首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mathematical model of the compartmentalized energy transfer in cardiac cells is described and used for interpretation of novel experimental data obtained by using phosphorus NMR for determination of the energy fluxes in the isolated hearts of transgenic mice with knocked out creatine kinase isoenzymes. These experiments were designed to study the meaning and importance of compartmentation of creatine kinase isoenzymes in the cells in vivo. The model was constructed to describe quantitatively the processes of energy production, transfer, utilization, and feedback between these processes. It describes the production of ATP in mitochondrial matrix space by ATP synthase, use of this ATP for phosphocreatine production in the mitochondrial creatine kinase reaction coupled to the adenine nucleotide translocation, diffusional exchange of metabolites in the cytoplasmic space, and use of phosphocreatine for resynthesis of ATP in the myoplasmic creatine kinase reaction. It accounts also for the recently discovered phenomenon of restricted diffusion of adenine nucleotides through mitochondrial outer membrane porin pores (VDAC). Practically all parameters of the model were determined experimentally. The analysis of energy fluxes between different cellular compartments shows that in all cellular compartments of working heart cells the creatine kinase reaction is far from equilibrium in the systolic phase of the contraction cycle and approaches equilibrium only in cytoplasm and only in the end-diastolic phase of the contraction cycle.Experimental determination of the relationship between energy fluxes by a 31P-NMR saturation transfer method and workload in isolated and perfused heart of transgenic mice deficient in MM isoenzyme of the creatine kinase, MM -/- showed that in the hearts from wild mice, containing all creatine kinase isoenzymes, the energy fluxes determined increased 3-4 times with elevation of the workload. By contrast, in the hearts in which only the mitochondrial creatine kinase was active, the energy fluxes became practically independent of the workload in spite of the preservation of 26% of normal creatine kinase activity. These results cannot be explained on the basis of the conventional near-equilibrium theory of creatine kinase in the cells, which excludes any difference between creatine kinase isoenzymes. However, these apparently paradoxical experimental results are quantitatively described by a mathematical model of the compartmentalized energy transfer based on the steady state kinetics of coupled creatine kinase reactions, compartmentation of creatine kinase isoenzymes in the cells, and the kinetics of ATP production and utilization reactions. The use of this model shows that: (1) in the wild type heart cells a major part of energy is transported out of mitochondria via phosphocreatine, which is used for complete regeneration of ATP locally in the myofibrils - this is the quantitative estimate for PCr pathway; (2) however, in the absence of MM-creatine kinase in the myofibrils in transgenic mice the contraction results in a very rapid rise of ADP in cytoplasmic space, that reverses the mitochondrial creatine kinase reaction in the direction of ATP production. In this way, because of increasing concentrations of cytoplasmic ADP, mitochondrial creatine kinase is switched off functionally due to the absence of its counterpart in PCr pathway, MM-creatine kinase. This may explain why the creatine kinase flux becomes practically independent from the workload in the hearts of transgenic mouse without MM-CK. Thus, the analysis of the results of studies of hearts of creatine kinase-deficient transgenic mice, based on the use of a mathematical model of compartmentalized energy transfer, show that in the PCr pathway of intracellular energy transport two isoenzymes of creatine kinase always function in a coordinated manner out of equilibrium, in the steady state, and disturbances in functioning of one of them inevitably result in the disturbances of the other component of the PCr pathway. In the latter case, energy is transferred from mitochondria to myofibrils by alternative metabolic pathways, probably involving adenylate kinase or other systems.  相似文献   

2.
Despite the energetic flux being much lower in smooth muscle compared to striated muscles (such as the heart and skeletal muscle) creatine kinase (CK) has been found present and active in all smooth muscles studied to date. A complete CK circuit has been identified, with CK found in the mitochondria, contractile elements, membrane pumps and the cytoplasm. CK isoenzymes are coupled to many cellular energetic processes and appears to be involved in energy production and consumption by acting as an energy transducer. The CK system responds to pathological insults and development (e.g. hypertrophy and gestation respectively) by changes in sub-cellular distribution localization, isoenzymes, and specific activity. The conclusion from these observations is that creatine kinase is intimately involved in the energetic system of smooth muscle.Abbreviations CK creatine kinase - Mi-CK mitochondrial creatine kinase - Cr creatine - PCr phosphocreatiner - NMR nuclear magnetic resonance - SHR spontaneously hypertensive rat - -GPA -guanidinopropionic acid  相似文献   

3.
Despite the pivotal role of creatine (Cr) and phosphocreatine (PCr) in muscle metabolism, relatively little is known about sarcolemmal creatine transport, creatine transporter (CRT) isoforms, and subcellular localization of the CRT proteins. To be able to quantify creatine transport across the sarcolemma, we have developed a new in vitro assay using rat sarcolemmal giant vesicles. The rat giant sarcolemmal vesicle assay reveals the presence of a specific high-affinity and saturable transport system for Cr in the sarcolemma (Michaelis-Menten constant 52.4 +/- 9.4 microM and maximal velocity value 17.3 +/- 3.1 pmol x min(-1) x mg vesicle protein(-1)), which cotransports Cr into skeletal muscle together with Na(+) and Cl(-) ions. The regulation of Cr transport in giant vesicles by substrates, analogs, and inhibitors, as well as by phorbol 12-myristate 13-acetate and insulin, was studied. Two antibodies raised against COOH- and NH(2)-terminal synthetic peptides of CRT sequences both recognize two major polypeptides on Western blots with apparent molecular masses of 70 and 55 kDa, respectively. The highest CRT expression occurs in heart, brain, and kidney, and although creatine kinase is absent in liver cells, CRT is also found in this tissue. Surprisingly, immunofluorescence staining of cultured adult rat heart cardiomyocytes with specific anti-CRT antibodies, as well as cell fractionation and cell surface biotinylation studies, revealed that only a minor CRT species with an intermediate molecular mass of approximately 58 kDa is present in the sarcolemma, whereas the previously identified major CRT-related protein species of 70 and 55 kDa are specifically located in mitochondria. Our studies indicate that mitochondria may represent a major compartment of CRT localization, thus providing a new aspect to the current debate about the existence and whereabouts of intracellular Cr and PCr compartments that have been inferred from [(14)C]PCr/Cr measurements in vivo as well as from recent in vivo NMR studies.  相似文献   

4.
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.  相似文献   

5.
The aim of this study was to measure energy fluxes from mitochondria in isolated permeabilized cardiomyocytes. Respiration of permeabilized cardiomyocytes and mitochondrial membrane potential were measured in presence of MgATP, pyruvate kinase – phosphoenolpyruvate and creatine. ATP and phosphocreatine concentrations in medium surrounding cardiomyocytes were determined. While ATP concentration did not change in time, mitochondria effectively produced phosphocreatine (PCr) with PCr/O2 ratio equal to 5.68 ± 0.14. Addition of heterodimeric tubulin to isolated mitochondria was found to increase apparent Km for exogenous ADP from 11 ± 2 μM to 330 ± 47 μM, but creatine again decreased it to 23 ± 6 μM. These results show directly that under physiological conditions the major energy carrier from mitochondria into cytoplasm is PCr, produced by mitochondrial creatine kinase (MtCK), which functional coupling to adenine nucleotide translocase is enhanced by selective limitation of permeability of mitochondrial outer membrane within supercomplex ATP Synthasome-MtCK-VDAC-tubulin, Mitochondrial Interactosome.  相似文献   

6.
The subcellular fluxes of exchange of ATP and phosphocreatine (PCr) between mitochondria, cytosol, and ATPases were assessed by (31)P NMR spectroscopy to investigate the pathways of energy transfer in a steady state beating heart. Using a combined analysis of four protocols of inversion magnetization transfer associated with biochemical data, three different creatine kinase (CK) activities were resolved in the rat heart perfused in isovolumic control conditions: (i) a cytosolic CK functioning at equilibrium (forward, F(f) = PCr --> ATP, and reverse flux, F(r) = ATP --> PCr = 3.3 mm.s(-1)), (ii) a CK localized in the vicinity of ATPases (MM-CK bound isoform) favoring ATP synthesis (F(f) = 1.7 x F(r)), and (iii) a mitochondrial CK displaced toward PCr synthesis (F(f) = 0.3 and F(r) = 2.6 mm.s(-1)). This study thus provides the first experimental evidence that the energy is carried from mitochondria to ATPases by PCr (i.e. CK shuttle) in the whole heart. In contrast, a single CK functioning at equilibrium was sufficient to describe the data when ATP synthesis was partly inhibited by cyanide (0.15 mm). In this case, ATP was directly transferred from mitochondria to cytosol suggesting that cardiac activity modified energy transfer pathways. Bioenergetic implications of the localization and activity of enzymes within myocardial cells are discussed.  相似文献   

7.
There has been considerable interest in the use of creatine (Cr) supplementation to treat neurological disorders. However, in contrast to muscle physiology, there are relatively few studies of creatine supplementation in the brain. In this report, we use high-field MR (31)P and (1)H spectroscopic imaging of human brain with a 7-day protocol of oral Cr supplementation to examine its effects on cerebral energetics (phosphocreatine, PCr; ATP) and mitochondrial metabolism (N-acetyl aspartate, NAA; and Cr). We find an increased ratio of PCr/ATP (day 0, 0.80 +/- 0.10; day 7, 0.85 +/- 09), with this change largely due to decreased ATP, from 2.7 +/- 0.3 mM to 2.5 +/- 0.3 mM. The ratio of NAA/Cr also decreased (day 0, 1.32 +/- 0.17; day 7 1.18 +/- 0.13), primarily from increased Cr (9.6 +/- 1.9 to 10.1 +/- 2.0 mM). The Cr-induced changes significantly correlated with the basal state, with the fractional increase in PCr/ATP negatively correlating with the basal PCr/ATP value (R = -0.74, P < 0.001). As NAA is a measure of mitochondrial function, there was also a significant negative correlation between basal NAA concentrations with the fractional change in PCr and ATP. Thus healthy human brain energetics is malleable and shifts with 7 days of Cr supplementation, with the regions of initially low PCr showing the largest increments in PCr. Overall, Cr supplementation appears to improve high-energy phosphate turnover in healthy brain and can result in either a decrease or an increase in high-energy phosphate concentrations.  相似文献   

8.
Previous studies on the energy metabolism of rat myocardial cells in culture supported the hypothesis that the creatine-phosphocreatine–creatine kinase system plays an important role in the intracellular transport of energy from the mitochondria to the myofibrils and in the regulation of energy production coupled to energy utilization in this model system. Effective functional compartmentation of ATP could result from the binding of creatine kinase to cellular organelles (e.g., myofibrils and mitochondria) such that high energy charge at the myofibrils is maintained by the reverse creatine kinase reaction, while phosphocreatine is synthesized mainly at the mitochondria in the forward creatine kinase reaction. It was, therefore, essential to demonstrate the presence of mitochondrial creatine kinase in the cultured myocardial cells to support this hypothesis, particularly since the mitochondrial creatine kinase was reportedly absent in fetal hearts. Using electrophoresis on cellulose acetate strips, the mitochondrial creatine kinase isozyme, as well as MM, MB, and BB isozymes, have now been demonstrated in myocardial cultures derived from neonatal rats. The mitochondrial creatine kinase increased with age in culture and with age of animal from which the culture is derived. Furthermore, the addition of creatine to culture media stimulates its synthesis. The mitochondrial creatine kinase isozyme was not detected in nonmuscle cells in culture derived from the neonatal rat hearts, nor in L6 muscle cell line. Phosphocreatine was present in all cells, but the regulation of energy metabolism and energy shuttle by creatine-phosphocreatine–creatine kinase could be operative only in the cells where the mitochondrial creatine kinase is present. This regulatory mechanism provides for an efficient system concomitant with the continuous energy demand of the myocardium; it is not ubiquitous and its development in myocardial cells seems to be triggered postnatally.  相似文献   

9.
A probability approach was used to describe mitochondrial respiration in the presence of substrates, ATP, ADP, Cr and PCr. Respiring mitochondria were considered as a three-component system, including: 1) oxidative phosphorylation reactions which provide stable ATP and ADP concentrations in the mitochondrial matrix; 2) adenine nucleotide translocase provides exchange transfer of matrix adenine nucleotides for those from outside, supplied from medium and by creatine kinase; 3) creatine kinase, starting these reactions when activated by the substrates from medium. The specific feature of this system is close proximity of creatine kinase and translocase molecules. This results in high probability of direct activations of translocase by creatine kinase-derived ADP or ATP without their leak into the medium. In turn, the activated translocase with the same high probability directly provides creatine kinase with matrix-derived ATP or ADP. The catalytic complexes of creatine kinase formed with ATP from matrix together with those formed from medium ATP provide activation of the forward creatine kinase reaction coupled to translocase activation. Simultaneously the catalytic complexes of creatine kinase formed with ADP from matrix together with those formed from medium ADP provide activation of the reverse creatine kinase reaction coupled to translocase activation. The considered probabilities were arranged into a mathermatical model. The model satisfactorily simulates the available experimental data by several groups of investigators. The results allow to consider the observed kinetic and thermodynamic iriegularities in behavior of structurally bound creatine kinase as a direct consequence of its tight coupling to translocase.  相似文献   

10.
A challenge in the understanding of creatine kinase (CK) fluxes reflected by NMR magnetization transfer in the perfused rat heart is the choice of a kinetic model of analysis. The complexity of the energetic pathways, due to the presence of adenosine triphosphate (ATP)-inorganic phosphate (Pi) exchange, of metabolite compartmentation and of subcellular localization of CK isozymes cannot be resolve from the sole information obtained from a single NMR protocol. To analyze multicompartment exchanges, we propose a new strategy based on the simultaneous analysis of four inversion transfer protocols. The time course of ATP and Phosphocreatine (PCr) magnetizations computed from the McConnell equations were adjusted to their experimental value for exchange networks of increasing complexity (up to six metabolite pools). Exchange schemes were selected by the quality of their fit and their consistency with data from other sources: the size of mitochondrial pools and the ATP synthesis flux. The consideration of ATP-Pi exchange and of ATP compartmentation were insufficient to describe the data. The most appropriate exchange scheme in our normoxic heart involved the discrimination of three specific CK activities (cytosolic, mitochondrial, and close to ATPases). At the present level of heart contractility, the energy is transferred from mitochondria to myofibrils mainly by PCr.  相似文献   

11.
Unidirectional fluxes from ATP to phosphocreatine (PCr) catalyzed by MM-isoenzyme of creatine kinase (CK) were measured by using 31P-NMR saturation transfer technique and by means of radioactively labeled [gamma-32P]ATP. At 30-37 degrees C and pH 7.4 in a wide range of [PCr]/[creatine] ([PCr]/[Cr]) ratios (0.2 to 3.0) both of these methods gave similar results, thus showing that magnetization (saturation) transfer allows to determine fluxes close to real ones under "physiological" conditions. However, at [PCr]/[Cr] ratio higher than 5 ([ADP] less than 30 microM) or at decreased temperatures (7-15 degrees C, [PCr]/[Cr] approximately 1) fluxes determined by saturation transfer substantially exceeded those measured with the radioactive label. These data imply that under "physiological" conditions phosphoryl group transfer is actually rate-determining step of the CK reaction. On the contrary, at high [PCr]/[Cr] values or at low temperature the control step could be shifted from the phosphoryl group transfer or distributed among other steps of the reaction.  相似文献   

12.
On the mechanisms of neuroprotection by creatine and phosphocreatine   总被引:8,自引:0,他引:8  
Creatine and phosphocreatine were evaluated for their ability to prevent death of cultured striatal and hippocampal neurons exposed to either glutamate or 3-nitropropionic acid (3NP) and to inhibit the mitochondrial permeability transition in CNS mitochondria. Phosphocreatine (PCr), and to a lesser extent creatine (Cr), but not (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK801), dose-dependently ameliorated 3NP toxicity when applied simultaneously with the 3NP in Mg2+-free media. Pre-treatment of PCr for 2 or 5 days and Cr for 5 days protected against glutamate excitotoxicity equivalent to that achieved by MK801 post-treatment. The combination of PCr or Cr pre-treatment and MK801 post-treatment did not provide additional protection, indicating that both prevented the toxicity attributable to secondary glutamate release. To determine if Cr or PCr directly inhibited the permeability transition, mitochondrial swelling and depolarization were assayed in isolated, purified brain mitochondria. PCr reduced the amount of swelling induced by calcium by 20%. Cr decreased mitochondrial swelling when inhibitors of creatine kinase octamer-dimer transition were present. However, in brain mitochondria prepared from rats fed a diet supplemented with 2% creatine for 2 weeks, the extent of calcium-induced mitochondrial swelling was not altered. Thus, the neuroprotective properties of PCr and Cr may reflect enhancement of cytoplasmic high-energy phosphates but not permeability transition inhibition.  相似文献   

13.
Recent human isolated muscle fiber studies suggest that phosphocreatine (PCr) and creatine (Cr) concentrations play a role in the regulation of mitochondrial respiration rate. To determine whether similar regulatory mechanisms are present in vivo, this study examined the relationship between skeletal muscle mitochondrial respiration rate and end-exercise PCr, Cr, PCr-to-Cr ratio (PCr/Cr), ADP, and pH by using (31)P-magnetic resonance spectroscopy in 16 men and women (36.9 +/- 4.6 yr). The initial PCr resynthesis rate and time constant (T(c)) were used as indicators of mitochondrial respiration after brief (10-12 s) and exhaustive (1-4 min) dynamic knee extension exercise performed in placebo and creatine-supplemented conditions. The results show that the initial PCr resynthesis rate has a strong relationship with end-exercise PCr, Cr, and PCr/Cr (r > 0.80, P < 0.001), a moderate relationship with end-exercise ADP (r = 0.77, P < 0.001), and no relationship with end-exercise pH (r = -0.14, P = 0.34). The PCr T(c) was not as strongly related to PCr, Cr, PCr/Cr, and ADP (r < 0.77, P < 0.001-0.18) and was significantly influenced by end-exercise pH (r = -0.43, P < 0.01). These findings suggest that end-exercise PCr and Cr should be taken into consideration when PCr recovery kinetics is used as an indicator of mitochondrial respiration and that the initial PCr resynthesis rate is a more reliable indicator of mitochondrial respiration compared with the PCr T(c).  相似文献   

14.
Interest in creatine (Cr) as a nutritional supplement and ergogenic aid for athletes has surged over recent years. After cellular uptake, Cr is phosphorylated to phosphocreatine (PCr) by the creatine kinase (CK) reaction using ATP. At subcellular sites with high energy requirements, e.g. at the myofibrillar apparatus during muscle contraction, CK catalyzes the transphosphorylation of PCr to ADP to regenerate ATP, thus preventing a depletion of ATP levels. PCr is thus available as an immediate energy source, serving not only as an energy buffer but also as an energy transport vehicle. Ingestion of creatine increases intramuscular Cr, as well as PCr concentrations, and leads to exercise enhancement, especially in sprint performance. Additional benefits of Cr supplementation have also been noticed for high-intensity long-endurance tasks, e.g. shortening of recovery periods after physical exercise.The present article summarizes recent findings on the influence of Cr supplementation on energy metabolism, and introduces the Cr transporter protein (CreaT), responsible for uptake of Cr into cells, as one of the key-players for the multi-faceted regulation of cellular Cr homeostasis. Furthermore, it is suggested that patients with disturbances in Cr metabolism or with different neuro-muscular diseases may benefit from Cr supplementation as an adjuvant therapy to relieve or delay the onset of symptoms. Although it is still unclear how Cr biosynthesis and transport are regulated in health and disease, so far there are no reports of harmful side effects of Cr loading in humans. However, in this study, we report that chronic Cr supplementation in rats down-regulates in vivo the expression of the CreaT. In addition, we describe the presence of CreaT isoforms most likely generated by alternative splicing.  相似文献   

15.
We investigated whether the creatine kinase-catalyzed phosphate exchange between PCr and gamma ATP in vivo equilibrated with cellular substrates and products as predicted by in vitro kinetic properties of the enzyme, or was a function of ATPase activity as predicted by obligatory "creatine phosphate shuttle" concepts. A transient NMR spin-transfer method was developed, tested, and applied to resting and stimulated ex vivo muscle, the soleus, which is a cellularly homogeneous slow-twitch mammalian muscle, to measure creatine kinase kinetics. The forward and reverse unidirectional CK fluxes were equal, being 1.6 mM.s-1 in unstimulated muscle at 22 degrees C, and 2.7 mM.s-1 at 30 degrees C. The CK fluxes did not differ during steady-state stimulation conditions giving a 10-fold range of ATPase rates in which the ATP/PCr ratio increased from approximately 0.3 to 1.6. The observed kinetic behavior of CK activity in the muscle was that expected from the enzyme in vitro in a homogeneous solution only if account was taken of inhibition by an anion-stabilized quaternary dead-end enzyme complex: E.Cr.MgADP.anion. The CK fluxes in soleus were not a function of ATPase activity as predicted by obligatory phosphocreatine shuttle models for cellular energetics.  相似文献   

16.
A large part of the hexokinase activity of the rat brain 20,000g supernatant became mitochondrial bound when incubated with rat heart mitochondria which had been pretreated with glucose-6-phosphate. This binding was dependent on small-molecular compounds (as yet unidentified) of the brain supernatant. Divalent cations, spermine, and pentalysine strongly stimulated the binding of brain supernatant hexokinase to heart mitochondria. Inorganic phosphate, alpha-glycerophosphate, and fructose-1,6-diphosphate showed some stimulatory effect. No effect was observed with insulin or glucose. Mitochondria isolated from hearts of fasted rats had less specific hexokinase activity than mitochondria from fasted and then carbohydrate refed rats. This dietary treatment had no significant effect on the total heart hexokinase activity. Oligomycin did not inhibit the formation of creatine phosphate or glucose-6-phosphate by isolated rabbit heart mitochondria incubated in the presence of phosphoenolpyruvate and pyruvate kinase. However, the presence of creatine inhibited the formation of glucose-6-phosphate when the ATP/ADP ratio was low, indicating that creatine kinase has a greater access to ATP/ADP translocation than has hexokinase.  相似文献   

17.
Currently, considerable research activities are focussing on biochemical, physiological and pathological aspects of the creatine kinase (CK) — phosphorylcreatine (PCr) — creatine (Cr) system (for reviews see [1, 2]), but only little effort is directed towards a thorough investigation of Cr metabolism as a whole. However, a detailed knowledge of Cr metabolism is essential for a deeper understanding of bioenergetics in general and, for example, of the effects of muscular dystrophies, atrophies, CK deficiencies (e.g. in transgenic animals) or Cr analogues on the energy metabolism of the tissues involved. Therefore, the present article provides a short overview on the reactions and enzymes involved in Cr biosynthesis and degradation, on the organization and regulation of Cr metabolism within the body, as well as on the metabolic consequences of 3-guanidinopropionate (GPA) feeding which is known to induce a Cr deficiency in muscle. In addition, the phenotype of muscles depleted of Cr and PCr by GPA feeding is put into context with recent investigations on the muscle phenotype of gene knockout mice deficient in the cytosolic muscle-type M-CK.Abbreviations Cr creatine - Crn creatinine - PCr phosphorylcreatine - CK creatine kinase - M-CK cytosolic muscle type CK isoenzyme - Mi-CK mitochondrial CK isoenzyme - AGAT L-arginine: glycine amidinotransferase - GAMT S-adenosylmethionine: guanidinoacetate methyltransferase - Arg arginine - Met methionine - GPA guanidinopropionate=-guanidinopropionate - PGPA phosphorylated GPA - GBA 3-guanidinobutyrate=-guanidinobutyrate - CPEO chronic progressive external ophthalmoplegia  相似文献   

18.
Dystrophic chicken breast muscle mitochondria contain significantly less mitochondrial creatine kinase than normal breast muscle mitochondria. Breast muscle mitochondria from normal 16- to 40-day-old chickens contain approximately 80 units of mitochondrial creatine kinase per unit of succinate:INT (p-iodonitrotetrazolium violet) reductase, a mitochondrial marker, while dystrophic chicken breast muscle mitochondria contain 36-44 units. Normal chicken heart muscle mitochondria contain about 10% of the mitochondrial creatine kinase per unit of succinate:INT reductase as normal breast muscle mitochondria. The levels in heart muscle mitochondria from dystrophic chickens are not affected significantly. Evidence is presented which shows that the reduced level of mitochondrial creatine kinase in dystrophic breast muscle mitochondria is responsible for an altered creatine linked respiration. First, both normal and dystrophic breast muscle mitochondria respire with the same state 3 and state 4 respiration. Second, the post-ADP state 4 rate of respiration of normal breast muscle mitochondria in the presence of 20 mM creatine continues at the state 3 rate. However, the state 4 rate of dystrophic breast muscle mitochondria and mitochondria from other muscle types with a low level of mitochondrial creatine kinase, such as heart muscle and 5-day-old chicken breast muscle, is slower than the state 3 rate. Third, dystrophic breast mitochondria synthesize ATP at the same rate as normal breast muscle mitochondria but rates of creatine phosphate synthesis in 20-50 mM Pi are reduced significantly. Finally, increasing concentrations of Pi displace mitochondrial creatine kinase from mitoplasts of normal and dystrophic breast muscle mitochondria with the same apparent KD, indicating that the outer surface of the inner mitochondrial membrane and the mitochondrial creatine kinase from dystrophic muscle are not altered.  相似文献   

19.
The subcellular distribution of ATP, ADP, creatine phosphate and creatine was studied in normoxic control, isoprenaline-stimulated and potassium-arrested guinea-pig hearts as well as during ischemia and after reperfusion. The mitochondrial creatine phosphate/creatine ratio was closely correlated to the oxidative activity of the hearts. This was interpreted as an indication of a close coupling of mitochondrial creatine kinase to oxidative phosphorylation. To further investigate the functional coupling of mitochondrial creatine kinase to oxidative phosphorylation, rat or guinea-pig heart mitochondria were isolated and the mass action ratio of creatine kinase determined at active or inhibited oxidative phosphorylation or in the presence of high phosphate, conditions which are known to change the functional state of the mitochondrial enzyme. At active oxidative phosphorylation the mass action ratio was one-third of the equilibrium value whereas at inhibited oxidative phosphorylation (N2, oligomycin, carboxyatractyloside) or in the presence of high phosphate, the mass action ratio reached equilibrium values. These findings show that oxidative phosphorylation is essential for the regulation of the functional state of mitochondrial creatine kinase. The functional coupling of the mitochondrial creatine kinase and oxidative phosphorylation indicated from the correlation of mitochondrial creatine phosphate/creatine ratios with the oxidative activity of the heart in situ as well as from the deviation of the mass action ratio of the mitochondrial enzyme from creatine kinase equilibrium at active oxidative phosphorylation in isolated mitochondria is in accordance with the proposed operation of a creatine shuttle in heart tissue.  相似文献   

20.
The total creatine(TCr) pool of skeletal muscle is composed of creatine (Cr) andphosphocreatine (PCr). In resting skeletal muscle, the ratio ofPCr to TCr (PCr/TCr; PCr energy charge) is ~0.6-0.8, dependingon the fiber type. PCr/TCr is linked to the cellular free energy of ATPhydrolysis by the Cr kinase equilibrium. Dietary Cr supplementationincreases TCr in skeletal muscle. However, many previous studies havereported data indicating that PCr/TCr falls after supplementation,which would suggest that Cr supplementation alters the restingenergetic state of myocytes. This study investigated the effect of Crsupplementation on the energy phosphates of resting skeletal muscle.Male rats were fed either rodent chow (control) or chow supplementedwith 2% (wt/wt) Cr. After 2 wk on the diet, the gastrocnemius andsoleus muscles were freeze clamped and removed from anesthetizedanimals. Cr supplementation increased TCr, PCr, and Cr levels in thegastrocnemius by 20, 22, and 17%, respectively (P < 0.05). A numerical 6% higher mean soleus TCr in Cr-supplemented ratswas not statistically significant. All other energy phosphate concentrations, free energy of ATP hydrolysis, and PCr/TCr were notdifferent between the two groups in either muscle. We conclude that Crsupplementation simply increased TCr in fast-twitch rat skeletal musclebut did not otherwise alter resting cellular energetic state.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号