首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xi JK  Jin YZ  Cui X  Xu Z 《生理学报》2007,59(5):553-561
局部缺血部位快速再灌注虽然保护了心肌,但也引起再灌注损伤。目前还没有减轻再灌注损伤的特效疗法,但近年来研究显示,G蛋白耦联受体(Gprotein-coupledreceptor,GPCR)的激动剂、胰岛素和缺血后处理可以在各种实验条件和各类动物模型中有效抵抗再灌注损伤。这些干预手段启动的心脏保护机制可能包括激活再灌注损伤补救激酶(reperfus ioninjury salvage kinase,RISK)途径、抑制糖原合酶激酶-3β(glycogen synthase kinase3β,GSK-3β)以及抑制线粒体膜通透性转换孔(mitochondrial permeabili tytransition pore,mPTP)开放等。这些研究成果有利于开发治疗急性心肌梗死的有效临床手段。  相似文献   

2.
Reperfusion of the ischemic myocardium is associated with a dramatic inflammatory response leading to TNF-alpha release, IL-6 induction, and subsequent neutrophil-mediated cytotoxic injury. Because inflammation is also an important factor in cardiac repair, we hypothesized the presence of components of the inflammatory reaction with a possible role in suppressing acute injury. Thus, we investigated the role of IL-10, an anti-inflammatory cytokine capable of modulating extracellular matrix biosynthesis, following an experimental canine myocardial infarction. Using our canine model of myocardial ischemia and reperfusion, we demonstrated significant up-regulation of IL-10 mRNA and protein in the ischemic and reperfused myocardium. IL-10 expression was first detected at 5 h and peaked following 96-120 h of reperfusion. In contrast, IL-4 and IL-13, also associated with suppression of acute inflammation and macrophage deactivation, were not expressed. In the ischemic canine heart, CD5-positive lymphocytes were the predominant source of IL-10 in the myocardial infarct. In the absence of reperfusion, no significant induction of IL-10 mRNA was noted. In addition, IL-12, a Th1-related cytokine associated with macrophage activation, was not detected in the ischemic myocardium. In vitro experiments demonstrated late postischemic cardiac-lymph-induced tissue inhibitor of metalloproteinases (TIMP)-1 mRNA expression in isolated canine mononuclear cells. This effect was inhibited when the incubation contained a neutralizing Ab to IL-10. Our findings suggest that lymphocytes infiltrating the ischemic and reperfused myocardium express IL-10 and may have a significant role in healing by modulating mononuclear cell phenotype and inducing TIMP-1 expression.  相似文献   

3.
Reperfusion of ischemic myocardium is essential for tissue salvage but paradoxically contributes to cell death. We hypothesized that activation of potential survival pathways such as p42/p44 MAPK may prevent lethal reperfusion injury. Urocortin is a peptide factor that affects the p42/p44 MAPK signaling pathway. Both isolated and in vivo rat heart models were used to examine the potential for urocortin to prevent reperfusion injury. Isolated rat hearts underwent 35-min regional ischemia and 2-h reperfusion, with urocortin perfused for 20 min from the onset of reperfusion. In the in vivo study, urocortin was administered as an intravenous bolus 3 min before reperfusion with a protocol of 25-min regional ischemia and 2-h reperfusion. Blockade of the p42/p44 MAPK pathway with the inhibitor PD-98059 was used in both models. Urocortin attenuated lethal reperfusion-induced injury both in vitro and in vivo via a p42/p44 MAPK-dependent mechanism. Furthermore, Western blot analysis demonstrated the ability of urocortin to directly upregulate this signaling pathway. In conclusion, we believe that the p42/p44 MAPK-dependent signaling pathway represents an important survival mechanism against reperfusion injury.  相似文献   

4.
Eukaryotic cells respond to different external stimuli by activation of mechanisms of cell signaling. One of the major systems participating in the transduction of signal from the cell membrane to nuclear and other intracellular targets is the highly conserved mitogen-activated protein kinase (MAPK) superfamily. The members of MAPK family are involved in the regulation of a large variety of cellular processes such as cell growth, differentiation, development, cell cycle, death and survival. Several MAPK subfamilies, each with apparently unique signaling pathway, have been identified in the mammalian myocardium. These cascades differ in their upstream activation sequence and in downstream substrate specifity. Each pathway follows the same conserved three-kinase module consisting of MAPK, MAPK kinase (MAPKK, MKK or MEK), and MAPK kinase kinase (MAPKKK, MEKK). The major groups of MAPKs found in cardiac tissue include the extracellular signal-regulated kinases (ERKs), the stress-activated/c-Jun NH2-terminal kinases (SAPK/JNKs), p38-MAPK, and ERK5/big MAPK 1 (BMK1). The ERKs are strongly activated by mitogenic and growth factors and by physical stress, whereas SAPK/JNKs and p38-MAPK can be activated by various cell stresses, such as hyperosmotic shock, metabolic stress or protein synthesis inhibitors, UV radiation, heat shock, cytokines, and ischemia. Activation of MAPKs family plays a key role in the pathogenesis of various processes in the heart, e.g. myocardial hypertrophy and its transition to heart failure, in ischemic and reperfusion injury, as well in the cardioprotection conferred by ischemia- or pharmacologically-induced preconditioning. The following approaches are currently utilized to elucidate the role of MAPKs in the myocardium: (i) studies of the effects of myocardial processes on the activity of these kinases; (ii) pharmacological modulations of MAPKs activity and evaluation of their impact on the (patho)physiological processes in the heart; (iii) gene targeting or expression of constitutively active and dominant-negative forms of enzymes (adenovirus-mediated gene transfer).This review is focused on the regulatory role of MAPKs in the myocardium, with particular regard to their involvement in pathophysiological processes, such as myocardial hypertrophy and heart failure, ischemia/reperfusion injury, as well as in the mechanisms of cardioprotection. In addition, it summarizes current information on pharmacological modulations of MAPKs activity and their impact on the cardiac response to pathophysiological processes.  相似文献   

5.
In the course of adaptation to exercise, enhanced resistance of isolated heart against ischemia and reperfusion correlated with accumulation of cytoprotective proteins of the HSP70 family and increased potency of sarcoplasmic reticulum (SR) Ca2+ pump in the rat myocardium. Blockade of the HSP70 synthesis with guercetin prevented development of protection of the heart against ischemia and reperfusion. In the course of the adaptation, the increased resistance of the Ca2+ pump against detrimental factors preceded its potentiation. The findings suggest that the HSP70 accumulation and increased potency and resistance of the SR Ca2+ transport system in the myocardium are important mechanisms of adaptive protection of the heart.  相似文献   

6.
Reperfusion is the definitive treatment to salvage ischemic myocardium from infarction. A primary determinant of infarct size is the duration of ischemia. In myocardium that has not been irreversibly injured by ischemia, reperfusion induces additional injury in the area at risk. The heart has potent innate cardioprotective mechanisms against ischemia-reperfusion that reduce infarct size and other presentations of postischemic injury. Ischemic preconditioning (IPC) applied before the prolonged ischemia exerts the most potent protection observed among known strategies. It has been assumed that IPC exerts protection during ischemia. However, recent data suggest that cardioprotection is also exerted during reperfusion. Postconditioning (PoC), defined as brief intermittent cycles of ischemia alternating with reperfusion applied after the ischemic event, has been shown to reduce infarct size, in some cases equivalent to that observed with IPC. Although there are similarities in mechanisms of cardioprotection by these two interventions, there are key differences that go beyond simply exerting these mechanisms before or after ischemia. A significant limitation of IPC has been the inability to apply this maneuver clinically except in situations where the ischemic event can be predicted. On the other hand, PoC is applied at the point of service in the hospital (cath-lab for percutaneous coronary intervention, coronary artery bypass grafting, and other cardiac surgery) where and when reperfusion is initiated. Initial clinical studies are in agreement with the success and extent to which PoC reduces infarct size and myocardial injury, even in the presence of multiple comorbidities.  相似文献   

7.
Free radical scavengers in myocardial ischemia   总被引:7,自引:0,他引:7  
Reperfusion of ischemic myocardium is recognized as potentially beneficial because mortality is directly related to infarct size, and the latter is related to the severity and duration of ischemia. However, reperfusion is associated with extension of the injury that is additive to that produced by ischemia alone. The phenomenon of reperfusion injury is caused in large part by oxygen-derived free radicals from both extracellular and intracellular sources. The loci of oxygen-free radical formation include: myocardial sources (mitochondria), vascular endothelial sources (xanthine oxidase and other oxidases), or the inflammatory cellular infiltrate (neutrophils). Experimental studies have shown that free radical scavengers and agents that prevent free radical production can reduce myocardial infarct size in dogs subjected to temporary regional ischemia followed by reperfusion. Superoxide dismutase and catalase, which catalyze the breakdown of superoxide anion and hydrogen peroxide, respectively, limit experimental myocardial infarct size. The free radical scavenging agent N-(2-mercaptopropionyl)glycine (MPG) is reported to be effective in limiting infarct size. The ischemic-reperfused myocardium derives significant protection when experimental animals are pretreated with the xanthine oxidase inhibitor allopurinol. Neutrophils also serve as a significant source of oxygen-derived free radicals at the site of tissue injury. A number of agents have been shown to directly inhibit neutrophil-derived oxygen free radical formation and neutrophil accumulation within the reperfused myocardium. These agents include ibuprofen, nafazatrom, BW755C, prostacyclin, and iloprost. Thus, free radical scavengers and agents that prevent free radical formation can provide significant protection to the ischemic-reperfused myocardium.  相似文献   

8.
To examine the intracellular signaling mechanism of NO in ischemic myocardium, isolated working rat hearts were made ischemic for 30 min followed by 30 min of reperfusion. A separate group of hearts were pre-perfused with 3 mM L-arginine in the presence or absence of 650 M of protoporphyrin, a heme oxygenase inhibitor for 10 min prior to ischemia. The release of NO was monitored using an on-line amperometric sensor placed into the right atrium. The aortic flow and developed pressure were examined to determine the effects of L-arginine on ischemic/reperfusion injury. Induction for the expression of heme oxygenase was studied by Northern hybridization. For signal transduction experiments, sarcolemmal membranes were radiolabeled by perfusing the isolated hearts with [3H] myoinositol and [14C] arachidonic acid. Biopsies were processed to determine the isotopic incorporation into various phosphoinositols as well as phosphatidic acid and diacylglycerol. cGMP was assayed by radioimmunoassay and SOD content was determined by enzymatic analysis. The release of NO was diminished following ischemia and reperfusion and was augmented by L-arginine. L-arginine reduced ischemic/reperfusion injury as evidenced by the enhanced myocardial functional recovery. Protoporphyrin modulated the effects of L-arginine. cGMP, which was remained unaffected by ischemia and reperfusion, was stimulated significantly after L-arginine treatment. The NO-mediated augmentation of cGMP was reduced by protoporphyrin suggesting that part of the effects may be mediated by CO generated through the heme oxygenase pathway. Reperfusion of ischemic myocardium resulted in significant accumulation of radiolabeled inositol phosphate, inositol bisphosphate, and inositol triphosphate. Isotopic incorporation of [3H] inositol into phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate was increased significantly during reperfusion. Reperfusion of the ischemic heart prelabeled with [14C] arachidonic acid resulted in modest increases in [14C] diacylglycerol and [14C] phosphatidic acid. Pretreatment of the heart with L-arginine significantly reversed this enhanced phosphodiesteratic breakdown during ischemia and early reperfusion. However, at the end of the reperfision the inhibitory effect of L-arginine on the phosphodiesterases seems to be reduced. In L-arginine treated hearts, SOD activity was progressively decreased with the duration of reperfusion time. The results suggests for the first time that NO plays a significant role in transmembrane signaling in the ischemic myocardium. This signaling appears to be on- and off- nature, and linked with SOD content of the tissue. The signaling is transmitted via cGMP and opposes the effects of phosphodiesterases by inhibiting the ischemia/reperfusion-induced phosphodiesteratic breakdown. Our results also suggest that NO activates heme oxygenase which further stimulates the production of cGMP presumably by CO signaling. Thus, NO not only potentiates cGMP mediated intracellular signaling, it also functions as a retrograde messenger for CO signaling in heart.  相似文献   

9.
Conversion of Death Signal into Survival Signal by Redox Signaling   总被引:2,自引:0,他引:2  
  相似文献   

10.
Ischemia-reperfusion injury to cardiac myocytes involves membrane damage mediated by oxygen free radicals. Lipid peroxidation is considered a major mechanism of oxygen free radical toxicity in reperfused heart. Mitochondrial respiration is an important source of these reactive oxygen species and hence a potential contributor to reperfusion injury. We have examined the effects of ischemia (30 min) and ischemia followed by reperfusion (15 min) of rat hearts, on the kinetic parameters of cytochrome c oxidase, on the respiratory activities and on the phospholipid composition in isolated mitochondria. Mitochondrial content of malonyldialdheyde (MDA), an index of lipid peroxidation, was also measured. Reperfusion was accompanied by a significant increase in MDA production. Mitochondrial preparations from control, ischemic and reperfused rat heart had equivalent Km values for cytochrome c, although the maximal activity of the oxidase was 25 and 51% less in ischemic and reperfused mitochondria than that of controls. These changes in the cytochrome c oxidase activity were associated to parallel changes in state 3 mitochondrial respiration. The cytochrome aa3 content was practically the same in these three types of mitochondria. Alterations were found in the mitochondrial content of the major phospholipid classes, the most pronounced change occurring in the cardiolipin, the level that decreased by 28 and by 50% as function of ischemia and reperfusion, respectively. The lower cytochrome c oxidase activity in mitochondria from reperfused rat hearts could be almost completely restored to the level of control hearts by exogenously added cardiolipin, but not by other phospholipids nor by peroxidized cardiolipin. It is proposed that the reperfusion-induced decline in the mitochondrial cytochrome c oxidase activity can be ascribed, at least in part, to a loss of cardiolipin content, due to peroxidative attack of its unsaturated fatty acids by oxygen free radicals. These findings may provide an explanation for some of the factors that lead to myocardial reperfusion injury.  相似文献   

11.
The timely restoration of blood flow to severely ischemic myocardium limits myocardial infarct size. However, experimental studies demonstrate that the myocardial salvage achieved is suboptimal because of additional injury that occurs during reperfusion, due in part to the generation of reactive oxygen metabolites. Initially, superoxide (O2-) was considered to be the central mediator of reperfusion injury. While there are several potential pathways of O2- generation in reperfused myocardium, O2- is poorly reactive toward tissue biomolecules. However, O2-, in the presence of redox-active metals such as iron, generates .OH or hydroxyl-like species that are highly reactive with cell constituents. Thus, while O2- may initiate reaction sequences leading to myocardial injury, it may not be the actual injurious agent. In vitro studies suggest that oxygen metabolite injury occurs at intracellular sites and involves iron-catalyzed processes. Consistent with this mechanism, extracellular oxygen metabolite scavengers have not convincingly reduced infarct size. However, treatment around the time of reperfusion, after ischemia is well established, with cell-permeable scavengers of .OH reduce infarct size. Results with these cell-permeable agents suggest that in the intact animal during regional ischemia and reperfusion, oxygen metabolite injury also occurs at intracellular sites. Cell-permeable scavenger agents are a promising class of drugs for potential clinical use, though further experimental and toxicologic studies are required.  相似文献   

12.
Occurrence of oxidative stress during myocardial reperfusion   总被引:1,自引:0,他引:1  
Reperfusion, without doubt, is the most effective way to treat the ischaemic myocardium. Late reperfusion may however cause further damage. Myocardial production of oxygen free radicals above the neutralizing capacity of the myocytes is an important cause of this reperfusion damage. There is evidence that prolonged ischaemia reduces the naturally occurring defence mechanisms of the heart against oxygen free radicals, particularly mitochondrial manganese superoxide dismutase, and intracellular pool of reduced glutathione. Consequently, reperfusion results in a severe oxidative damage, as evidenced by tissue accumulation and release of oxidized glutathione.An oxygen free radical-mediated impairment of mechanical function also occurs during reperfusion of human heart. In fact we observed during surgical reperfusion of coronary artery disease (CAD) patients, a prolonged and sustained release of oxidized glutathione;the degree of oxidative stress was inversely correlated with recovery of mechanical and haemodynamic function. These findings represent the rationale for therapeutic interventions which increase the cellular antioxidant capacities and improve the efficacy of myocardial reperfusion.  相似文献   

13.
Reperfusion of the ischemic myocardium leads to a burst of reactive O(2) species (ROS), which is a primary determinant of postischemic myocardial dysfunction. We tested the hypothesis that early O(2) delivery and the cellular redox state modulate the initial myocardial ROS production at reperfusion. Isolated buffer-perfused rat hearts were loaded with the fluorophores dihydrofluorescein or Amplex red to detect intracellular and extracellular ROS formation using surface fluorometry at the left ventricular wall. Hearts were made globally ischemic for 20 min and then reperfused with either 95% or 20% O(2)-saturated perfusate. The same protocol was repeated in hearts loaded with dihydrofluorescein and perfused with either 20 or 5 mM glucose-buffered solution to determine relative changes in NADH and FAD. Myocardial O(2) delivery during the first 5 min of reperfusion was 84.7 +/- 4.2 ml O(2)/min with 20% O(2)-saturated buffer and 354.4 +/- 22.8 ml O(2)/min with 95% O(2) (n = 8/group, P < 0.001). The fluorescein signal (intracellular ROS) was significantly increased in hearts reperfused with 95% O(2) compared with 20% O(2). However, the resorufin signal (extracellular ROS) was significantly increased with 20% O(2) compared with 95% O(2) during reperfusion. Perfusion of hearts with 20 mM glucose reduced the (.)NADH during ischemia (P < 0.001) and the (.)ROS at reperfusion (P < 0.001) compared with 5.5 mM-perfused glucose hearts. In conclusion, initial O(2) delivery to the ischemic myocardium modulates a compartment-specific ROS response at reperfusion such that high O(2) delivery promotes intracellular ROS and low O(2) delivery promotes extracellular ROS. The redox state that develops during ischemia appears to be an important precursor for reperfusion ROS production.  相似文献   

14.
Apoptosis or programmed cell death is a genetically controlled response for cells to commit suicide and is associated with DNA fragmentation or laddering. The common inducers of apoptosis include oxygen free radicals/oxidative stress and Ca2+ which are also implicated in the pathogenesis of myocardial ischemic reperfusion injury. To examine whether ischemic reperfusion injury is mediated by apoptotic cell death, isolated perfused rat hearts were subjected to 15, 30 or 60 min of ischemia as well as 15 min of ischemia followed by 30, 60, 90 or 120 min of reperfusion. At the end of each experiment, the heart was processed for the evaluation of apoptosis and DNA laddering. Apoptosis was studied by visualizing the apoptotic cardiomyocytes by direct fluorescence detection of digoxigenin-labeled genomic DNA using APOPTAG® in situ apoptosis detection kit. DNA laddering was evaluated by subjecting the DNA obtained from the hearts to 1.8% agarose gel electrophoresis and photographed under UV illumination. The results of our study revealed apoptotic cells only in the 90 and 120 min reperfused hearts as demonstrated by the intense fluorescence of the immunostained digoxigenin-labeled genomic DNA when observed under fluorescence microscopy. None of the ischemic hearts showed any evidence of apoptosis. These results were corroborated with the findings of DNA fragmentation which showed increased ladders of DNA bands in the same reperfused hearts representing integer multiples of the internucleosomal DNA length (about 180 bp). The presence of apoptotic cells and DNA fragmentation in the myocardium were completely abolished by subjecting the myocardium to repeated short-term ischemia and reperfusion which also reduced the ischemic reperfusion injury as evidenced by better recovery of left ventricular performance in the preconditioned myocardium. The results of this study indicate that reperfusion of ischemic heart, but not ischemia, induces apoptotic cell death and DNA fragmentation which can be inhibited by myocardial adaptation to ischemia.  相似文献   

15.
The effects of apelin-12, a 12 amino acid peptide (H-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe-OH, A-12), on recovery of energy metabolism and cardiac function have been studied in isolated working rat hearts perfused with Krebs buffer (KB) containing 11 mM glucose and subjected to global ischemia and reperfusion. Infusion of 140 μM A-12 before ischemia enhanced myocardial ATP, the total pool of adenine nucleotides (ΣAN = ATP+ADP+AMP) and the energy charge of cardiomyocytes ((ATP + 0.5ADP)/ΣAN) at the end of reperfusion compared with control (KB infusion) and decreased lactate content and lactate/pyruvate ratio in the reperfused myocardium up to the initial values. This was accompanied by improved recovery of coronary flow and cardiac function. Co-administration of A-12 and 100 μM L-NAME (an inhibitor of NO synthases) significantly attenuated the A-12 effects on metabolic and functional recovery of reperfused hearts. These results indicate involvement of NO in mechanisms of cardioprotection that are tightly associated with recovery of energy metabolism in the postischemic heart.  相似文献   

16.
Diabetes mellitus-associated ischemic heart disease is a major public burden in industrialized countries. Reperfusion to a previously ischemic myocardium is obligatory to reinstate its function prior to irreversible damage. However, reperfusion is considered ‘a double-edged sword’ as reperfusion per se could augment myocardial ischemic damage, known as myocardial ischemia-reperfusion (I/R) injury. The brief and repeated cycles of I/R given before a sustained ischemia and reperfusion are represented as ischemic preconditioning, which protects the heart from lethal I/R injury. Few studies have demonstrated preconditioning-mediated cardioprotection in the diabetic heart. In contrast, considerable number of studies suggests that myocardial defensive effects of preconditioning are abolished in the presence of chronic diabetes mellitus that raised questions over preconditioning effects in the diabetic heart. It is evidenced that chronic diabetes mellitus-associated deficit in survival pathways, impaired function of mito-KATP channels, MPTP opening and high oxidative stress play key roles in paradoxically suppressed cardioprotective effects of preconditioning in the diabetic heart. These controversial results open up a new area of research to identify potential mechanisms influencing disparities on preconditioning effects in diabetic hearts. In this review, we discussed first the discrepancies on the modulatory role of diabetes mellitus in I/R-induced myocardial injury. Following this, we addressed whether preconditioning could protect the diabetic heart against I/R-induced myocardial injury. Moreover, potential mechanisms pertaining to the attenuated cardioprotective effects of preconditioning in the diabetic heart have been delineated. These are important to be understood for better exploitation of preconditioning strategies in limiting I/R-induced myocardial injury in the diabetic heart.  相似文献   

17.
The effect of pretreatment by phenothiazines--Chlorpromazine (CPR) /Spofa/ and Trifluoperazine (TFP) /Smith Kline and French/ on reperfusion injury of ischemic myocardium were studied. Reperfusion of ischemic myocardium following an ischemic period exceeding 40 min resulted in morphological, physiological and biochemical changes identical with those induced by enhanced cytosolic Ca2+ concentration. Left descending coronary ligation was performed on 70 dogs divided into four group. Group I: permanent occlusion (5 dogs--60 min, 5 dogs--120 min, 5 dogs--180 min); group II: 15 dogs (60 min occlusion + 120 min reperfusion); group III: 20 dogs (60 min occlusion, 15 mg CPR, reperfusion 120 min); group IV: 20 dogs (60 min occlusion, 2 mg TFP + 120 min reperfusion). CPR or TFP were administered 30 min after the ligation. The effect of drugs was quantified on tetrazolium stained gross sections and studied from physiological, biochemical and ultrastructural points of view. Treatment of animals with phenothiazines, known as calmodulin inhibitors, considerably improved the ultrastructure of myocytes in area at risk, and allowed for the recovery of at least 60 per cent of injured myocytes after reflow restoration. Ultrastructural findings tightly correlate with physiological and biochemical results.  相似文献   

18.
19.
Regulation of cardiomyocyte apoptosis by redox-sensitive transcription factors   总被引:18,自引:0,他引:18  
  相似文献   

20.
Alterations in cardiac membrane Ca2+ transport during oxidative stress   总被引:3,自引:0,他引:3  
Although cardiac dysfunction due to ischemia-reperfusion injury is considered to involve oxygen free radicals, the exact manner by which this oxidative stress affects the myocardium is not clear. As the occurrence of intracellular Ca2+ overload has been shown to play a critical role in the genesis of cellular damage due to ischemia-reperfusion, this study was undertaken to examine whether oxygen free radicals are involved in altering the sarcolemmal Ca2+-transport activities due to reperfusion injury. When isolated rat hearts were made globally ischemic for 30 min and then reperfused for 5 min, the Ca2+ -pump and Na+-Ca2+ exchange activities were depressed in the purified sarcolemmal fraction; these alterations were prevented when a free radical scavenger enzymes (superoxide dismutase plus catalase) were added to the reperfusion medium. Both the Ca2+- pump and Na+- Ca2+ exchange activities in control heart sarcolemmal preparations were depressed by activated oxygen-generating systems containing xanthine plus xanthine oxidase and H2O2; these changes were prevented by the inclusion of superoxide dismutase and catalase in the incubation medium. These results support the view that oxidative stress during ischemia-reperfusion may contribute towards the occurrence of intracellular Ca2+ overload and subsequent cell damage by depressing the sarcolemmal mechanisms governing the efflux of Ca2+ from the cardiac cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号