首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthase, has been proposed to be a mediator of vascular dysfunction during hyperhomocysteinemia. Levels of ADMA are regulated by dimethylarginine dimethylaminohydrolase (DDAH). Using both in vitro and in vivo approaches, we tested the hypothesis that hyperhomocysteinemia causes downregulation of the two genes encoding DDAH (Ddah1 and Ddah2). In the MS-1 murine endothelial cell line, the addition of homocysteine decreased NO production but did not elevate ADMA or alter levels of Ddah1 or Ddah2 mRNA. Mice heterozygous for cystathionine beta-synthase (Cbs) and their wild-type littermates were fed either a control diet or a high-methionine/low-folate (HM/LF) diet to produce varying degrees of hyperhomocysteinemia. Maximal relaxation of the carotid artery to the endothelium-dependent dilator acetylcholine was decreased by approximately 50% in Cbs(+/-) mice fed the HM/LF diet compared with Cbs(+/+) mice fed the control diet (P < 0.001). Compared with control mice, hyperhomocysteinemic mice had lower levels of Ddah1 mRNA in the liver (P < 0.001) and lower levels of Ddah2 mRNA in the liver, lung, and kidney (P < 0.05). Downregulation of DDAH expression in hyperhomocysteinemic mice did not result in an increase in plasma ADMA, possibly due to a large decrease in hepatic methylation capacity (S-adenosylmethionine-to-S-adenosylhomocysteine ratio). Our findings demonstrate that hyperhomocysteinemia causes tissue-specific decreases in DDAH expression without altering plasma ADMA levels in mice with endothelial dysfunction.  相似文献   

2.
3.
4.
A relationship between zinc (Zn)-deficiency and mood disorders has been suspected. Here we examined for the first time whether experimentally-induced Zn-deficiency in mice would alter depression- and anxiety-related behaviour assessed in established tests and whether these alterations would be sensitive to antidepressant treatment. Mice receiving a Zn-deficient diet (40% of daily requirement) had similar homecage and open field activity compared to normally fed mice, but displayed enhanced depression-like behaviour in both the forced swim and tail suspension tests which was reversed by chronic desipramine treatment. An anxiogenic effect of Zn-deficiency prevented by chronic desipramine and Hypericum perforatum treatment was observed in the novelty suppressed feeding test, but not in other anxiety tests performed. Zn-deficient mice showed exaggerated stress-evoked immediate-early gene expression in the amygdala which was normalised following DMI treatment. Taken together these data support the link between low Zn levels and depression-like behaviour and suggest experimentally-induced Zn deficiency as a putative model of depression in mice.  相似文献   

5.
6.
Chicken hepatic histidase activity varies with dietary protein consumption, but the mechanisms responsible for this alteration in activity are unclear. In the present research, the complete coding sequence and deduced amino acid sequence for chicken histidase was determined from clones isolated from a chicken liver cDNA library. The deduced amino acid sequence of chicken histidase has greater than 85% identity with the amino acid sequences of rat, mouse, and human histidase. In a series of four experiments, broiler chicks were allowed free access for 1.5, 3, 6, or 24 h to a low (13 g/100 g diet), basal (22 g/100 g diet) and high (40 g/100 g diet) protein diet. In the final experiment 5, chicks were allowed free access for 24 h to the basal, high protein diet or the basal diet supplemented with three different levels of l-histidine (0.22 g/100 g diet, 0.43 g/100 g diet or 0.86 g/100 g diet). There were no differences in the expression of the mRNA for histidase at 1.5 h, but at 3 h, histidase mRNA expression was significantly (P < .05) greater in chicks fed the high protein diet compared to chicks fed the low protein diet. At 6 and 24 h, histidase mRNA expression was significantly enhanced in chicks fed the high protein diet, and significantly reduced in chicks fed the low protein diet, compared with chicks fed the basal diet. Histidase mRNA expression was not altered by supplementing the basal diet with histidine. The results suggest that previously observed alterations in the activity of histidase, which were correlated to dietary protein intake, are mediated by rapid changes in the mRNA expression of this enzyme, and are not necessarily related to dietary histidine intake.  相似文献   

7.
8.
9.
10.
Immune challenge by bacterial lipopolysaccharide (LPS) causes short-term behavioral changes indicative of depression. The present study sought to explore whether LPS is able to induce long-term changes in depression-related behavior and whether such an effect depends on mouse strain and social context. LPS (0.83 mg/kg) or vehicle was administered intraperitoneally to female CD1 and C57BL/6 mice that were housed singly or in groups of 4. Depression-like behavior was assessed with the forced swim test (FST) 1 and 28 days post-treatment. Group-housed CD1 mice exhibited depression-like behavior 1 day post-LPS, an effect that leveled off during the subsequent 28 days, while the behavior of singly housed CD1 mice was little affected. In contrast, singly housed C57BL/6 mice responded to LPS with an increase in depression-like behavior that was maintained for 4 weeks post-treatment and confirmed by the sucrose preference test. Group-housed C57BL/6 mice likewise displayed an increased depression-like behavior 4 weeks post-treatment. The behavioral changes induced by LPS in C57BL/6 mice were associated with a particularly pronounced rise of interleukin-6 in blood plasma within 1 day post-treatment and with changes in the dynamics of the corticosterone response to the FST. The current data demonstrate that immune challenge with LPS is able to induce prolonged depression-like behavior, an effect that depends on genetic background (strain). The discovery of an experimental model of long-term depression-like behavior after acute immune challenge is of relevance to the analysis of the epigenetic and pathophysiologic mechanisms of immune system-related affective disorders.  相似文献   

11.
Glutamate dehydrogenase (GDH) (EC 1.4.1.3) is a crucial enzyme involved in bridging two metabolic pathways, gating the use of glutamate for either amino acid metabolism, or carbohydrate metabolism. The present study investigated GDH from tail muscle of the freshwater crayfish Orconectes virilis exploring changes to kinetic properties, phosphorylation levels and structural stability between two forms of the enzyme (aerobic control and 20-h severe hypoxic). Evidence indicated that GDH was converted to a high phosphate form under oxygen limitation. ProQ Diamond phosphoprotein staining showed a 42% higher bound phosphate content on GDH from muscle of severely hypoxic crayfish compared with the aerobic form, and treatment of this GDH with commercial phosphatase (alkaline phosphatase), and treatments that stimulated the activities of different endogenous protein phosphatases (stimulating PP1 + PP2A, PP2B, and PP2C) yielded significant increases in the fold activation by ADP of GDH from both control and severe hypoxic conditions. By contrast, stimulation of the activities of endogenous protein kinases (AMPK, PKA or CaMK) significantly reduced the ADP fold activation from control animals. The physiological consequence of severe hypoxia-induced GDH phosphorylation may be to suppress GDH activity under low oxygen, shutting off this critical bridge point between two metabolic pathways.  相似文献   

12.
The stimulation of adult hippocampal neurogenesis by antidepressants has been associated with multiple molecular pathways, but the potential influence exerted by other brain areas has received much less attention. The basolateral complex of the amygdala (BLA), a region involved in anxiety and a site of action of antidepressants, has been implicated in both basal and stress-induced changes in neural plasticity in the dentate gyrus. We investigated here whether the BLA modulates the effects of the SSRI antidepressant fluoxetine on hippocampal cell proliferation and survival in relation to a behavioral index of depression-like behavior (forced swim test). We used a lesion approach targeting the BLA along with a chronic treatment with fluoxetine, and monitored basal anxiety levels given the important role of this behavioral trait in the progress of depression. Chronic fluoxetine treatment had a positive effect on hippocampal cell survival only when the BLA was lesioned. Anxiety was related to hippocampal cell survival in opposite ways in sham- and BLA-lesioned animals (i.e., negatively in sham- and positively in BLA-lesioned animals). Both BLA lesions and low anxiety were critical factors to enable a negative relationship between cell proliferation and depression-like behavior. Therefore, our study highlights a role for the amygdala on fluoxetine-stimulated cell survival and on the establishment of a link between cell proliferation and depression-like behavior. It also reveals an important modulatory role for anxiety on cell proliferation involving both BLA-dependent and –independent mechanisms. Our findings underscore the amygdala as a potential target to modulate antidepressants'' action in hippocampal neurogenesis and in their link to depression-like behaviors.  相似文献   

13.
目的: 观察加味逍遥散对LPS诱导的抑郁模型大鼠海马小胶质细胞TLR4/NF-κB通路的影响,探讨其抗抑郁机制。方法: 将SD大鼠随机分为对照组、模型组、氟西汀组(10.8 mg·kg-1)、加味逍遥散低、高剂量组(3.64、7.28 g·kg-1)。采用慢性LPS注射(ip,0.5 mg·kg-1)的方法建立抑郁大鼠模型,于造模同时灌胃给药,共14 d。采用旷场和强迫游泳实验评价大鼠的抑郁样行为,免疫组化法检测海马小胶质细胞标志蛋白Iba-1的表达,ELISA法检测海马匀浆液中TNF-α、IL-6的含量,Western blot法检测海马TLR4、NF-κB蛋白的表达。结果: 与对照组比较,模型组大鼠抑郁样行为显著(P<0.01),海马小胶质细胞明显激活(P<0.01),TNF-α、IL-6含量增加(P<0.01),TLR4、NF-κB蛋白明显上调(P<0.01);与模型组比较,氟西汀和高剂量加味逍遥散组大鼠抑郁样行为明显缓解(P< 0.05),小胶质细胞Iba-1表达恢复正常(P<0.01),TNF-α、IL-6含量下降(P<0.01),TLR4、NF-κB蛋白表达下调(P<0.05);与氟西汀组比较,高剂量加味逍遥散组各指标无统计学差异,提示两者抗抑郁功效无显著区别。结论: 加味逍遥散能明显改善大鼠的抑郁样行为,其机制可能与抑制小胶质细胞TLR4/NF-κB通路,进而下调炎症因子的表达有关。  相似文献   

14.
15.
16.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Elevated levels of circulating ADMA correlate with various cardiovascular pathologies less is known about the cellular effects of altered DDAH activity. We modified DDAH activity in cells and measured the changes in ADMA levels, morphological phenotypes on Matrigel, and expression of vascular endothelial growth factor (VEGF). DDAH over-expressing ECV304 cells secreted less ADMA and when grown on Matrigel had enhanced tube formation compared to untransfected cells. VEGF mRNA levels were 2.1-fold higher in both ECV304 and murine endothelial cells (sEnd.1) over-expressing DDAH. In addition the DDAH inhibitor, S-2-amino-4(3-methylguanidino)butanoic acid (4124W 1mM), markedly reduced human umbilical vein endothelial cell tube formation in vitro. We have found that upregulating DDAH activity lowers ADMA levels, increases the levels of VEGF mRNA in endothelial cells, and enhances tube formation in an in vitro model, whilst blockade of DDAH reduces tube formation.  相似文献   

17.
18.
Circadian rhythm dysfunction is primary symptom of depression and is closely related to depression onset. The role of the lateral habenula (LHb) of the thalamus in the pathogenesis of depression has been a research topic of great interest. The neuronal activity of this structure has circadian characteristics, which are related to the regulation of circadian rhythms. However, in depression model of rats, the role of clock genes in the LHb has not been assessed. To address this gap, we used a clomipramine (CLI) injection-induced depression model in rats to assess the daily expression of rhythmic genes in the LHb and depression-like behavior in rats at multiple time points. In determining the role of the Per2 gene in the development of depression-like behavior in the LHb, we found that the expression of this clock gene differed in a circadian manner. Per2 expression was also significantly decreased in CLI-treated rats in late afternoon (17:00) and in the middle of the night (1:00). Furthermore, silencing Per2 in the LHb of normal rats induced depression-like behavior at night, suggesting that Per2 may play an important role in the pathogenesis of depression. Collectively, these results indicate that decreased Per2 expression in the LHb may be related to increased depression-like behavior at night in depression model of rats.  相似文献   

19.
Elevated mitochondrial reactive oxygen species have been suggested to play a causative role in some forms of muscle insulin resistance. However, the extent of their involvement in the development of diet-induced insulin resistance remains unclear. To investigate, manganese superoxide dismutase (MnSOD), a key mitochondrial-specific enzyme with antioxidant modality, was overexpressed, and the effect on in vivo muscle insulin resistance induced by a high-fat (HF) diet in rats was evaluated. Male Wistar rats were maintained on chow or HF diet. After 3 wk, in vivo electroporation (IVE) of MnSOD expression and empty vectors was undertaken in right and left tibialis cranialis (TC) muscles, respectively. After one more week, insulin action was evaluated using hyperinsulinemic euglycemic clamp, and tissues were subsequently analyzed for antioxidant enzyme capacity and markers of oxidative stress. MnSOD mRNA was overexpressed 4.5-fold, and protein levels were increased by 70%, with protein detected primarily in the mitochondrial fraction of muscle fibers. This was associated with elevated MnSOD and glutathione peroxidase activity, indicating that the overexpressed MnSOD was functionally active. The HF diet significantly reduced whole body and TC muscle insulin action, whereas overexpression of MnSOD in HF diet animals ameliorated this reduction in TC muscle glucose uptake by 50% (P < 0.05). Decreased protein carbonylation was seen in MnSOD overexpressing TC muscle in HF-treated animals (20% vs. contralateral control leg, P < 0.05), suggesting that this effect was mediated through an altered redox state. Thus interventions causing elevation of mitochondrial antioxidant activity may offer protection against diet-induced insulin resistance in skeletal muscle.  相似文献   

20.
On the cross-roads of main carbon and nitrogen metabolic pathways, glutamate dehydrogenase (GDH, E.C. 1.4.1.2) carries out the reaction of reductive amination of 2-oxoglutarate to glutamate (the anabolic activity; NAD(P)H–GDH), and the reverse reaction of oxidative deamination of glutamic acid (the catabolic activity; NAD(P)+–GDH). To date, there have been no reports on identification of GDH genes in cereals. Here, we report cloning and biochemical characterization of the GDH from germinating triticale seeds, a common Polish cereal. A single TsGDH1 gene is 1,620 bp long, while its 1,236 bp long open reading frame encodes a protein of 411 amino acids of high homology with the published GDH protein sequences from other plants. Phylogenetic analyses locate the TsGDH1 among other monocotyledonous proteins and among the sequences of the β-type subunit of plant GDHs. Changes in TsGDH1 expression and the dynamics of enzyme activity in germinating seeds confirm the existence of one TsGDH isoform with varying expression and activity patterns, depending on the tissue localization and stage of germination. The four-step purification method (including the anionite chromatography using HPLC) resulted in a protein preparation with a high-specific activity and purification factor of approx. 230. The purified enzyme exhibited an absolute specificity towards 2-oxoglutarate (NAD(P)H–GDH), or towards l-glutamate in the reverse reaction (NAD(P)+–GDH), while its low K m constants towards all substrates and co-enzymes may suggest its aminating activity during germination, or, alternatively, its capability to adjust the direction of the catalyzed reaction according to the metabolic necessity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号