic absorption spectrum typical of a low-spin ferric species, with maxima at 410 and 546 nm. The proton NMR spectrum revealed sharp lines spread over a chemical shift window narrower than 40 ppm, in support of low-spin hexacoordination of the heme iron. Nuclear Overhauser effects demonstrated that the heme is inserted in the protein matrix to produce one major equilibrium form. Addition of dithionite resulted in an absorption spectrum with maxima at 426, 528, and 560 nm. This reduced form appeared capable of carbon monoxide binding. Optical data also suggested that cyanide ions could bind to the heme in the ferric state. The spectral properties of the putative Synechocystis sp. PCC 6803 hemoglobin confirmed that it can be used for further studies of an ancient hemoprotein structure.  相似文献   

3.
Sucrose is one of several low-molecular-weight compounds that cyanobacteria accumulate in response to osmotic stress and which are believed to act as osmoprotectants. The genome of the cyanobacterium Synechocystis sp. PCC 6803 contains a 2163 bp open reading frame (ORF) that shows similarity to genes from higher plants encoding sucrose-phosphate synthase (SPS), the enzyme responsible for sucrose synthesis. The deduced amino acid sequence shows 35–39% identity with known higher-plant SPS sequences. The putative Synechocystis sps gene was cloned from genomic DNA by PCR amplification and expressed as a His6-tagged amino-terminal fusion protein in Escherichia coli. The expressed protein was purified and shown to be a functional SPS enzyme, confirming the identity of the ORF, which is the first sps gene to be cloned from a prokaryotic organism. The Synechocystis SPS has a molecular mass of 81.5 kDa, which is smaller than the typical higher-plant SPS subunit (117–119 kDa), and lacks the phosphorylation site motifs associated with light- and osmotic stress-induced regulation of SPS in higher plants. The enzyme has Km values for UDPG1c and Fru6P of 2.9 mM and 0.22 mM, respectively, with a Vmax of 17 mol per minute per mg protein and a pH optimum of 8.5. Unlike the higher-plant enzyme, ADPG1c, CDPG1c and GDPG1c can substitute for UDPG1c as the glucosyl donor with Km values of 2.5, 7.2 and 1.8 mM, respectively. The enzyme is activated by Mg2+ but not by G1c6P, and is only weakly inhibited by inorganic phosphate. The purified protein was used to raise a high-titre antiserum, which recognises a low-abundance 81 kDa protein in Synechocystis sp. PCC 6803 extracts. There was no apparent increase in expression of the 81 kDa protein when the cells were exposed to moderate salt stress, and SPS activity was very low in extracts from both unstressed and salt- stressed cells. These results and the lack of evidence for sucrose accumulation in Synechocystis sp. PCC6803 lead to the conclusion that expression of the sps gene plays no obvious role in adaptation to osmotic stress in this species.  相似文献   

4.
5.
Various post-translational modifications (PTMs) of pilin in Synechocystis sp. PCC 6803 have been proposed. In this study, we investigated previously unidentified PTMs of pilin by mass spectrometry (MS). MALDI-TOF MS and TOF/TOF MS showed that the molecular mass of the C-terminal lysine of pilin was increased by 42 Da, which could represent acetylation (ΔM = 42.0470) or trimethylation (ΔM = 42.0106). To discriminate between these isobaric modifications, the molecular mass of the C-terminal tryptic peptide was measured using 15T Fourier transform ion cyclotron resonance (FT-ICR) MS. The high magnetic field FT-ICR provided sub-ppm mass accuracy, revealing that the C-terminal lysine was modified by trimethylation. We could also detect the existence of mono- and di-methylation of the C-terminal lysine. Cells expressing a pilin point mutant with glutamine replacing the C-terminal lysine showed dramatically reduced motility and short pili. These findings suggest that trimethylation of pilin at the C-terminal lysine may be essential for the biogenesis of functional pili.  相似文献   

6.
Structural role of the second copy of the rod–core linker CpcG, which was found by genome analysis, was studied in Synechocystis sp. PCC 6803 by gene disruption and fractionation of phycobilisome (sub)complexes. Disruption of cpcG2 (sll1471) resulted in a marked decrease in phycocyanin content both in the background of wild-type and cpcG1 (slr2051)-disruptant. The unique phycocyanin rod–CpcG2 complex without the major allophycocyanin components was isolated from the cpcG1-disruptant. By fluorescence analysis, it was proposed that CpcG2 protein connects the rods with a minor allophycocyanin component, to support energy transfer to Photosystem I.  相似文献   

7.
This article presents a research study on the deposition process of Ca2+ induced by Synechocystis sp. PCC6803 in BG11 liquid medium with different Ca2+ concentrations and different pH. The changes of Ca2+ concentrations were measured by using atomic absorption method and the corresponding dynamical models were studied. Minerals and cells were analyzed by high resolution transmission electron microscope, selected area electron diffraction, scanning electron microscope, energy dispersive X-ray spectroscope, X-ray diffraction. The selected area electron diffraction patterns were analyzed by Digital Micrograph 3.7 software. The result showed that Ca2+ concentrations decreased faster in the experimental group. The changes of calcium carbonate precipitation were fitting to an exponential model. PH 7 and Ca2+ concentration of 1.5 g/L were most conducive to calcium carbonate precipitation in the corresponding gradient range. The result of high-resolution transmission electron microscopy showed that minerals in the experimental group differed obviously from that of the control group in the surface morphology, but both of them were calcites. It also showed that a certain number of minute calcites adhesion to the outer surfaces of S. PCC6803 cells. The result of scanning electron microscopy displayed that many sunken holes emerged on the surfaces of the prismatic calcium carbonate minerals. The results of X-ray diffraction proved that minerals induced by S. PCC6803 were calcites with preferential orientation. This article discusses the process of carbonate formation and the possible role played by S. PCC6803. It may be useful to further study the mechanism of microbial carbonates deposition in the field of geology.  相似文献   

8.
The psbZ gene of Synechocystis sp. PCC 6803 encodes the ∼6.6 kDa photosystem II (PSII) subunit. We here report biophysical, biochemical and in vivo characterization of Synechocystis sp. PCC 6803 mutants lacking psbZ. We show that these mutants are able to perform wild-type levels of light-harvesting, energy transfer, PSII oxygen evolution, state transitions and non-photochemical quenching (NPQ) under standard growth conditions. The mutants grow photoautotrophically; however, their growth rate is clearly retarded under low-light conditions and they are not capable of photomixotrophic growth. Further differences exist in the electron transfer properties between the mutants and wild type. In the absence of PsbZ, electron flow potentially increased through photosystem I (PSI) without a change in the maximum electron transfer capacity of PSII. Further, rereduction of P700+ is much faster, suggesting faster cyclic electron flow around PSI. This implies a role for PsbZ in the regulation of electron transfer, with implication for photoprotection.  相似文献   

9.
10.
秦春燕  张旭  陈谷 《微生物学报》2012,52(1):130-135
【目的】金属蛋白酶S2P在细菌中通过在膜切割转录调控因子、释放δ因子参与胁迫响应是跨膜信号转导的保守机制,但蓝细菌中S2P的功能还未被鉴定,故我们考察集胞藻PCC6803中的S2P同源蛋白Slr0643及Sll0862的金属蛋白酶活性。【方法】以pET-30b(+)为载体,分别构建重组质粒pF0643和pF0862,在大肠杆菌BL21(CE3)中诱导表达并纯化Slr0643及Sll0862蛋白,以β-酪蛋白为底物检测重组蛋白的酶活性。【结果】体外酶活实验显示重组表达的Slr0643及Sll0862蛋白有内切蛋白酶活性,且其活性受金属螯合剂o-phenanthroline的抑制。体外酶活的鉴定结果为进一步研究Slr0643和Sll0862的体内酶活和生物学功能奠定了基础。【结论】集胞藻PCC6803中的S2P同源蛋白Slr0643及Sll0862具有金属蛋白酶活性。  相似文献   

11.
An NADPH-specific NDH-1 sub-complex was separated by native-polyacrylamide gel electrophoresis and detected by activity staining from the whole cell extracts of Synechocystis PCC6803. Low CO2 caused an increase in the activity of this sub-complex quickly, accompanied by an evident increase in the expression of NdhK and PSI-driven NADPH oxidation activity that can reflect the activity of NDH-1-mediated cyclic electron transport. During incubation with high CO2, the activities of NDH-1 sub-complex and PSI-driven NADPH oxidation as well as the protein level of NdhK slightly increased at the beginning, but decreased evidently in various degrees along with incubation time. These results suggest that CO2 concentration in vitro as a signal can control the activity of NDH-1 complex, and NDH-1 complex may in turn function in the regulation of CO2 uptake.  相似文献   

12.
The genome of Synechocystis sp. PCC 6803 contains an operon with homology to the sulfate permease of other prokaryotes. We used antibodies raised against cytoplasmic membrane protein to find three genes with strong homology to sbpA, orf81 and cysT genes of the cyanobacterium Synechococcus sp. PCC 7942, Escherichia coli, Salmonella typhymurium and Marchantia polymorpha. It is likely that the permease genes are expressed and the proteins are inserted into the cytoplasmic membrane.  相似文献   

13.
Distribution maps of free water in germinating maize shoots were measured by an NMR microscope, and localization of water was assigned by superimposing1H-NMR micro-images on opital micrographs. In order to know physiological difference among tissues of the shoot, Mn2+, a strong paramagnetic reagent was applied on imaging. Change of the images affected by Mn2+ suggested that cell activity was higher in the first leaf than the other parts of the shoot of a 3 days old seedling.  相似文献   

14.
15.
16.
We investigated the slow signal of apparent O2 release under brief light flashes by using mutants of Synechocystis sp. PCC 6803 which lacked CP43 and D1. The slow signal was present at higher amplitudes in the mutants. It was inhibited by starving the mutants of glucose (>90%), by 10 mM NaN3 (85%) and by boiling samples for 2 min (100%). In the mutants and in the wild-type, the slow signal was 95% inhibited by the combination of DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) and HQNO (2-n-heptyl-4-hydroxyquinoline-N-oxide). In the wild type, the addition of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) or CCCP (carbonylcyanide m-chlorophenylhydrazone) completely inhibited photosynthetic O2 evolution, yet failed to inhibit the slow signal. We explain the kinetics of the wild-type signal as a positive deflection due to the inhibition of respiration by PS I activity, and a negative deflection due to the stimulation of respiration by electrons originating from PS II. We found no evidence of a meta-stable S3 in Synechocystis sp. PCC 6803 that could contribute to the slow signal of apparent O2 release. We present a calculation which involves only averaging, division and subtraction, that can remove the contribution of the slow signal from the true photosynthetic O2 signal and provide up to a 10-fold improved accuracy of the S-state models.Abbreviations ADRY Acceleration of the Deactivation Reactions of the water-splitting enzyme system Y - Ant-2-p 2-(3-chloro-4-trifluoromethyl)-anilino-3,5-dinitrothiophene - CCCP carbonylcyanide m-chlorophenylhydrazone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a.k.a. Dibromothymoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - S. 6803 Synechocystis sp. PCC 6803  相似文献   

17.
A novel nocardioform actinomycete strain YIM 31530T was isolated from a soil in Yunnan, China. Based on the results of phenotypic characteristics, phylogenetic studies and DNA-DNA hybridization results, strain YIM 31530T should be assigned to a new species of the genus Kribbella, for which the name Kribbella antibiotica sp. nov. is proposed. The type strain is YIM 31530T(= CCTCC AA001021T = DSM 15501T). The GenBank accession number for the sequence reported in this paper is AY082063.  相似文献   

18.
The first two genes of ferredoxin-dependent glutamate synthase (Fd-GOGAT) from a prokaryotic organism, the cyanobacterium Synechocystis sp. PCC 6803, were cloned in Escherichia coli. Partial sequencing of the cloned genomic DNA, of the 6.3 kb Hind III and 9.3 kb Cla I fragments, confirmed the existence of two different genes coding for glutamate synthases, named gltB and gltS. The gltB gene was completely sequenced and encodes for a polypeptide of 1550 amino acid residues (M r 168 964). Comparative analysis of the gltB deduced amino acid sequence against other glutamate synthases shows a higher identity with the alfalfa NADH-GOGAT (55.2%) than with the corresponding Fd-GOGAT from the higher plants maize and spinach (about 43%), the red alga Antithamnnion sp. (42%) or with the NADPH-GOGAT of bacterial source, such as Escherichia coli (41%) and Azospirillum brasilense (45%). The detailed analysis of Synechocystis gltB deduced amino acid sequence shows strongly conserved regions that have been assigned to the 3Fe-4S cluster (CX5CHX3C), the FMN-binding domain and the glutamine-amide transferase domain. Insertional inactivation of gltB and gltS genes revealed that both genes code for ferredoxin-dependent glutamate synthases which were nonessential for Synechocystis growth, as shown by the ferredoxin-dependent glutamate synthase activity and western-blot analysis of the mutant strains.  相似文献   

19.
An endospore-forming bacterium, designated strain B-16T, was isolated from a forest soil sample in Yunnan, China. The isolate presented remarkable nematotoxic activity against nematode Panagrellus redivivus. The organism was strictly aerobic, motile, spore forming and rod shaped, catalase- and oxidase-positive. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major cellular fatty acid profiles were anteiso-C15:0 (48.67%), iso-C15:0 (13.45%), C16:0 (9.06%) and anteiso-Cl7:0 (8.29%). The DNA G+C content was 46%. Phylogenetic analyses based on 16S rDNA sequence revealed that isolate belongs to the genus Bacillus. Strain B-16T exhibited high 16S rDNA similarity with its closest neighbors Bacillus vallismortis (99.79%), B. subtilis (99.43%), B. atrophaeus (99.43%), B. amyloliquefaciens (99.36%), B. licheniformis (98.0%) and less than 97.0% with all the other relative type strains in the genus Bacillus. The phenotypic and genotypic characteristics and DNA-DNA relatedness data indicate that strain B-16T should be distinguished from all the relative species of genus Bacillus. Therefore, on the basis of the polyphasic taxonomic data presented, a new species of the genus Bacillus, B. nematocida, with the type strain B-16T ( = CGMCC 1128T) is proposed. The GenBank accession number for the sequence reported in this paper is AY820954.  相似文献   

20.
Summary Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment.45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(K m (Ca2+)=0.4 m) and ATP(K m (ATP)=3.9 m), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl or NO 3 . Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanidem-chlorophenylhydrazone (CCCP) and VO 4 3– which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号