首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the function of the two isoforms of creatine kinase (CK; EC 2.7.3.2) in myocardium is investigated. The 'phosphocreatine shuttle' hypothesis states that mitochondrial and cytosolic CK plays a pivotal role in the transport of high-energy phosphate (HEP) groups from mitochondria to myofibrils in contracting muscle. Temporal buffering of changes in ATP and ADP is another potential role of CK. With a mathematical model, we analyzed energy transport and damping of high peaks of ATP hydrolysis during the cardiac cycle. The analysis was based on multiscale data measured at the level of isolated enzymes, isolated mitochondria and on dynamic response times of oxidative phosphorylation measured at the whole heart level. Using 'sloppy modeling' ensemble simulations, we derived confidence intervals for predictions of the contributions by phosphocreatine (PCr) and ATP to the transfer of HEP from mitochondria to sites of ATP hydrolysis. Our calculations indicate that only 15±8% (mean±SD) of transcytosolic energy transport is carried by PCr, contradicting the PCr shuttle hypothesis. We also predicted temporal buffering capabilities of the CK isoforms protecting against high peaks of ATP hydrolysis (3750 μM*s(-1)) in myofibrils. CK inhibition by 98% in silico leads to an increase in amplitude of mitochondrial ATP synthesis pulsation from 215±23 to 566±31 μM*s(-1), while amplitudes of oscillations in cytosolic ADP concentration double from 77±11 to 146±1 μM. Our findings indicate that CK acts as a large bandwidth high-capacity temporal energy buffer maintaining cellular ATP homeostasis and reducing oscillations in mitochondrial metabolism. However, the contribution of CK to the transport of high-energy phosphate groups appears limited. Mitochondrial CK activity lowers cytosolic inorganic phosphate levels while cytosolic CK has the opposite effect.  相似文献   

2.
Interest in creatine (Cr) as a nutritional supplement and ergogenic aid for athletes has surged over recent years. After cellular uptake, Cr is phosphorylated to phosphocreatine (PCr) by the creatine kinase (CK) reaction using ATP. At subcellular sites with high energy requirements, e.g. at the myofibrillar apparatus during muscle contraction, CK catalyzes the transphosphorylation of PCr to ADP to regenerate ATP, thus preventing a depletion of ATP levels. PCr is thus available as an immediate energy source, serving not only as an energy buffer but also as an energy transport vehicle. Ingestion of creatine increases intramuscular Cr, as well as PCr concentrations, and leads to exercise enhancement, especially in sprint performance. Additional benefits of Cr supplementation have also been noticed for high-intensity long-endurance tasks, e.g. shortening of recovery periods after physical exercise.The present article summarizes recent findings on the influence of Cr supplementation on energy metabolism, and introduces the Cr transporter protein (CreaT), responsible for uptake of Cr into cells, as one of the key-players for the multi-faceted regulation of cellular Cr homeostasis. Furthermore, it is suggested that patients with disturbances in Cr metabolism or with different neuro-muscular diseases may benefit from Cr supplementation as an adjuvant therapy to relieve or delay the onset of symptoms. Although it is still unclear how Cr biosynthesis and transport are regulated in health and disease, so far there are no reports of harmful side effects of Cr loading in humans. However, in this study, we report that chronic Cr supplementation in rats down-regulates in vivo the expression of the CreaT. In addition, we describe the presence of CreaT isoforms most likely generated by alternative splicing.  相似文献   

3.
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.  相似文献   

4.
Creatine kinase (CK) exists as a family of isoenzymes in excitable tissue. We studied isolated perfused hearts from mice lacking genes for either the main muscle isoform of CK (M-CK) or both M-CK and the main mitochondrial isoform (Mt-CK) to determine 1) the biological significance of CK isoenzyme shifts, 2) the necessity of maintaining a high CK reaction rate, and 3) the role of CK isoenzymes in establishing the thermodynamics of ATP hydrolysis. (31)P NMR was used to measure [ATP], [PCr], [P(i)], [ADP], pH, as well as the unidirectional reaction rate of PCr--> [gamma-P]ATP. Developmental changes in the main fetal isoform of CK (BB-CK) were unaffected by loss of other CK isoenzymes. In hearts lacking both M- and Mt-CK, the rate of ATP synthesis from PCr was only 9% of the rate of ATP synthesis from oxidative phosphorylation demonstrating a lack of any high energy phosphate shuttle. We also found that the intrinsic activities of the BB-CK and the MM-CK isoenzymes were equivalent. Finally, combined loss of M- and Mt-CK (but not loss of only M-CK) prevented the amount of free energy released from ATP hydrolysis from increasing when pyruvate was provided as a substrate for oxidative phosphorylation.  相似文献   

5.
The activity and role of creatine kinase (CK) associated with contractile proteins of smooth muscle have been investigated using skinned guinea-pig taenia coli fibers. Total CK activity was 163 +/- 22 IU/g (ww) and agarose electrophoresis showed BB, MB, and MM isoforms (BB-CK being the predominant isoenzyme). After skinning for 1 h with Triton X-100, BB-CK was specifically associated with the myofibrils, representing 22% of the preskinned CK activity. When relaxed fibers were exposed to pCa 9 in the presence of 250 microM ADP, 0 ATP and 12 mM PCr, tension was not significantly different from resting tension, but changing to pCa 4.5 caused the fibers to generate 59.1 +/- 5.2 percent of maximal tension. When a high-tension rigor state was achieved (250 microM ADP, 0 ATP, 0 PCr, and pCa 9), the addition of 12 mM PCr effected significant relaxation. These observations implicate an endogenous form of BB-CK, associated with the myofilaments and capable of producing enough ATP for submaximal tension generation and significant relaxation from rigor conditions. It was also shown that ADP is bound to the myofibrils and available for rephosphorylation by BB-CK. These results suggest co-localization of ATPase, MLCK and CK on the contractile proteins of the taenia coli. This enzymic association may play a role in the compartmentation of adenine nucleotides in smooth muscle.  相似文献   

6.
Information about anaerobic energy production and mechanical efficiency that occurs over time during short-lasting maximal exercise is scarce and controversial. Bilateral leg press is an interesting muscle contraction model to estimate anaerobic energy production and mechanical efficiency during maximal exercise because it largely differs from the models used until now. This study examined the changes in muscle metabolite concentration and power output production during the first and the second half of a set of 10 repetitions to failure (10RM) of bilateral leg press exercise. On two separate days, muscle biopsies were obtained from vastus lateralis prior and immediately after a set of 5 or a set of 10 repetitions. During the second set of 5 repetitions, mean power production decreased by 19% and the average ATP utilisation accounted for by phosphagen decreased from 54% to 19%, whereas ATP utilisation from anaerobic glycolysis increased from 46 to 81%. Changes in contraction time and power output were correlated to the changes in muscle Phosphocreatine (PCr; r = −0.76; P<0.01) and lactate (r = −0.91; P<0.01), respectively, and were accompanied by parallel decreases (P<0.01-0.05) in muscle energy charge (0.6%), muscle ATP/ADP (8%) and ATP/AMP (19%) ratios, as well as by increases in ADP content (7%). The estimated average rate of ATP utilisation from anaerobic sources during the final 5 repetitions fell to 83% whereas total anaerobic ATP production increased by 9% due to a 30% longer average duration of exercise (18.4±4.0 vs 14.2±2.1 s). These data indicate that during a set of 10RM of bilateral leg press exercise there is a decrease in power output which is associated with a decrease in the contribution of PCr and/or an increase in muscle lactate. The higher energy cost per repetition during the second 5 repetitions is suggestive of decreased mechanical efficiency.  相似文献   

7.
Creatine kinase (CK) forms a small family of isoenzymes playing an important role in maintaining the concentration of ATP and ADP in muscle cells. To delineate the impact of a lack of CK activity, we studied contractile performance during a single maximal tetanic contraction and during 12 repeated tetanic contractions of intact dorsal flexors of CK knockout (CK(-/-)) mice. To investigate the effect on ATP regeneration, muscular high-energy phosphate content was determined at rest, immediately after the contraction series, and after a 60-s recovery period. Maximal torque of the dorsal flexors was significantly lower in CK(-/-) mice than in wild-type animals, i.e., 23.7 +/- 5.1 and 33.3 +/- 6.8 mN. m. g(-1) wet wt, respectively. Lower muscle ATP (20.1 +/- 1.4 in CK(-/-) vs. 28.0 +/- 2.1 micromol/g dry wt in controls) and higher IMP (1.2 +/- 0.5 in CK(-/-) vs. 0.3 +/- 0.1 micromol/g dry wt in controls) levels at the onset of contraction may contribute to the declined contractility in CK(-/-) mice. In contrast to wild-type muscles, ATP levels could not be maintained during the series of 12 tetanic contractions of dorsal flexors of CK(-/-) mice and dropped to 15.5 +/- 2.4 micromol/g dry wt. The significant increase in tissue IMP (2.4 +/- 1.1 micromol/g dry wt) content after the contraction series indicates that ATP regeneration through adenylate kinase was not capable of fully compensating for the lack of CK. ATP regeneration via the adenylate kinase pathway is a likely cause of reduced basal adenine nucleotide levels in CK(-/-) mice.  相似文献   

8.
Changes in the energy state of tissues in spontaneously hypertensive rats]   总被引:1,自引:0,他引:1  
The contents of adenine nucleotides (ATP, ADP, AMP), phosphocreatine (PCr) and creatine (Cr) in the heart, skeletal muscle, liver and spleen in spontaneously hypertensive (SHR) and normotensive (WKY) rats. The ATP/ADP ratio in cardiac tissue was lower in SHR compared with WKY, while myocardial contents of adenine nucleotides, PCr and Cr did not differ significantly between the groups. A lower ATP/ADP ratio in the skeletal muscle SHR of was accompanied by a reduction of PCr content comparing with these indices in WKY rats. The liver and spleen of SHR exhibited lower ATP contents and higher ADP and AMP levels compared with those ones in WKY rats, despite of the close values of adenine nucleotide pools (sigma AN = ATP + ADP + AMP). This redistribution of tissue adenine nucleotides was corresponded to lower energy charges (EC = (ATP + 0.5 ADP)/sigma AN) and ATP/ADP ratios in SHR group. The reduction of the energy state of tissues in SHR rats increased in the following rank: heart > skeletal muscle > liver > spleen, thus, reflecting progressive decrease of intensity of oxidative metabolism. The results suggest changes in the balance of rates of ATP formation and hydrolysis occur at the system level in primary hypertension. Probably, consequences of such rearrangement in energy metabolism are functional disturbances of plasma membrane and sacroplasmic reticulum well-documented in a number of experimental and clinical studies.  相似文献   

9.
BACKGROUND: It has been thought that intramuscular ADP and phosphocreatine (PCr) concentrations are important regulators of mitochondorial respiration. There is a threshold work rate or metabolic rate for cellular acidosis, and the decrease in muscle PCr is accelerated with drop in pH during incremental exercise. We tested the hypothesis that increase in muscle oxygen consumption (o2mus) is accelerated with rapid decrease in PCr (concomitant increase in ADP) in muscles with drop in pH occurs during incremental plantar flexion exercise. METHODS: Five male subjects performed a repetitive intermittent isometric plantar flexion exercise (6-s contraction/4-s relaxation). Exercise intensity was raised every 1 min by 10% maximal voluntary contraction (MVC), starting at 10% MVC until exhaustion. The measurement site was at the medial head of the gastrocnemius muscle. Changes in muscle PCr, inorganic phosphate (Pi), ADP, and pH were measured by 31P-magnetic resonance spectroscopy. o2mus was determined from the rate of decrease in oxygenated hemoglobin and/or myoglobin using near-infrared continuous wave spectroscopy under transient arterial occlusion. Electromyogram (EMG) was also recorded. Pulmonary oxygen uptake (o2pul ) was measured by the breath-by-breath gas analysis. RESULTS: EMG amplitude increased as exercise intensity progressed. In contrast, muscle PCr, ADP, o2mus, and o2pul did not change appreciably below 40% MVC, whereas above 40% MVC muscle PCr decreased, and ADP, o2mus, and o2pul increased as exercise intensity progressed, and above 70% MVC, changes in muscle PCr, ADP, o2mus, and o2pul accelerated with the decrease in muscle pH (~6.78). The kinetics of muscle PCr, ADP, o2mus, and o2pul were similar, and there was a close correlation between each pair of parameters (r = 0.969~0.983, p < 0.001). CONCLUSION: With decrease in pH muscle oxidative metabolism accelerated and changes in intramuscular PCr and ADP accelerated during incremental intermittent isometric plantar flexion exercise. These results suggest that rapid changes in muscle PCr and/or ADP with mild acidosis stimulate accelerative muscle oxidative metabolism.  相似文献   

10.
Monitoring the kinetic behavior of adenylate kinase (AK) and creatine kinase (CK) in intact cells by 18O-phosphoryl oxygen exchange analysis has provided new perspectives from which to more fully define the involvement of these phosphotransferases in cellular bioenergetics. A primary function attributable to both AK and CK is their apparent capability to couple ATP utilization with its generation by glycolytic and/or oxidative processes depending on cell metabolic status. This is evidenced by the observation that the sum of the net AK- plus CK-catalyzed phosphoryl transfer is equivalent to about 95% of the total ATP metabolic flux in non-contracting rat diaphragm; under basal conditions almost every newly generated ATP molecule appears to be processed by one or the other of these phosphotransferases prior to its utilization. Although CK accounts for the transfer of a majority of the ATP molecules generated/consumed in the basal state there is a progressive, apparently compensatory, shift in phosphotransfer catalysis from the CK to the AK system with increasing muscle contraction or graded chemical inhibition of CK activity. AK and CK appear therefore to provide similar and interrelated functions. Evidence that high energy phosphoryl transfer in some cell types or metabolic states can also be provided by specific nucleoside mono- and diphosphate kinases and by the phosphotransfer capability inherent to the glycolytic system has been obtained. Measurements by 18O-exchange analyses of net AK- and CK-catalyzed phosphoryl transfer in conjunction with 31P NMR analyses of total unidirectional phosphoryl flux show that each new energy-bearing molecule CK or AK generates subsequently undergoes about 50 or more unidirectional CK-or AK-catalyzed phosphotransfers en route to an ATP consumption site in intact muscle. This evidence of multiple enzyme catalyzed exchanges coincides with the mechanism of vectorial ligand conduction suggested for accomplishing intracellular high energy phosphoryl transfer by the AK and CK systems. AK-catalyzed phosphotransfer also appears to be integral to the transduction of metabolic signals influencing the operation of ion channels regulated by adenine nucleotides such as ATP-inhibitable K+ channels in insulin secreting cells; transition from the ATP to ADP liganded states closely coincides with the rate AK-catalyzes phosphotransfer transforming ATP (+AMP) to (2) ADP.  相似文献   

11.
The goal of this investigation was to develop an assay whereby we could measure changes in ATP, ADP, and phosphocreatine (PCr) during stimulation of the sarcoplasmic reticulum (SR) Ca2+ ATPase. After stopping the enzyme reaction, compounds were extracted by perchloric acid and separated by reversed-phase high-performance liquid chromatography (HPLC). Absorbance of ATP and ADP was monitored at 260 nm, and detection of PCr was done at 205 nm. Chromatograms show that peaks associated with each compound are clearly separated and easily detected. The SR Ca2+ ATPase assay was run for various time periods and using varying free [Ca2+]. The changes in ATP and ADP contents were linear with increasing time and varied as expected with increasing free [Ca2+]. The ATPase activities determined using changes in ATP and ADP were nearly identical to those determined using previously established assays. When PCr was added to the assay, we were able to confirm that the Ca2+ ATPase uses ATP that is synthesized locally from PCr via creatine kinase (CK). The results indicate that this is a valid and reliable method for examining SR Ca2+ ATPase activity and for investigating its interaction with CK.  相似文献   

12.
1. Gated 31P-n.m.r. spectra were obtained from the ankle flexor muscles of the rat at various times after 3 s isometric tetanic contraction. This allowed the time course of changes in phosphocreatine (PCr), Pi and free ADP concentrations and intracellular pH to be monitored in skeletal muscle in vivo with 1 s time resolution. 2. ATP concentration did not change significantly, either during the recovery from a 3 s tetanus or during the overall protocol. 3. The calculated rate of recovery of ADP towards pre-stimulation levels was very rapid (t1/2 less than 5 s). The rate of Pi disappearance (t1/2 = 14 s) was more rapid than the rate of PCr synthesis (t1/2 = 24 s), resulting in a significant transient decrease in n.m.r.-visible PCr + Pi between 25 and 45 s after tetanic contraction. 4. The rates of PCr, Pi and ADP recovery are higher than those previously reported for recovery from steady-state exercise in humans or twitch isometric contraction in animals.  相似文献   

13.
Utilization of D- and L-lactate in the isolated intestinal smooth muscle of the guinea pig taenia caeci was examined by measuring contractile tension, oxygen consumption, and adenosine triphosphate (ATP) and creatine phosphate (PCr) concentrations. In the absence of glucose in the medium, muscle contraction induced by a high concentration of K+ was inhibited and the rate of oxygen consumption and the concentrations of ATP and PCr were decreased. Addition of glucose, L-lactate, and D,L-lactate, but not D-lactate, led to recovery of muscle contraction, rate of oxygen consumption, and ATP and PCr concentrations when the tissue had been incubated in the high K+, glucose-free solution. These results suggest that the isolated guinea pig taenia caeci selectively utilizes the L-isomer of lactate as a substrate for energy metabolism.  相似文献   

14.
Bupivacaine is a widely used anaesthetic injected locally in clinical practice for short-term neurotransmission blockade. However, persistent side effects on mitochondrial integrity have been demonstrated in muscle parts surrounding the injection site. We use the precise language of metabolic control analysis in the present study to describe in vivo consequences of bupivacaine injection on muscle energetics during contraction. We define a model system of muscle energy metabolism in rats with a sciatic nerve catheter that consists of two modules of reactions, ATP/PCr (phosphocreatine) supply and ATP/PCr demand, linked by the common intermediate PCr detected in vivo by (31)P-MRS (magnetic resonance spectroscopy). Measured system variables were [PCr] (intermediate) and contraction (flux). We first applied regulation analysis to quantify acute effects of bupivacaine. After bupivacaine injection, contraction decreased by 15.7% and, concomitantly, [PCr] increased by 11.2%. The regulation analysis quantified that demand was in fact directly inhibited by bupivacaine (-21.3%), causing an increase in PCr. This increase in PCr indirectly reduced mitochondrial activity (-22.4%). Globally, the decrease in contractions was almost fully explained by inhibition of demand (-17.0%) without significant effect through energy supply. Finally we applied elasticity analysis to quantify chronic effects of bupivacaine iterative injections. The absence of a difference in elasticities obtained in treated rats when compared with healthy control rats clearly shows the absence of dysfunction in energetic control of muscle contraction energetics. The present study constitutes the first and direct evidence that bupivacaine myotoxicity is compromised by other factors during contraction in vivo, and illustrates the interest of modular approaches to appreciate simple rules governing bioenergetic systems when affected by drugs.  相似文献   

15.
The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ~28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ~0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ~66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.  相似文献   

16.
秦斌  齐静 《生物磁学》2011,(1):176-179
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

17.
We investigated whether the creatine kinase-catalyzed phosphate exchange between PCr and gamma ATP in vivo equilibrated with cellular substrates and products as predicted by in vitro kinetic properties of the enzyme, or was a function of ATPase activity as predicted by obligatory "creatine phosphate shuttle" concepts. A transient NMR spin-transfer method was developed, tested, and applied to resting and stimulated ex vivo muscle, the soleus, which is a cellularly homogeneous slow-twitch mammalian muscle, to measure creatine kinase kinetics. The forward and reverse unidirectional CK fluxes were equal, being 1.6 mM.s-1 in unstimulated muscle at 22 degrees C, and 2.7 mM.s-1 at 30 degrees C. The CK fluxes did not differ during steady-state stimulation conditions giving a 10-fold range of ATPase rates in which the ATP/PCr ratio increased from approximately 0.3 to 1.6. The observed kinetic behavior of CK activity in the muscle was that expected from the enzyme in vitro in a homogeneous solution only if account was taken of inhibition by an anion-stabilized quaternary dead-end enzyme complex: E.Cr.MgADP.anion. The CK fluxes in soleus were not a function of ATPase activity as predicted by obligatory phosphocreatine shuttle models for cellular energetics.  相似文献   

18.
Analyses of isolated intact diaphragm muscle show that at rest only about 30% of the total cellular Pi is metabolically reactive as indicated by 18O incorporation from [18O]water, whereas up to 90% becomes metabolically active incrementally with contractile frequency. Kinetics of [gamma-18O]ATP appearance show that about 90% of the cellular ATP is metabolically active and suggest slowly and rapidly metabolizing compartments of ATP in resting muscle and only rapidly metabolizing compartments in contracting muscle. Rates of [18O]creatine phosphate [( 18O]CrP) appearance are consistent with creatine kinase-catalyzed phosphoryl exchange functioning in an obligatory phosphoryl shuttle system. In noncontracting muscle, ATP turnover rate was 83 nmol.mg protein-1.min-1, and the P/O ratio was determined to be 3.2. ATP utilization increases in direct proportion to contractile frequency with each contracture consuming the equivalent of 0.96 nmol of ATP.mg protein-1 or 2.5-3.5 molecules of ATP/myosin active site. Basal concentrations of nucleotide polyphosphates are not altered when ATP utilization rates increase during contraction. At high contractile frequencies, decreases in CrP concentration occur, but this accounts for less than 4% of total high energy phosphoryls consumed. If metabolic intermediates are free in the aqueous cellular cytosol, each twitch contracture would result in a decrease in ATP concentration of no more than 2% and increases in ADP and AMP concentrations of less than 20 and 7%, respectively. Thus, changes in metabolite concentration must be highly localized or metabolic regulation can be accomplished by a nonallosteric mechanism.  相似文献   

19.

Background

Creatine kinase plays a key role in cellular energy transport. The enzyme transfers high-energy phosphoryl groups from mitochondria to subcellular sites of ATP hydrolysis, where it buffers ADP concentration by catalyzing the reversible transfer of the high-energy phosphate moiety (P) between creatine and ADP. Cellular creatine uptake is competitively inhibited by beta-guanidinopropionic acid. This substance is marked as safe for human use, but the effects are unclear. Therefore, we systematically reviewed the effect of beta-guanidinopropionic acid on energy metabolism and function of tissues with high energy demands.

Methods

We performed a systematic review and searched the electronic databases Pubmed, EMBASE, the Cochrane Library, and LILACS from their inception through March 2011. Furthermore, we searched the internet and explored references from textbooks and reviews.

Results

After applying the inclusion criteria, we retrieved 131 publications, mainly considering the effect of chronic oral administration of beta-guanidinopropionic acid (0.5 to 3.5%) on skeletal muscle, the cardiovascular system, and brain tissue in animals. Beta-guanidinopropionic acid decreased intracellular creatine and phosphocreatine in all tissues studied. In skeletal muscle, this effect induced a shift from glycolytic to oxidative metabolism, increased cellular glucose uptake and increased fatigue tolerance. In heart tissue this shift to mitochondrial metabolism was less pronounced. Myocardial contractility was modestly reduced, including a decreased ventricular developed pressure, albeit with unchanged cardiac output. In brain tissue adaptations in energy metabolism resulted in enhanced ATP stability and survival during hypoxia.

Conclusion

Chronic beta-guanidinopropionic acid increases fatigue tolerance of skeletal muscle and survival during ischaemia in animal studies, with modestly reduced myocardial contractility. Because it is marked as safe for human use, there is a need for human data.  相似文献   

20.
During low-to-high work transition in adult mammalian heart in vivo the concentrations of free ADP, ATP, PCr (phosphocreatine), P(i) and NADH are essentially constant, in striking contrast with skeletal muscle. The direct activation by calcium ions of ATP usage and feedback activation of ATP production by ADP (and P(i)) alone cannot explain this perfect homoeostasis. A comparison of the response to adrenaline (increase in rate-pressure product and [PCr]) of the intact beating perfused rat heart with the elasticities of the PCr producer and consumer to PCr concentration demonstrated that both the ATP/PCr-producing block and ATP/PCr-consuming block are directly activated to a similar extent during physiological heart activation. Our finding constitutes a direct evidence for the parallel-activation mechanism of the regulation of oxidative phosphorylation in heart postulated previously in a theoretical way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号