首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Variable regulatory subunits of protein phosphatase 2A (PP2A) modulate activity, substrate selectivity and subcellular targeting of the enzyme. We have cloned a novel member of the B type regulatory subunit family, Bδ, which is most highly related to Bα. Bδ shares with Bα epitopes previously used to generate subunit-specific antibodies. Like Bα, but unlike Bβ and Bγ which are highly brain-enriched, Bδ mRNA and protein expression in tissues is widespread. Bδ is a cytosolic subunit of PP2A with a subcellular localization different from Bα and may therefore target a pool of PP2A holoenzymes to specific substrates.  相似文献   

2.
Type 2A serine/threonine protein phosphatases (PP2A) have been implicated as important mediators of a diverse array of reversible protein phosphorylation events in plants. We have identified a novel Arabidopsis gene (AtB' delta) which encodes a 55-kDa B' type regulatory subunit of PP2A. The protein encoded by this gene is 57-63% identical and 69-74% similar to the previously identified AtB' genes. The AtB' delta gene appears to be expressed in all Arabidopsis organs indicating its protein product has a basic housekeeping function in plant cells. Unlike certain mRNAs derived from the AtB' gamma gene, AtB' delta mRNAs do not fluctuate significantly in response to heat stress. Further analysis of cDNA sequences derived from the AtB' genes identified an alternatively spliced cDNA derived from AtB' gamma. This cDNA differs from the previously identified AtB' gamma cDNA by the absence of a 133-bp region in its 5' untranslated region. The missing 133-bp region appears to constitute an unspliced intron and its presence in the AtB' gamma gene was confirmed by PCR using Arabidopsis genomic DNA as a template. AtB' gamma mRNA containing the 133-bp intron accumulate in all Arabidopsis organs and their levels fluctuate differentially in response to heat stress. The 133-bp insert contains two short open reading frames and hence might serve as a translational control mechanism affecting AtB' gamma protein synthesis. Finally we show, using both the yeast two hybrid system and in vitro binding assays, that the B' subunit of Arabidopsis PP2A is able to associate with other PP2A subunits, supporting the notion that the B' protein serves as a regulator of PP2A activity in plants.  相似文献   

3.
Type 2A serine/threonine protein phosphatases (PP2A) are key components in the regulation of signal transduction and control of cell metabolism. The activity of these protein phosphatases is modulated by regulatory subunits. While PP2A activity has been characterized in plants, little is known about its regulation. We used the polymerase chain reaction to amplify a segment of a cDNA encoding the B regulatory subunit of PP2A from Arabidopsis. The amplified DNA fragment of 372 nucleotides was used as a probe to screen an Arabidopsis cDNA library and a full-length clone (AtB) of 2.1 kbp was isolated. The predicted protein encoded by AtB is 43 to 46% identical and 53 to 56% similar to its yeast and mammalian counterparts, and contains three unique regions of amino acid insertions not present in the animal B regulatory subunit. Genomic Southern blots indicate the Arabidopsis genome contains at least two genes encoding the B regulatory subunit. In addition, other plant species also contain DNA sequences homologous to the B regulatory subunit, indicating that regulation of PP2A activity by the 55 kDa B regulatory subunit is probably ubiquitous in plants. Northern blots indicate the AtB mRNA accumulates in all Arabidopsis tissues examined, suggesting the protein product of the AtB gene performs a basic housekeeping function in plant cells.  相似文献   

4.
5.
6.
We have identified widerborst (wdb), a B' regulatory subunit of PP2A, as a conserved component of planar cell polarization mechanisms in both Drosophila and in zebrafish. In Drosophila, wdb acts at two steps during planar polarization of wing epithelial cells. It is required to organize tissue polarity proteins into proximal and distal cortical domains, thus determining wing hair orientation. It is also needed to generate the polarized membrane outgrowth that becomes the wing hair. Widerborst activates the catalytic subunit of PP2A and localizes to the distal side of a planar microtubule web that lies at the level of apical cell junctions. This suggests that polarized PP2A activation along the planar microtubule web is important for planar polarization. In zebrafish, two wdb homologs are required for convergent extension during gastrulation, supporting the conjecture that Drosophila planar cell polarization and vertebrate gastrulation movements are regulated by similar mechanisms.  相似文献   

7.
8.
Protein phosphatase 2A (PP2A) is an abundant heterotrimeric serine/threonine phosphatase containing highly conserved structural (A) and catalytic (C) subunits. Its diverse functions in the cell are determined by its association with a highly variable regulatory and targeting B subunit. At least three distinct gene families encoding B subunits are known: B/B55/CDC55, B'/B56/RTS1 and B"/PR72/130. No homology has been identified among the B families, and little is known about how these B subunits interact with the PP2A A and C subunits. In vitro expression of a series of B56alpha fragments identified two distinct domains that bound independently to the A subunit. Sequence alignment of these A subunit binding domains (ASBD) identified conserved residues in B/B55 and PR72 family members. The alignment successfully predicted domains in B55 and PR72 subunits that similarly bound to the PP2A A subunit. These results suggest that these B subunits share a common core structure and mode of interaction with the PP2A holoenzyme.  相似文献   

9.
The distal epithelium of the developing lung exhibits high-level expression of protein phosphatase 2A (PP2A), a vital signaling enzyme. Here we report the discovery that in the lung, the PP2A regulatory subunit B56gamma is expressed in a discrete developmental period, with the highest protein levels at embryonic day (e) 17, but no detectable protein in the newborn or adult. By in situ hybridization, B56gamma was highly expressed in the distal epithelium of newly forming airways and in mesenchymal cells. In contrast, expression of B56gamma was quite low in the bronchial epithelium and vascular smooth muscle. Transgenic expression of B56gamma using the lung-specific promoter for surfactant protein C (SP-C) resulted in neonatal death. Examination of lungs from SP-C-B56gamma transgenic e18 fetuses revealed proximal airways and normal blood vessels, but the tissue was densely populated with epithelial-type cells and was devoid of normal peripheral lung structure. A component of the Wnt signaling pathway, beta-catenin, was developmentally regulated in the normal lung and was absent in lung tissue from B-56gamma transgenic fetuses. We propose that B56gamma is expressed at a particular stage of lung development to modulate PP2A action on the Wnt/beta-catenin signaling pathway during lung airway morphogenesis.  相似文献   

10.
In the course of our analysis of genomic sequence from the human chromosome 4p16.1 region harboring both the Wolfram and Ellis van Creveld syndrome genes we have identified a sequence with high homology (98% at the amino acid level) to the rat cDNA coding for the protein phosphatase 2A BRgamma (PP2ABRgamma) regulatory subunit. Although the human cDNAs for both the BRalpha and BRbeta isoforms have been described previously, the BRgamma subunit has not yet been identified in humans. Here we describe the precise genomic organization and genetic localization of the human PP2ABRgamma gene.  相似文献   

11.
The alpha form of the A subunit of human protein phosphatase 2A was expressed in insect cells following infection with a recombinant baculovirus. A alpha was expressed as a soluble protein that comprised approximately 10% of total cellular protein. The expressed A alpha subunit was purified by chromatography on amino-hexyl-Sepharose and Mono Q with a yield of 2 mg/500-ml culture. The recombinant protein had the same apparent molecular mass as the bovine cardiac protein and was devoid of myosin light chain phosphatase activity. Biological activity of expressed A was assessed by assays of complex formation with the catalytic (C) and B subunits, purified from bovine cardiac tissue, and by inhibition of phosphatase activity. Purified A alpha had a high apparent affinity for C (IC50 = 0.10 nM) and bound with a stoichiometry of 1 mol of A/mol of C. Interaction of A alpha with the catalytic subunit caused a maximal inhibition of myosin light chain and phosphorylase phosphatase activities of 50 and 79%, respectively. The AC complex prepared by reconstitution of recombinant A alpha with C had the same electrophoretic mobility in nondenaturing polyacrylamide gels and the same elution volume when chromatographed on a size exclusion column as the native AC complex purified from cardiac muscle. Similar chromatographic profiles were also observed for the heterotrimer reconstituted from recombinant A alpha, purified B and C, and the native bovine cardiac heterotrimeric holoenzyme. Cross-linking of the native enzyme and the reconstituted heterotrimer generated the same pattern of high molecular weight species. Immunological analyses of these complexes demonstrated that distinct cross-linked forms composed of ABC, AC, AB, and BC were obtained. These results suggest that each of the three subunits of protein phosphatase 2A forms direct contacts with both of the others.  相似文献   

12.
The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.  相似文献   

13.
Initiation of DNA replication in eukaryotes is dependent on the activity of protein phosphatase 2A (PP2A), but specific phosphoprotein substrates pertinent to this requirement have not been identified. A novel regulatory subunit of PP2A, termed PR48, was identified by a yeast two-hybrid screen of a human placental cDNA library, using human Cdc6, an essential component of prereplicative complexes, as bait. PR48 binds specifically to an amino-terminal segment of Cdc6 and forms functional holoenzyme complexes with A and C subunits of PP2A. PR48 localizes to the nucleus of mammalian cells, and its forced overexpression perturbs cell cycle progression, causing a G(1) arrest. These results suggest that dephosphorylation of Cdc6 by PP2A, mediated by a specific interaction with PR48, is a regulatory event controlling initiation of DNA replication in mammalian cells.  相似文献   

14.
The Saccharomyces cerevisiae gene RTS1 encodes a protein homologous to a variable B-type regulatory subunit of the mammalian heterotrimeric serine/threonine protein phosphatase 2A (PP2A). We present evidence showing that Rts1p assembles into similar heterotrimeric complexes in yeast. Strains in which RTS1 has been disrupted are temperature sensitive (ts) for growth, are hypersensitive to ethanol, are unable to grow with glycerol as their only carbon source, and accumulate at nonpermissive temperatures predominantly as large-budded cells with a 2N DNA content and a nondivided nucleus. This cell cycle arrest can be overcome and partial suppression of the ts phenotype of rts1-null cells occurs if the gene CLB2, encoding a Cdc28 kinase-associated B-type cyclin, is expressed on a high-copy-number plasmid. However, CLB2 overexpression has no suppressive effects on other aspects of the rts1-null phenotype. Expression of truncated forms of Rts1p can also partially suppress the ts phenotype and can fully suppress the inability of cells to grow on glycerol and the hypersensitivity of cells to ethanol. By contrast, the truncated forms do not suppress the accumulation of large-budded cells at high temperatures. Coexpression of truncated Rts1p and high levels of Clb2p fully suppresses the ts phenotype, indicating that the inhibition of growth of rts1-null cells at high temperatures is due to both stress-related and cell cycle-related defects. Genetic analyses show that the role played by Rts1p in PP2A regulation is distinctly different from that played by the other known variable B regulatory subunit, Cdc55p, a protein recently implicated in checkpoint control regulation.  相似文献   

15.
16.
The heterotrimeric protein phosphatase 2A (PP2A) complex comprises a catalytic subunit and regulatory A and B subunits that modulate enzyme activity and mediate interactions with other proteins. We report here the results of a systematic analysis of the Arabidopsis (Arabidopsis thaliana) regulatory A subunit gene family, which includes the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1), PP2AA2, and PP2AA3 genes. All three A subunit isoforms accumulate in the organs of seedlings and adult plants, suggesting extensive overlap in expression domains. We have isolated pp2aa2 and pp2aa3 mutants and found that their phenotypes are largely normal and do not resemble that of rcn1. Whereas rcn1 pp2aa2 and rcn1 pp2aa3 double mutants exhibit striking abnormalities in all stages of development, the pp2aa2 pp2aa3 double mutant shows only modest defects. Together, these data suggest that RCN1 performs a cardinal role in regulation of phosphatase activity and that PP2AA2 and PP2AA3 functions are unmasked only when RCN1 is absent.  相似文献   

17.
In Arabidopsis ton2 mutants, abnormalities of the cortical microtubular cytoskeleton, such as disorganization of the interphase microtubule array and lack of the preprophase band before mitosis, markedly affect cell shape and arrangement as well as overall plant morphology. We present the molecular isolation of the TON2 gene, which is highly conserved in higher plants and has a vertebrate homolog of unknown function. It encodes a protein similar in its C-terminal part to B" regulatory subunits of type 2A protein phosphatases (PP2As). We show that the TON2 protein interacts with an Arabidopsis type A subunit of PP2A in the yeast two-hybrid system and thus likely defines a novel subclass of PP2A subunits that are possibly involved in the control of cytoskeletal structures in plants.  相似文献   

18.
19.
20.
The yeast gene VHS3 (YOR054c) has been recently identified as a multicopy suppressor of the G(1)/S cell cycle blockade of a conditional sit4 and hal3 mutant. Vhs3 is structurally related to Hal3, a negative regulatory subunit of the Ser/Thr protein phosphatase Ppz1 important for cell integrity, salt tolerance, and cell cycle control. Phenotypic analyses using vhs3 mutants and overexpressing strains clearly show that Vhs3 has functions reminiscent to those of Hal3 and contrary to those of Ppz1. Mutation of Vhs3 His(459), equivalent to the supposedly functionally relevant His(90) in the plant homolog AtHal3a, did not affect Vhs3 functions mentioned above. Similarly to Hal3, Vhs3 binds in vivo to the C-terminal catalytic moiety of Ppz1 and inhibits in vitro its phosphatase activity. Therefore, our results indicate that Vhs3 plays a role as an inhibitory subunit of Ppz1. We have found that the vhs3 and hal3 mutations are synthetically lethal. Remarkably, lethality is not suppressed by deletion of PPZ1, PPZ2, or both phosphatase genes, indicating that it is not because of an excess of Ppz phosphatase activity. Furthermore, a Vhs3 version carrying the H459A mutation did not rescue the synthetically lethal phenotype. A conditional vhs3 tetO:HAL3 double mutant displays, in the presence of doxycycline, a flocculation phenotype that is dependent on the presence of Flo8 and Flo11. These results indicate that, besides its role as Ppz1 inhibitory subunit, Vhs3 (and probably Hal3) might have important Ppz-independent functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号