首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ma Y  Yang M  Gao H  Niu G  Yan Y  Lang L  Kiesewetter DO  Chen X 《Amino acids》2012,43(4):1625-1632
An LC/MS method was used to evaluate 2-fluoropropionyl (FP) and 4-fluorobenzoyl (FB) modified bombsin peptides: GRPR agonist [Aca-QWAVGHLM-NH(2)] and antagonist [fQWAVGHL-NHEt], and their hydrophilic linker modified counterparts with the attachment of GGGRDN sequence. This study developed strategies to evaluate the in vitro receptor mediated cell uptake and metabolic profile of the various GRPR agonists and antagonists. We identified the metabolites produced by rat hepatocytes and quantitatively analyzed the uptake and internalization of the ligands in PC-3 human prostate cancer cells. The major metabolites of both GRPR agonists and antagonists were the result of peptide bond hydrolysis between WA and AV. The agonists also formed a unique metabolite resulting from hydrolysis of the C-terminal amide. The antagonists showed significantly higher stability against metabolism compared to the agonists in rat hepatocytes. The directly modified agonists (FP-BBN and FB-BBN) had higher internalization with similar cell binding compared to the unmodified agonist (BBN), whereas the hydrophilic linker modified agonists (G-BBN and FG-BBN) had much lower total cell uptake. The labeled antagonists (FP-NBBN, FB-NBBN, G-NBBN and FP-G-NBBN) displayed lower internalization. The optimal imaging agent will depend on the interplay of ligand metabolism, cellular uptake, and internalization in vivo.  相似文献   

2.
Multimerization of peptides can improve the binding characteristics of the tracer by increasing local ligand concentration and decreasing dissociation kinetics. In this study, a new bombesin homodimer was developed based on an ε-aminocaproic acid-bombesin(7–14) (Aca-bombesin(7–14)) fragment, which has been studied for targeting the gastrin-releasing peptide receptor (GRPR) in prostate cancer. The bombesin homodimer was conjugated to 6-hydrazinopyridine-3-carboxylic acid (HYNIC) and labeled with 99mTc for SPECT imaging. The in vitro binding affinity to GRPR, cell uptake, internalization and efflux kinetics of the radiolabeled bombesin dimer were investigated in the GRPR-expressing human prostate cancer cell line PC-3. Biodistribution and the GRPR-targeting potential were evaluated in PC-3 tumor-bearing athymic nude mice. When compared with the bombesin monomer, the binding affinity of the bombesin dimer is about ten times lower. However, the 99mTc labeled bombesin dimer showed a three times higher cellular uptake at 4 h after incubation, but similar internalization and efflux characters in vitro. Tumor uptake and in vivo pharmacokinetics in PC-3 tumor-bearing mice were comparable. The tumor was visible on the dynamic images in the first hour and could be clearly distinguished from non-targeted tissues on the static images after 4 h. The GRPR-targeting ability of the 99mTc labeled bombesin dimer was proven in vitro and in vivo. This bombesin homodimer provides a good starting point for further studies on enhancing the tumor targeting activity of bombesin multimers.  相似文献   

3.
Mass spectrometers equipped with matrix‐assisted laser desorption/ionization (MALDI‐MS) require frequent multipoint calibration to obtain good mass accuracy over a wide mass range and across large numbers of samples. In this study, we introduce a new synthetic peptide mass calibration standard termed PAS‐cal tailored for MALDI‐MS based bottom‐up proteomics. This standard consists of 30 peptides between 8 and 37 amino acids long and each constructed to contain repetitive sequences of Pro, Ala and Ser as well as one C‐terminal arginine residue. MALDI spectra thus cover a mass range between 750 and 3200 m/z in MS mode and between 100 and 3200 m/z in MS/MS mode. Our results show that multipoint calibration of MS spectra using PAS‐cal peptides compares well to current commercial reagents for protein identification by PMF. Calibration of tandem mass spectra from LC‐MALDI experiments using the longest peptide, PAS‐cal37, resulted in smaller fragment ion mass errors, more matching fragment ions and more protein and peptide identifications compared to commercial standards, making the PAS‐cal standard generically useful for bottom‐up proteomics.  相似文献   

4.
This study designs a prediction model to differentiate pasteurized milk from heated extended shelf life (ESL) milk based on milk peptides. For this purpose, quantitative peptide profiles of a training set of commercial samples including pasteurized (n = 20), pasteurized‐ESL (n = 13), and heated‐ESL (n = 16) milk are recorded by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS). Seven peptides are selected as putative markers, and cutoff levels and performance measures of each marker are defined by receiver operating characteristic (ROC) analysis. The accuracy of these peptides in the training set range between 71% and 90%. A prediction model is established based on the combined cutoff levels and evaluated by an independent blind test set. The processing method of 19 out of 20 unknown milk samples is predicted correctly achieving 95% accuracy. Five peptides of the prediction model are identified as αS1‐casein182–199 (m/z 2014.0), αS1‐casein180–199 (m/z 2216.1), αS1‐casein1–24 (m/z 2910.6), β‐casein108–125 (m/z 2126.0), and β‐casein106–125 (m/z 2391.2) indicating thermal release and the action of plasmin and cathepsins. Thus, the present study demonstrates that the milk peptide profile reflects even minor differences in production parameters.  相似文献   

5.
High-performance liquid chromatography (HPLC) coupled with electrospray mass spectrometry (ES-MS) and tandem mass spectrometry (MS-MS) was used to identify the products formed upon reaction of lysine-containing peptides with the neurotoxicant 2,5-hexanedione (2,5-HD). In addition, secondary autoxidative reaction products of the resultant alkylpyrroles with the biological thiol, glutathione, were characterized. ES mass spectra of the HPLC-separated conjugates showed intense [M+H]+ ions as well as several ions formed by amide and C-S bond cleavage. The glutathione conjugates of pyrrolylated amino acids and peptides were analyzed by ES ionization and MS-MS, and product-ion spectra showed fragmentation pathways typical of glutathione conjugates. ES-MS-MS analysis of a synthetic nonapeptide modeling a sequence found in neurofilament proteins showed pyrrole formation after incubation with 2,5-HD, and sequence ions were used to assign the position of the pyrrole adduct. Subsequent reaction of the pyrrolylated peptide with reduced glutathione was evidenced by a shift in m/z of the sequence ions of the reaction products with or without prior methylation. The results demonstrate the utility of ES-MS and ES-MS-MS in the characterization of xenobiotic-modified peptides and confirm that stable pyrrole-thiol conjugates are formed by the reaction of biological thils with pyrrolylated peptides.  相似文献   

6.
The effects of glucagon and the glucagon-like peptide GLP-1(7-37) were compared in rat liver hepatocytes. Glucagon elevated cAMP, elevated intracellular free calcium ([Ca2+]i), activated phosphorylase and stimulated gluconeogenesis, whereas GLP-1(7-37) was without effect on any of these parameters. GLP-1(7-37) did not block any of the actions of glucagon. The glucagon analog, des His1[Glu9] glucagon amide, was a partial agonist in liver, but also was an effective antagonist of glucagon actions in liver but not those of GLP-1(7-37) in islet B cells. It was concluded that in the rat, GLP-1(7-37) is a potent insulin secretagogue [1] but is without effect on liver.  相似文献   

7.
Gastrin releasing peptide (GRP) receptor (GRPR), a bombesin family receptor, is overexpressed in many cancers including breast, prostate, pancreatic and lung. The targeting of therapeutics to GRPR can be achieved using the full-length (14 amino acid) GRP analogue Bombesin (BBN) or the truncated BBN(6–14) sequence, both of which bind GRPR with high affinity and specificity. In this study, we have investigated the level of GRPR expression in various cancerous (Caco-2, HeLa, LNCap, MDA-MB-231, and PC-3) and non-cancerous (WPMY-1) cell lines using a western blotting approach. Such information is currently lacking in the literature, and is therefore of importance for the in vitro assessment of GRPR targeted therapeutics. Of the cell lines assessed, the PC-3 (prostate cancer) and Caco-2 (colon cancer) cell lines demonstrated the highest and lowest levels of GRPR expression respectively. Using this information, we further investigated the cellular uptake of carboxyfluorescein-labelled BBN and BBN(6–14) peptides by flow cytometry and confocal microscopy using cell lines that express GRPR (Caco-2, HeLa, PC-3). The uptake of each of these peptides was similar, suggesting that the shorter BBN(6–14) peptide is sufficient for GRPR targeting. Further, the uptake of these peptides could be inhibited by competition with unlabelled BBN peptides, suggesting their cellular uptake is GRPR-mediated, while the level of BBN uptake (as measured by flow cytometry) was found to be directly proportional to the level of GRPR expression. Overall, the information obtained from these studies provides useful information for the in vitro assessment of GRPR targeted therapeutics.  相似文献   

8.
The gastrin‐releasing peptide receptor (GRPR) is part of the bombesin receptor family and a well‐known target in cancer diagnosis and therapy. In the last decade, promising results have been achieved by using peptide‐drug conjugates, which allow selective targeting of GRPR expressing tumor cells. Most ligands, however, have been antagonists even though agonists can lead to higher tumor uptake owing to their internalization. So far, only a few studies focused on the identification of small GRPR‐selective agonists that are metabolically stable. Here, we developed novel bombesin analogs with high selectivity for the GRPR and improved blood plasma stability. The most promising analog [d ‐Phe6, β‐Ala11, NMe‐Ala13, Nle14]Bn(6‐14) displays an activity of 0.3nM at the GRPR, a more than 4000‐fold selectivity over the other two bombesin receptors and more than 75% stability in human blood plasma after 24 hours. This analog is proposed as a promising drug shuttle for the intracellular delivery of different payloads in targeted tumor therapy approaches.  相似文献   

9.
High-performance liquid chromatography with electrospray ionization mass spectrometry was used to determine 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in urine. After basic hydrolysis of conjugates, the compound was extracted using SPEC-PLUS-3ML-C18 solid-phase extraction columns. A deuterium labelled internal standard (d3-THC-COOH) was added prior to hydrolysis. Separation was performed on a reversed-phase Zorbax Eclipse XDB-C8 analytical column (150×3.0 mm I.D.) using a gradient program from 60 to 80% acetonitrile (4 mM formic acid) at a flow-rate of 0.5 ml/min. The compounds were detected by single ion monitoring of m/z 345 and m/z 348 for the protonated molecules [THC-COOH+H]+ and [d3-THC-COOH+H]+, respectively. The precision and accuracy were tested on spiked urine samples in the range 2.5–125 ng/ml. The mean recovery was 95% (n=58), coefficients of variations were 2.2–4.3% and the limit of detection 2 ng/ml. Diagnostic qualifying ions of THC-COOH (m/z 327 and m/z 299) and d3-THC-COOH (m/z 330) were generated using up-front collision-induced dissociation. The relative ion intensities in clinical samples (n=21) were within ±20% deviation compared with standards. Using this tolerance and the presence of the ions m/z 327 and m/z 299 at the correct retention times as the acceptance criteria for identification of THC-COOH positive samples, the limit of detection was 15 ng/ml. The LC–MS method complies with the current recommendations on drugs of abuse testing, in which mass spectrometric detection is emphasized.  相似文献   

10.
A potent glycogenic effect of GLP-1(7-36)amide has been found in rat hepatocytes and skeletal muscle, and specific receptors for this peptide, which do not seem to be associated with the adenylate cyclase—cAMP system, have been detected in these tissue membranes. On the other hand, inositolphosphoglycan molecules (IPGs) have been implicated as second messengers of the action of insulin. In this work, we have found, in differentiated BC3H-1 myocytes, specific binding of [125I]GLP-1(7-36)amide, and a stimulatory effect of the peptide on glycogen synthesis, confirming the findings in rat skeletal muscle. Also, GLP-1(7-36)amide modulates the cell content of radiolabelled glycosylphosphatidylinositols (GPIs) and increases the production of diacylglycerol (DAG), in the same manner as insulin acts, indicating hydrolysis of GPIs and an immediate and short-lived generation of IPGs. Thus, IPGs and DAG could be mediators in the glycogenic action of GLP-1(7-36)amide in skeletal muscle.  相似文献   

11.
The development of non-viral gene delivery systems, with the capacity to overcome most of the biological barriers facing gene delivery, is challenging. We have developed peptide-based, multicomponent, non-viral delivery systems, incorporating: a bombesin peptide ligand (BBN(6–14)), to selectively target the gastrin releasing peptide receptor (GRPR); oligoarginine peptides (hexa- (R6) and nona-arginine (R9)), for plasmid DNA (pDNA) condensation; and GALA, to facilitate endosome escape. The uptake and endosome escape efficiency of bombesin/oligoarginine and bombesin/oligoarginine/GALA fusion peptides for oligonucleotide delivery was evaluated in terms of their complex size, cellular uptake, endosome escape, and cellular toxicity. Complex size and cell uptake studies demonstrated that the nona-arginine/bombesin delivery system was more efficient at condensing and delivering pDNA into PC-3 prostate cancer cells compared to the hexa-arginine/bombesin delivery system. Further, competition with free bombesin peptide, and comparative uptake studies in Caco-2 cells, which express GRPR at a lower level, suggested that GRPR contributes to the targeted uptake of this system. The addition of GALA into the nona-arginine/bombesin-based system further increased the pDNA cellular uptake at all tested N/P ratios; facilitated endosomal pDNA release; and had limited effects on cell viability. In conclusion, the delivery system combining BBN(6–14) with nona-arginine and GALA had optimal characteristics for the delivery of pDNA into the GRPR overexpressing cell line PC-3.  相似文献   

12.
13.
Expression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to 1,4,7-triazacyclononane-N,N'',N''''-triacetic acid (NOTA) via a diethylene glycol (PEG2) spacer (NOTA-P2-RM26) labeled with 68Ga and 111In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a 18F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with 18F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50) of the [natF]AlF-NOTA-P2-RM26 was compared to that of the natGa-loaded peptide using 125I-Tyr4-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with 18F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol). The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [natF]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM). The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [18F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p.i. The initial biological results suggest that [18F]AlF-NOTA-P2-RM26 is a promising candidate for PET imaging of GRPR in vivo.  相似文献   

14.
Gastrin-releasing peptide (GRP) acts as an autocrine growth factor for neuroblastoma and other types of cancer, and its cell-surface receptor, GRPR, is overexpressed in advanced-stage human neuroblastoma. GRPR knockdown and GRPR antagonism inhibit the growth of experimental neuroblastoma. Here we show that a GRPR antagonist promotes rather than inhibits the growth of neuroblastoma cells. The GRPR antagonist, RC-3095, at 0.1 nM inhibited, whereas at 100 nM stimulated proliferation of Neuro2a murine neuroblastoma cells in vitro. The stimulatory effects were prevented by the histone deacetylase inhibitor (HDACi), sodium butyrate (NaB). Expression of GRPR mRNA in Neuro2a cells was analyzed by RT-PCR. These findings provide evidence that a GRPR antagonist can stimulate the growth of cancer cells, and suggest that GRPR might interact with epigenetic mechanisms in regulating neuroblastoma cell growth.  相似文献   

15.
Highly protonated histone-derived peptides impede a sufficient mass spectrometry (MS)-based epigenetic analysis because their relatively low m/z, due to a high degree of proton addition to peptides, would make it difficult to analyze the resulting complex MS/MS spectra. To reduce the degree of protonations, we have developed a new interface, the Ionization Variable Unit (IVU), in which peptides are ionized under a vaporized organic solvent. It is demonstrated that the doubly charged histone tail H2B peptide, PEPAKSAPAPKKGSKKAVTKAQKK (m/z 1238.243, +2), which was not detectable before, can be detected by using the IVU interface and sequenced.  相似文献   

16.
Therapeutic conditions for acute leukemia (AL) mainly rely on diagnosis and detection of minimal residual disease (MRD). However, no serum biomarker has been available for clinicians to make diagnosis of AL and assessment of MRD. In this study, we performed bead fractionation/MALDI‐TOF‐MS analysis on sera from patients with AL. Support vector machine algorithm was used to obtain diagnostic model that discriminated proteomic spectra of patients with AL from that of controls. Twenty‐six features with p<0.00001 had optimal discriminatory performance, with 97% sensitivity and 100% specificity. Statistical analysis revealed that two peptides with m/z 1778 and 1865 were gradually decreased in their relative intensities with increase of remission degree. Moreover, the peptide with m/z 1865 was also found to be correlated with AL types. With FT‐ICR‐MS detection, both the peptides were identified as fragments of complement C3f. Linear regression analysis showed that the combined use of them could discriminate PML/RARα positive M3 from molecular remission M3. Two fragments of complement C3f were significantly correlated with MRD levels and could be used for clinical practice in MRD assessment.  相似文献   

17.
The peptide‐based quantitation accuracy and precision of LC‐ESI (QSTAR Elite) and LC‐MALDI (4800 MALDI TOF/TOF) were compared by analyzing identical Escherichia coli tryptic digests containing iTRAQ‐labeled peptides of defined abundances (1:1, 2.5:1, 5:1, and 10:1). Only 51.4% of QSTAR spectra were used for quantitation by ProteinPilot Software versus 66.7% of LC‐MALDI spectra. The average protein sequence coverages for LC‐ESI and LC‐MALDI were 24.0 and 18.2% (14.9 and 8.4 peptides per protein), respectively. The iTRAQ‐based expression ratios determined by ProteinPilot from the 57 467 ESI‐MS/MS and 26 085 MALDI‐MS/MS spectra were analyzed for measurement accuracy and reproducibility. When the relative abundances of peptides within a sample were increased from 1:1 to 10:1, the mean ratios calculated on both instruments differed by only 0.7–6.7% between platforms. In the 10:1 experiment, up to 64.7% of iTRAQ ratios from LC‐ESI MS/MS spectra failed S/N thresholds and were excluded from quantitation, while only 0.1% of the equivalent LC‐MALDI iTRAQ ratios were rejected. Re‐analysis of an archived LC‐MALDI sample set stored for 5 months generated 3715 MS/MS spectra for quantitation, compared with 3845 acquired originally, and the average ratios differed by only 3.1%. Overall, MS/MS‐based peptide quantitation performance of offline LC‐MALDI was comparable with on‐line LC‐ESI, which required threefold less time. However, offline LC‐MALDI allows the re‐analysis of archived HPLC‐separated samples.  相似文献   

18.
Early detection of primary melanoma tumors is essential because there is no effective treatment for metastatic melanoma. Several linear and cyclic radiolabeled α-melanocyte stimulating hormone (α-MSH) analogs have been proposed to target the melanocortin type 1 receptor (MC1R) overexpressed in melanoma. The compact structure of a rhenium-cyclized α-MSH analog (Re-CCMSH) significantly enhanced its in vivo tumor uptake and retention. Melanotan II (MT-II), a cyclic lactam analog of α-MSH (Ac-Nle-cyclo[Asp-His-dPhe-Arg-Trp-Lys]-NH2]), is a very potent and stable agonist peptide largely used in the characterization of melanocortin receptors. Taking advantage of the superior biological features associated with the MT-II cyclic peptide, we assessed the effect of lactam-based cyclization on the tumor-seeking properties of α-MSH analogs by comparing the pharmacokinetics profile of the 99mTc-labeled cyclic peptide βAla-Nle-cyclo[Asp-His-d-Phe-Arg-Trp-Lys]-NH2 with that of the linear analog βAla-Nle-Asp-His-dPhe-Arg-Trp-Lys-NH2 in melanoma-bearing mice. We have synthesized and coupled the linear and cyclic peptides to a bifunctional chelator containing a pyrazolyl-diamine backbone (pz) through the amino group of βAla, and the resulting pz–peptide conjugates were reacted with the fac-[99mTc(CO)3]+ moiety. The 99mTc(CO)3-labeled conjugates were obtained in high yield, high specific activity, and high radiochemical purity. The cyclic 99mTc(CO)3-labeled conjugate presents a remarkable internalization (87.1% of receptor-bound tracer and 50.5% of total applied activity, after 6 h at 37 °C) and cellular retention (only 24.7% released from the cells after 5 h) in murine melanoma B16F1 cells. A significant tumor uptake and retention was obtained in melanoma-bearing C57BL6 mice for the cyclic radioconjugate [9.26 ± 0.83 and 11.31 ± 1.83% ID/g at 1 and 4 h after injection, respectively]. The linear 99mTc(CO)3-pz–peptide presented lower values for both cellular internalization and tumor uptake. Receptor blocking studies with the potent (Nle4,dPhe7)-αMSH agonist demonstrated the specificity of the radioconjugates to MC1R (74.8 and 44.5% reduction of tumor uptake at 4 h after injection for cyclic and linear radioconjugates, respectively).  相似文献   

19.
Interleukin (IL)–15 is an inflammatory cytokine that constitutes a validated therapeutic target in some immunopathologies, including rheumatoid arthritis (RA). Previously, we identified an IL‐15 antagonist peptide named [K6T]P8, with potential therapeutic application in RA. In the current work, the metabolic stability of this peptide in synovial fluids from RA patients was studied. Moreover, [K6T]P8 peptide was labeled with 99mTc to investigate its stability in human plasma and its biodistribution pattern in healthy rats. The biological activity of [K6T]P8 peptide and its dimer was evaluated in CTLL‐2 cells, using 3 different additives to improve the solubility of these peptides. The half‐life of [K6T]P8 in human synovial fluid was 5.88 ± 1.73 minutes, and the major chemical modifications included peptide dimerization, cysteinylation, and methionine oxidation. Radiolabeling of [K6T]P8 with 99mTc showed a yield of approximately 99.8%. The 99mTc‐labeled peptide was stable in a 30‐fold molar excess of cysteine and in human plasma, displaying a low affinity to plasma proteins. Preliminary biodistribution studies in healthy Wistar rats suggested a slow elimination of the peptide through the renal and hepatic pathways. Although citric acid, sucrose, and Tween 80 enhanced the solubility of [K6T]P8 peptide and its dimer, only the sucrose did not interfere with the in vitro proliferation assay used to assess their biological activity. The results here presented, reinforce nonclinical characterization of the [K6T]P8 peptide, a potential agent for the treatment of RA and other diseases associated with IL‐15 overexpression.  相似文献   

20.
《Autophagy》2013,9(10):1579-1590
Neuroblastoma is characterized by florid vascularization leading to rapid tumor dissemination to distant organs; angiogenesis contributes to tumor progression and poor clinical outcomes. We have previously demonstrated an increased expression of gastrin-releasing peptide (GRP) and its receptor, GRPR, in neuroblastoma and that GRP activates the PI3K-AKT pathway as a proangiogenic factor during tumor progression. Interestingly, AKT activation phosphorylates MTOR, a critical negative regulator of autophagy, a cellular process involved in the degradation of key proteins. We hypothesize that inhibition of GRPR enhances autophagy-mediated degradation of GRP and subsequent inhibition of angiogenesis in neuroblastoma. Here, we demonstrated a novel phenomenon where targeting GRPR using shRNA or a specific antagonist, RC-3095, decreased GRP secretion by neuroblastoma cells and tubule formation by endothelial cells in vitro. Furthermore, shGRPR or RC-3095 treatment enhanced expression of proautophagic proteins in human neuroblastoma cell lines, BE(2)-C, and BE(2)-M17. Interestingly, rapamycin, an inhibitor of MTOR, enhanced the expression of the autophagosomal marker LC3-II and GRP was localized within LC3-II-marked autophagosomes in vitro as well as in vivo, indicating autophagy-mediated degradation of GRP. Moreover, overexpression of ATG5 or BECN1 attenuated GRP secretion and tubule formation, whereas opposite effects were observed with siRNA silencing of ATG5 and BECN1. Our data supported the role of autophagy in the degradation of GRP and subsequent inhibition of angiogenesis. Therefore, activation of autophagy may lead to novel antivascular therapeutic strategies in the treatment of highly vascular neuroblastomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号