首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several constitutive models have been discussed to explain data for some foods in diluted and concentrated systems. Firstly, the theories of Rouse and Zimm, as well as rod-like theory, were used to study the conformation of the pectins in dilute solution. Among the dilute theories, the random coil theory of Zimm best explained the experimental data and suggested a certain level of intermolecular interaction present in the dilute pectin solution.

The Bird-Carreau constitutive theory with four empirical constants and zero shear limiting viscosity was used to describe the viscoelastic properties of the solutions of the guar, CMC/guar, glutenin, gluten and wheat flour doughs. The Bird-Carreau model was able to predict η and η′ in the high and low frequency regions for 1% guar solution. In the case of CMC/guar blend, the Bird-Carreau model explained steady shear and dynamic properties very well in the higher shear rate or frequency region of 1–100 s−1. However, η″/ω does not tend to a zero shear constant value. The Bird-Carreau model also gave good predictions on the rheological properties of gluten and glutenin biopolymers in the free-flow region.

The polydisperse type, Doi-Edwards model, fits the experimental G′ and G″ better than the monodisperse model for 5% apple pectin dispersion. However, there is still a discrepancy between experimental and predicted values.  相似文献   


2.
Magnetic field-dependent recombination measurements together with magnetic field-dependent triplet lifetimes (Chidsey, E.D., Takiff, L., Goldstein, R.A. and Boxer, S.G. (1985) Proc. Natl. Acad. Sci USA 82, 6850–6854) yield a free energy change ΔG(P+H3P*) = 0.165 eV ±0.008 at 290 K. This does not depend on whether nuclear spin relaxation in the state 3P* is assumed to be fast or slow compared to the lifetime of this state. This value, being (almost) temperature independent, indicates ΔG(P+H3P*) ΔH(P+H3P*) and is consistent with ΔG(1P* − P+H) and ΔH(1P* − 3P*) from previous delayed fluorescence and phosphorescence data, implying ΔG ΔH for all combinations of these states.  相似文献   

3.
Shear flow, dynamic oscillation and extensional viscosity measurements were used to compare the rheological performance of several hylan samples (Mv 1.6, 3.2, 3.7, 4.7 and 5.6×106) and hyaluronan (Mv 1.4 and 1.8×106) before and after hydroxyl radicals (√OH) induced degradation. It was found that the higher molecular weight cross-linked structure of hylan was more resistant to degradation than hyaluronan and that this superior stability was reflected in various rheological parameters. The √OH degradation of the initial hylan and hyaluronan samples produced a range of polysaccharides based on hylan and hyaluronan with molecular weight covering a range from 0.5–5.6×106. The rheological parameters associated with the polysaccharides could then also be studied. Zero shear values of the complex viscosity (η*), dynamic viscosity (η′) and shear viscosity (η) were calculated using the method of Morris1 and shown to approach the same value at zero shear or frequency. An adaptation of the method of Gibbs et al.2 gave a ‘master curve’ for the storage and loss modulus of hyaluronan and hylan, which encompasses a 10-fold molecular weight and a 5-fold concentration variation. In all instances for hylan, the storage modulus predominates over the loss modulus, whereas for hyaluronan, the reverse is true, demonstrating the greater elasticity of hylan throughout the whole experimental range of molecular weights and concentrations.  相似文献   

4.
Mixed gels of κ-carrageenan (κ-car) from Hypnea musciformis and galactomannans (Gal) from Cassia javanica (CJ) and locust bean gum (LBG) were compared using dynamic viscoelastic measurements and compression tests. Mixed gels at 5 g/l of total polymer concentration in 0.1 M KCl showed a synergistic maximum in viscoelastic measurements for κ-car/CJ and κ-car/LBG at 2:1 and 4:1 ratios, respectively. The synergistic maximum obtained from compression tests carried out for mixed gels at 10 g/l of total polymer concentration in 0.25 M KCl was the same for both κ-car/CJ and κ-car/LBG gels. An enhancement in the storage modulus (G′) and the loss modulus (G″) was observed in the mechanical spectra for the mixtures in relation to κ-car. The proportionally higher increase in G″ compared with G′, as indicated by the values of the loss tangent (tan δ), suggests that the Gal adhere non-specifically to the κ-car network.  相似文献   

5.
Electron self-exchange in solutions of the ‘blue’ copper protein plastocyanin is catalysed by the redox-inert multivalent cations Mg2+ or Co(NH3)3+6. Measurements of specific 1H-NMR line broadening with 50% reduced solutions in the presence of these cations show that electron exchange proceeds through encounters of cation-protein complexes which dissociate at high ionic strength. In the presence of 8mM (5 equivalents/total protein) Co(NH3)3+6, with 10 mM cacodylate (pH*6.0) as background electrolyte, the bimolecular rate constant at 25°C is 7 × 104 M−1·s−1. For comparison, the ‘electrostatically screened’ rate constant measured in 0.1 M KCl in the absence of added multivalent cations is ˜ 4 × 103 M1·s−1.

Plastocyanin Electron self-exchange NMR Protein-protein interaction Multivalent cation Blue copper protein  相似文献   


6.
[RuII(Me2edda)(H2O)2] (1), Me2edda2− = N,N′-dimethylethylenediaminediacetate, exhibits a sterically-controlled molecular recognition in forming η2 and η4 olefin complexes. 1 exists with an N2O2 in-plane set of chelate donors and axial H2O ligands. The two CH3 functionalities of Me2edda2− are poised above and below the N2O2 plane of the glycinato rings. Studies herein of the 2,2′-bipyridine complex, [RuII(Me2edda)(bpy)], with bidentate bpy chelation as established via 1H NMR and electrochemical methods show 1 to be ligated in the S,S configuration with the glycinato rings in-plane as a cis-O form. 1 is sterically discriminating in forming η2 complexes with smaller olefins (ethylene, 2-propene, cis-2-butene, methyl vinyl ketone and 3-cyclohexene-1-methanol), but rejects larger decorated ring structures and branched olefins (1,2-dimethyluracil, cyclohexene-1-one 2-methyl-2-propene). η2 complexes of 1 have characteristic RuII/III DPP waves near 0.55 V which vary slightly with olefin structure. Potentially bidendate dienes (1,3-butadiene, 1,3-cyclohexadiene and 2,5-norbornadiene (nbd) form η4 complexes as shown by RuII/III waves between 0.94 and 1.30 V, indicate of a highly stabilized RuII center by π-backboning. An η2η4 ‘equilibrium’ with apparent K = 22 at 25 °C is observed for nbd coordinated to 1. (The η2 and η4 distribution may be a kinetic one and not a thermodynamic one). To allow formation of the cis η4 complexes, 1 must undergo a shift of one or both glycinato donors from the N2O2 plane into the axial site away from the dimethyl functionalities. η4 chelation by 1,3-butadiene has been confirmed by 1H NMR spectral assignments of two [RuII(Me2edda)] isomers, one in the axial rans-O glycinato configuration, e.g. 1,3-butadiene is bidentate in the original N2O2 plane and a second unsymmetrical glycinato arrangement with in-plane and axial glycinato as well as in-plane and axial η4-1,3-butadiene coordination. [RuII(hedta)(H2O)] (2), hedta3− = N-hydrpxyethylenediaminetriacetate, is less discriminating for olefin structures, forming η2 complexes with all eleven olefins and dienes mentioned for studies with 1. However, 2 does not undergo displacement of a carboxylate donor by the second olefin unit of a diene [RuII(hedta)(diene)] complexes possess a pendant non-coordinated olefin and on η2-bound olefin in the complex, indicated by a normal RuII(pac)(olefin)RuII/III wave near 0.55 V.  相似文献   

7.
In order to utilize the psyllium husk a medicinally important natural polysaccharide and to develop the novel hydrogels meant for the colon specific drug delivery, we have prepared psyllium and methacrylamide based polymeric networks by using N,N′-methylenebisacrylamide (NN-MBAAm) as crosslinker and ammonium persulfate (APS) as initiator. To study various structural aspects of the polymeric networks thus formed psy-cl-poly(MAAm), these were characterized with SEMs, FTIR, TGA and swelling studies. The swelling studies of networks were carried out as a function of time, temperature, pH and [NaCl]. Equilibrium swelling has been observed to depend on both composition of the polymer and nature of swelling medium. Maximum percent swelling 1262 was observed for the polymeric network prepared with 19.45 × 10−3 mol/L of [NN-MBAAm] at 40 °C in 0.5 M NaOH solution. This article also discusses the release dynamics of tetracycline hydrochloride from the hydrogels, for the evaluation of the drug release mechanism and diffusion coefficients of drug from the polymer matrix. The effect of pH on the release pattern of tetracycline hydrochloride has been studied by varying the pH of the release medium. It has been observed from the release dynamics of drug from the hydrogels that the diffusion exponent ‘n’ have 0.477, 0.423 and 0.427 values and gel characteristic constant ‘k’ have 5.07 × 10−2, 6.34 × 10−2 and 6.38 × 10−2 values, respectively, in distilled water, pH 2.2 buffer and pH 7.4 buffer solution. The values the ‘n’ indicated that the Fickian type diffusion mechanism occurred for the release of tetracycline hydrochloride from drug loaded psy-cl-poly(MAAm) polymers in different release mediums. In Fickian type diffusion mechanism, the rate of polymer chain relaxation is more as compare to the rate of drug diffusion from these hydrogels and release behavior follows Fick’s law of diffusion. In each release medium, the values of the initial diffusion coefficient ‘Di’ for the release of tetracycline hydrochloride was higher than the values of late time diffusion coefficient ‘DL’ indicating that in the start, the diffusion of drug from the polymeric matrix was faster as compare to the latter stages.  相似文献   

8.
Cp#2Yb (Cp#=C5H4(CH2)2NMe2) has been obtained by reaction of YbI2(THF)2 with 2 equiv. of C5H4(CH2CH2NMe2)K in THF. The X-ray structure analysis shows a bent structure with intramolecular coordination of both nitrogen atoms to ytterbium. The reaction of C60-fullerene with Cp#2Yb leads to the formation of the fullerenide derivative [Cp#2Yb]2C60, which shows an ESR signal in the solid state and in THF solution at room temperature (solid: ΔH = 50 G, G = 1.9992; solution: ΔH = 10 G, G = 2.0001) and a magnetic moment of 3.6 BM. The lutetium fullerenides CpLu(C60)(DME) (3) and Cp*Lu(C60)(DME)(C6H5CH3) (4), (Cp = η5−C5H5, Cp* = η5−C5Me5), were obtained by reaction of C60 with CpLu(C10H8) (DME) and Cp*Lu(C10H8) (DME) in toluene. Both complexes are paramagnetic (μeff = 1.4 and 0.9 BM) and exhibit temperature-dependent ESR signals (293 K: g = 1.992 and 2.0002 respectively).  相似文献   

9.
Metathesis of [(η33−C10H16)Ru(Cl) (μ−Cl)]2 (1) with [R3P) (Cl)M(μ-Cl)]2 (M = Pd, Pt), [Me2NCH2C6H4Pd(μ-Cl)]2 and [(OC)2Rh(μ-Cl)]2 affords the heterobimetallic chloro bridged complexes (η33-C10H16) (Cl)Ru(μ-Cl)2M(PR3)(Cl) (M = Pd, Pt), (η33-C10H16) (Cl)Ru(μ-Cl)2PdC6H4CH2NMe2 and (η33-C10H16) (Cl)Ru(μ-Cl)2Rh(CO)2, respectively. Complex 1 reacts with [Cp*M(Cl) (μ-Cl)]2 (M = Rh, Ir), [p-cymene Ru(Cl) (μ-Cl]2 and [(Cy3P)Cu(μ-Cl)]2 to give an equilibrium of the heterobimetallic complexes and of educts. The structures of (η33-C10H16)Ru(μ-Cl)2Pd(PR3) (Cl) (R = Et, Bu) and of one diastereoisomer of (η33-C10H16)Ru(μ-Cl)2IrCp*(Cl) were determined by X-ray diffraction.  相似文献   

10.
The hydrodynamic characteristics of the polysaccharide pullulan (polymaltotriose) in water have been investigated and its molecular characteristics have been determined. Experimental values varied over the following ranges: velocity sedimentation coefficient (S): 0.9 < S < 11.2, translational diffusion coefficient (107 cm2 s−1): 1.1 < D < 14.7 and intrinsic viscosity (cm3 g−1): 6.7 < [η] < 164, which corresponds to a change in molecular weight (× 103) in the range 3.9 < MSD < 644. On the basis of analysis of the literature and our experimental data, excluded volume effects have been shown to have a prevailing influence on the chain length of these polysaccharides. The equilibrium rigidity and hydrodynamic chain diameter of pullulan were evaluated on the basis of the theory of hydrodynamic properties of a wormlike necklace, taking into account excluded volume effects. At low M (< 30 × 103) the translation friction data (in contrast to viscometric data) cannot be described in the framework of the theory of linear molecules.  相似文献   

11.
The concentration-dependence of viscosity in solutions of purified glycoprotein from pig gastric mucus is of the form expected for simple polymer entanglement. At higher concentrations, however, a weak viscoelastic gel is formed, whose mechanical spectrum (over the frequency range 10−2---102 rad s−1) indicates a more stable mechanism of interchain association, and is closely similar to that of native mucus. On prolonged exposure to solvent, reconstituted gels redissolve, while native mucus retains its structural integrity (as characterized by the storage modulus, G′) but releases a significant, variable amount of glycoprotein. On proteolytic digestion or disulphide reduction of the glycoprotein to its component subunits, network structure is lost, but the mechanical spectra of the resulting solutions show interactions beyond simple entanglement. From this evidence we suggest that in the sub-micrometre-sized ‘domains’ in which native mucus is secreted, the carbohydrate side chains of component glycoprotein molecules are interdigitated in a comparatively stable arrangement, with the polymeric subunit structure of the glycoprotein conferring the branching required for development of a three-dimensional network, and with a substantial, variable sol-fraction of free glycoprotein within the interstices of the gel. On solubilization of native mucus, the ‘domain’ structure is destroyed irreversibly. Interaction between domains, and between individual molecules in gels reconstituted from the component glycoprotein after extraction and purification, is by more transient, non-specific interdigitation and entanglement, to confer the overall flow and spreading characteristics of the gel.  相似文献   

12.
This short paper presents preliminary results on the ‘zero-shear’ specific viscosity ηsp0 of a commercial hydroxyethylmethylcellulose (Tylose MH-4000) in water, at the temperatures 10, 25 and 40·5°C, over a wide range of concentrations. At the two higher temperatures, two regions are found in the plot of logC[η]0 against logηsp0 with a C*[η]0 value of about 2·5. This is consistent with the behaviour of other random-coil polymers. At 10°C however, there is an interesting ‘upward shift’ in this plot in the dilute region. It is suggested that this is related to the different degree of hydration of the oligo(ethyleneoxide) side chains at this temperature.  相似文献   

13.
Differential scanning calorimetry (DSC), rheological measurements and granule size analyses were performed to characterize the influence of phosphorylation substitution levels on the properties of cross-linked potato starch. Phosphorus oxychloride (POCl3) was used to produce the cross-linked potato starch. The levels of the reagent used for the reaction ranged between 40 and 5000 ppm (dwb). Storage (G′) and loss (G″) moduli were measured for a 5% (w/w) gelatinized starch dispersion stored at 20 °C for 24 h after heating at 85 °C for 30 min. The samples from 80 to 500 ppm were recognized as ‘strong gel'systems, whereas native potato starch showed ‘weak gel'behavior. Steady shear and dynamic viscoelastic properties of gelatinized starch dispersion were compared. Furthermore, granule mean diameter was measured by laser scattering for a 1% (w/w) dispersion heated at 85 °C for 30 min. The granules in the 100 ppm sample swelled to a maximum of about 2.6 times the native starch granule mean diameter.  相似文献   

14.
Single crystal X-ray diffraction studies of trans-[(Ph3P)2Pd(Ph)X] (X = F (1), Cl (2), Br (3), and I (4) were carried out. The four structures split in two isostructural and isomorphous groups, namely orthorhombic for 1 and 2 (space group Pbca, Z = 8) and triclinic for 3 and 4 (space group P-1, Z = 2). According to the Pd---C bond length, the trans influence of X within these pairs follows the trend Cl>F and 1>Br. However, the trans influence of Cl is slightly stronger than that of Br. Both structural and 13C NMR studies revealed that electron-donating effects of (Ph3P)2PdX increase along the series X=I− for the Pd centre in [(Ph3P)2Pd(Ph)] were studied by 31P NMR in rigorously anhydrous CH2Cl2 solutions, and equilibrium constants and ΔG values were obtained for all possible combinations. The sequence F > Cl > Br > I is characteristic of halide preference for the Pd complexes. Dissolving 1 and PPN Cl in dry CH2Cl2 resulted in the release of ‘naked’ F which fluorinated the solvent smoothly to give a mixture of CH2ClF and CH2F2 in high yield. When chloroform was used instead of CH2Cl2, dichlorocarbene was generated slowly, forming the corresponding cyclopropane in the presence of styrene. All observations were rationalized successfully in terms of the filled/filled effect and push/pull interactions.  相似文献   

15.
Reaction of RuCl(η5-C5H5(pTol-DAB) with AgOTf (OTf = CF3SO3) in CH2Cl2 or THF and subsequent addition of L′ (L′ = ethene (a), dimethyl fumarate (b), fumaronitrile (c) or CO (d) led to the ionic complexes [Ru(η5-C5H5)(pTol-DAB)(L′)][OTf] 2a, 2b and 2d and [Ru(η5-C5H5)(pTol-DAB)(fumarontrile-N)][OTf] 5c. With the use of resonance Raman spectroscopy, the intense absorption bands of the complexes have been assigned to MLCT transitions to the iPr-DAB ligand. The X-ray structure determination of [Ru(η5-C5H5)(pTol-DAB)(η2-ethene)][CF3SO3] (2a) has been carried out. Crystal data for 2a: monoclinic, space group P21/n with A = 10.840(1), b = 16.639(1), C = 14.463(2) Å, β = 109.6(1)°, V = 2465.6(5) Å3, Z = 4. Complex 2a has a piano stool structure, with the Cp ring η5-bonded, the pTol-DAB ligand σN, σN′ bonded (Ru-N distances 2.052(4) and 2.055(4) Å), and the ethene η2-bonded to the ruthenium center (Ru-C distances 2.217(9) and 2.206(8) Å). The C = C bond of the ethene is almost coplanar with the plane of the Cp ring, and the angle between the plane of the Cp ring and the double of the ethene is 1.8(0.2)°. The reaction of [RuCl(η5-C5H5)(PPh)3 with AgOTf and ligands L′ = a and d led to [Ru(η5-C5H5)(PPh3)2(L′)]OTf] (3a) and (3d), respectively. By variable temperature NMR spectroscopy the rottional barrier of ethene (a), dimethyl fumarate (b and fumaronitrile (c) in complexes [Ru(η5-C5H5)(L2)(η2-alkene][OTf] with L2 = iPr-DAB (a, 1b, 1c), pTol-DAB (2a, 2b) and L = PPh3 (3a) was determined. For 1a, 1b and 2b the barrier is 41.5±0.5, 62±1 and 59±1 kJ mol−1, respectively. The intermediate exchange could not be reached for 1c, and the ΔG# was estimated to be at least 61 kJ mol. For 2a and 3a the slow exchange could not be reached. The rotational barrier for 2a was estimated to be 40 kJ mol. The rotational barier for methyl propiolate (HC≡CC(O)OCH3) (k) in complex [Ru(η5-C5H5)(iPr-DAB) η2-HC≡CC(O)OCH3)][OTf] (1k) is 45.3±0.2 kJ mol−1. The collected data show that the barrier of rotational of the alkene in complexes 1a, 2a, 1b, 2b and 1c does not correlate with the strength of the metal-alkene interaction in the ground state.  相似文献   

16.
Qualitative estimates of the relative stability of hypothetical heterofullerenes C55Y5 (Y=Si, Ge, Sn, B, Al, N, P, SiH, GeH, SnH) and some η5-π-complexes LiC55Y5 were carried out by the MNDO method. Atoms Y (or groups XH) are assumed to substitute those C atoms in fullerene C60 which are located at the -positions of a separated pentagonal face (pent*) of this polyhedral molecule. It is shown that the spin densities in radicals C55Y5 (Y=SiH, GeH, SnH, B, Al, N, P) are localized on the separated pentagon atoms and the Li-pentagonal face (Li-pent*) bonds in η5-π-complexes of these radicals with the Li atom are considerably stronger than Li-pent* bonds in complexes [η5-π-LiC60]+ and [η5-π-LiC60] of unsubstituted C60. In addition, it is established that the Li-pent* bond energies in η5-π-complexes LiC55B5 and LiC55Al5 exceed the energy of the Li-pent* bond in the η5-π-complex LiC60H5 studied earlier. In contrast, the energies of similar bonds for Y=N, P are close to the energy of the Li-pent* bond in the η5-π-complex LiC60H5.  相似文献   

17.
Employing high temperature quenched molecular dynamics (QMD) simulations the conformational energy space of an immunostimulating tetrapeptide rigin: H-Gly341-Gln-Pro-Arg344-OH, is explored. Using distance dependent dielectric (=rij) 31 different low energy starting structures with identical sequence were computed for their conformational preferences. According to the hypothesis of O'Connors et al. [J. Med. Chem. 35 (1992), 2870], 83 low-energy conformers resulted from unrestrained molecular dynamics (MD) simulations, could be classified into two energy minimized families: A and B, comprised of 64 (Pro Cγ-endo orientation) and 19 (Pro Cγ-exo orientation) structures, respectively. An examination of these families revealed the existence of a remarkably similar folded backbone conformation: torsion angles being φi+1 ≈−65°, ψi+1 ≈−65°, φi+2 ≈−65°, ψi+2 ≈−60°, characterizing a distorted type III β-turn structure across the central Gln-Pro segment. The folded conformation of rigin is devoid of a classical 1 ← 4 intra-molecular hydrogen bond nevertheless, the conformation is stabilized by an effective ‘salt-bridge’, i.e., Gly H3N+… COO Arg interaction. Surprisingly, in both the families the unusual folded side-chain dispositions of the Gln residue favor the formation of a unique intra-residue ‘main-chain to side-chain’ H-bond, i.e., N–H…Nε interaction, encompassing a seven-membered ring motif. The conformational attributes may be valuable in de novo construction of structure-based drug candidates having sufficient stimulating activity.  相似文献   

18.
Physico-chemical characterisation of sago starch   总被引:3,自引:0,他引:3  
The physico-chemical characteristics of various sago starch samples from South East Asia were determined and compared to starches from other sources. X-ray diffraction studies showed that all the sago starches exhibited a C-type diffraction pattern. Scanning electron microscopy showed that they consist of oval granules with an average diameter around 30 μm. Proximate composition studies showed that the moisture content in the sago samples varied between 10.6% and 20.0%, ash between 0.06% and 0.43%, crude fat between 0.10% and 0.13%, fiber between 0.26% and 0.32% and crude protein between 0.19% and 0.25%. The amylose content varied between 24% and 31%. The percentage of amylose obtained by colourimetric determination agreed well with the values obtained by fractionation procedures and potentiometric titration. Intrinsic viscosities and weight average molecular weight were determined in 1M KOH. Intrinsic viscosity for amylose from sago starches varied between 310 and 460 ml/g while for amylopectin the values varied between 210 and 250 ml/g. The molecular weight for amylose was found to be in the range of 1.41×106 to 2.23×106 while for amylopectin it was in the range of 6.70×106 to 9.23×106. The gelatinisation temperature for the sago starches studied varied between 69.4°C and 70.1°C. The exponent ‘a’ in the Mark–Houwink equation and the exponent ‘’ in the equation Rg=kM was found to be 0.80 and 0.58, respectively for amylose separated from sago starch and these are indicative of a random coil conformation. Two types of pasting properties were observed. The first was characterised by a maximum consistency immediately followed by sharp decrease in consistency while the second type was characterised by a plateau when the maximum consistency was reached.  相似文献   

19.
The positive ion electrospray mass spectrometry (ESI-MS) of trans-[Ru(NO)Cl)(dpaH)2]Cl2 (dpaH=2,2′-dipyridylamine), obtained from the carrier solvent of H2O–CH3OH (50:50), revealed 1+ ions of the formulas [RuII(NO+)Cl(dpaH)(dpa)]+ (m/z=508), [RuIIICl(dpaH)(dpa)]+ (m/z=478), [RuII(NO+)(dpa)2]+ (m/z=472), [RuIII(dpa)2]+ (m/z=442), originating from proton dissociation from the parent [RuII(NO+)Cl(dpaH)2]2+ ion with subsequent loss of NO (17.4% of dissociative events) or loss of HCl (82.6% of dissociative events). Further loss of NO from the m/z=472 fragment yields the m/z=442 fragment. Thus, ionization of the NH moiety of dpaH is a significant factor in controlling the net ionic charge in the gas phase, and allowing preferential dissociation of HCl in the fragmentation processes. With NaCl added, an ion pair, {Na[RuII(NO)Cl(dpa)2]}+ (m/z=530; 532), is detectable. All these positive mass peaks that contain Ru carry a signature ‘handprint’ of adjacent m/z peaks due to the isotopic distribution of 104Ru, 102Ru, 101Ru, 99Ru, 98Ru and 96Ru mass centered around 101Ru for each fragment, and have been matched to the theoretical isotopic distribution for each set of peaks centered on the main isotope peak. When the starting complex is allowed to undergo aquation for two weeks in H2O, loss of the axial Cl is shown by the approximately 77% attenuation of the [RuII(NO+)Cl(dpaH)(dpa)]+ ion, being replaced by the [RuII(NO+)(H2O)(dpa)2]+ (m/z=490) as the most abundant high-mass species. Loss of H2O is observed to form [RuII(NO+)(dpa)2]+ (m/z=472). No positive ion mass spectral peaks were observed for RuCl3(NO)(H2O)2, ‘caged NO’. Negative ions were observed by proton dissociation forming [RuII(NO)Cl3(H2O)(OH)] in the ionization chamber, detecting the parent 1− ion at m/z=274, followed by the loss of NO as the main dissociative pathway that produces [RuIIICl3(H2O)(OH)] (m/z=244). This species undergoes reductive elimination of a chlorine atom, forming [RuIICl2(H2O)(OH)] (m/z=208). The ease of the NO dissociation is increased for the negative ions, which should be more able to stabilize a RuIII product upon NO loss.  相似文献   

20.
The physical properties of three novel acidic exopolysaccharides obtained from P. marginalis types A, B and C, one from P. ‘gingen’, one from P. andropogenis and one from P. fluorescens have been partially characterized. These EPSs were chromatographed on three serially placed SE Shodex OH pak columns covering a molar mass range for pullulans from about 4 × 107 to 1 × 103. The mobile phase was 0.05 M NaNO3. Physical measurements were performed on about 30 mg of sample for each EPS. The weight average molar mass of these EPSs ranged from about 0.71 to 2.85 × 106, the weight average intrinsic viscosity from 7.15 to 35.3 dl/ g and the radius of gyration from 62 to 123nm. The polydispersities of these EPSs ranged from 1.01 to 1.37. The large molar mass, size and viscosities of these EPSs may indicate that they have potential for use as thickeners, stabilizers, emulsifiers, and gelling agents in the food and non-food industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号