首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burgess, N.D. & Mlingwa, C.O.F. 2000. Evidence for altitudinal migration of forest birds between montane Eastern Arc and lowland forests in East Africa. Ostrich 71 (1 & 2): 184–190.

In this paper we assess the evidence for altitudinal movements of forest birds from the montane forests of the Eastern Arc mountains of East Africa to nearby lowland forest patches. For 34 montane species, including all the Eastern Arc endemics except Banded Green Sunbird Anthreptes rubritorques there is no evidence that they undertake seasonal movements to lower altitudes. An additional 26 montane species, of somewhat wider distribution, have been recorded at low (<500 m) altitudes during the cold/dry season (June to September). Most records of these montane birds at lower altitudes are from sites adjoining montane forest areas, although a few records are from lowland coastal forests at 100–240 km distance from montane areas. Only five of the 26 species (White-chested Alethe Alethe fulleborni, White-starred Forest Robin Pogonocichla stellata, Orange Ground Thrush Zoothera gurneyi, Evergreen Forest Warbler Bradypterus mariae and Barred Long-tailed Cuckoo Cercococcyx montanus) are regularly and commonly reported in the lowlands. They are also found in the lowlands in small numbers during the warm/wet season (October to February), when they may breed. The abundance of at least four, and probably more, of the forest birds with a more widespread distribution in the lowland and montane forests of East Africa declines greatly at high altitudes from the onset of the cold/wet season (February) and only increases again at the start of the warm/wet season (September). It is not known how far these species move as they cannot be easily separated from resident populations in lowland forests, and there are no ringing recoveries in different forests. Altitudinal migration of a proportion of the Eastern Arc avifauna is the most likely explanation for available data, although source-sink metapopulation theories may be helpful to explain the distributions of some species. As the movement of forest birds from the Eastern Arc to the lowland forests does not involve the rare endemics, they are of lower conservation concern, but the presence of montane and lowland forest may be important for the long-term survival of some more widely distributed forest species.  相似文献   

2.
A new scheme of altitudinal and latitudinal vegetation zonation is proposed for eastern Asia. The latitudinal patterns of mountain vegetation zonation show a clear boundary at ca. 20°–30° N. For the tropical mountains south of 20° N, the altitudinal series includes tropical lowland, tropical lower montane, and tropical upper montane zones. For the temperate mountains north of 30° N, the series includes temperate lowland, temperate lower montane, and temperate upper montane zones. The mountains located between 20° and 30° N show a transitional zonation pattern; the lower two zones are comparable to the lower two of the tropical zonation (tropical lowland and tropical lower montane), and the upper two zones are comparable to those of the temperate zonation (temperate lower montane and temperate upper montane). The tropical upper montane zone is not found north of 20°–30° N, while the tropical lower montane zone reaches down to sea level and constitutes the temperate lowland zone. Thus the zonation between 20° and 30° N includes tropical lowland, tropical lower montane/temperate lowland, temperate lower montane, and temperate upper montane zones. The latitudinal series of lowland rain forests follows the scheme of climatic division into tropical, subtropical/warm-temperate, cool-temperate and cold-temperate, with a shift of the respective life forms, evergreen, evergreen notophyllous, deciduous, and evergreen needle-leaved. The tropical lower montane forest can be correlated to the horizontal subtropical/ warm-temperate zone. The temperate altitudinal and latitudinal zonations above 30° N are correlated and show an inclined parallel pattern from high altitudes in the south to low altitudes down to sea level in the north.  相似文献   

3.
We combine information about the evolutionary history and distributional patterns of the genus Saintpaulia H. Wendl. (Gesneriaceae; ‘African violets’) to elucidate the factors and processes behind the accumulation of species in tropical montane areas of high biodiversity concentration. We find that high levels of biodiversity in the Eastern Arc Mountains are the result of pre-Quaternary speciation processes and environmental stability. Our results support the hypothesis that climatically stable mountaintops may have acted as climatic refugia for lowland lineages during the Pleistocene by preventing extinctions. In addition, we found evidence for the existence of lowland micro-refugia during the Pleistocene, which may explain the high species diversity of East African coastal forests. We discuss the conservation implications of the results in the context of future climate change.  相似文献   

4.
High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species-rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain-influenced and lowland Amazonian sister pairs inferred from a 756-gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 million years with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors do not differ between mountain-influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode.  相似文献   

5.
Increasing temperatures are predicted to have profound effects on montane ecosystems. In tropical forests, biotic attrition may reduce lowland diversity if losses of species due to upslope range shifts are not matched by influxes of warmer‐adapted species, either because there are none or their dispersal is impeded. Australian rainforests consist of a north–south chain of patches, broken by dry corridors that are barriers to the dispersal of rainforest species. These rainforests have repeatedly contracted and expanded during Quaternary glacial cycles. Many lowland rainforests are expansions since the Last Glacial Maximum and may, therefore, show a signal of historical biotic attrition. We surveyed ants from replicated sites along three rainforest elevational transects in eastern Australia spanning 200 to 1200 m a.s.l. and nearly 14° of latitude. We examined elevational patterns of ant diversity and if there was possible evidence of lowland biotic attrition. Each transect was in a different biogeographic region; the Australian Wet Tropics (16.3°S), the central Queensland coast (21.1°S) and subtropical south‐eastern Queensland (28.1°S). We calculated ant species density (mean species per site) and species richness (estimated number of species by incorporating site‐to‐site species turnover) within elevational bands. Ant species density showed no signal of lowland attrition and was high at low and mid‐elevations and declined only at high elevations at all transects. Similarly, estimated species richness showed no evidence of lowland attrition in the Wet Tropics and subtropical south‐east Queensland; species richness peaked at low elevations and declined monotonically with increasing elevation. Persistence of lowland rainforest refugia in the Wet Tropics during the Last Glacial Maximum and latitudinal range shifts of ants in subtropical rainforests during the Holocene climatic optimum may have counteracted lowland biotic attrition. In central Queensland, however, estimated richness was similar in the lowlands and mid‐elevations, and few ant species were indicative of lower elevations. This may reflect historical biotic attrition due perhaps to a lack of lowland glacial refugia and the isolation of this region by a dry forest barrier to the north.  相似文献   

6.
The Shimba Hills ecosystem along the south coast of Kenya is a key East African biodiversity hotspot.Historically, it is biogeographically assignable to the East African coastal biome. We examined the current Shimba Hills herpetofauna and their zoogeographical affinities to the coastal forests and nearby Eastern Arc Mountains biodiversity hotspots.The key studied sites included the Shimba Hills National Reserve, forest reserves, Kaya forests, and adjacent private land. Data on herpetofaunal richness were obtained from recent field surveys,literature, and specimens held at the National Museums of Kenya, Herpetology Section Collection,Nairobi. The Makadara, Mwele, and LongoMwagandi forests within the Shimba Hills National Reserve hosted the highest number of unique and rare species. Generally, the forest reserves and Kaya forests were important refuges for forestassociated species. On private land, Mukurumudzi Dam riparian areas were the best amphibian habitat and were host to three IUCN(Red List) EndangeredEN amphibian species, namely, Boulengerula changamwensis, Hyperolius rubrovermiculatus, and Afrixalus sylvaticus, as well as one snake species Elapsoidea nigra. Using herpetofauna as zoogeographic indicators, the Shimba Hills were determined to be at a crossroads between the coastal forests(13 endemic species) and the Eastern Arc Mountains(seven endemic species).Most of the Eastern Arc Mountains endemic species were from recent records, and thus more are likely to be found in the future. This 'hybrid' species richness pattern is attributable to the hilly topography of the Shimba Hills and their proximity to the Indian Ocean.This has contributed to the Shimba Hills being the richest herpetofauna area in Kenya, with a total of 89 and 38 reptile and amphibian species, respectively.Because of its unique zoogeography, the Shimba Hills ecosystem is undoubtedly a key biodiversity area for conservation investment.  相似文献   

7.
Large-bodied mammals are a rich and diversified faunal group in tropical rainforests. However, knowledge on community size and composition, and on species’ distribution and ecology remains often scant and inadequate against their chronic status of threats. We used camera trapping to detect mammals in the forests of the Eastern Arc Mountains (EAM) of Tanzania, a world renowned region for biodiversity comprised by a series of distinct and ancient mountain ranges partially covered in moist montane forest. We conducted surveys from 2003 to 2011 in eight of the 12 mountain blocks in Tanzania, and, through an overall sampling effort of 11,500 camera days, we detected 43 species. We normalized species richness and species’ detection events by effort, and used these metrics to assess the effect of habitat and human disturbance variables. We found that rarefied richness is positively affected by forest area at the block level, and that richness at forest patch level is also affected by forest area as well as surrounding human density (negative effect). For a subset of 17 species, we found consistent patterns of avoidance or tolerance of human disturbance and forest edges, and increased occurrence in areas at higher elevation, matching the historical forest loss that in most mountains occurred at lower elevation. Our study provides ecological insights that are novel for most species and sites, and reveals a general trend of negative impact of human disturbance on both community size and species’ relative abundance. Increased protection of the EAM forests in Tanzania is of urgent importance for the persistence of diversified mammal communities.  相似文献   

8.
The Eastern Arc Mountains are believed to support some of the oldest tropical forest in the world. The current distribution of this forest is highly fragmented due to a combination of long‐term effects of past changes in global climate and more recent deforestation. We sought to explore the hypothesized antiquity and long‐term isolation of the Eastern Arc montane forests based on an assessment of the geographical distribution and interspecies similarity of chloroplast DNA sequence variation in five forest trees. Data were used to investigate regional patterns of diversity and population structure based on intraspecific phylogenies, and results were interpreted against hypotheses on ecosystem age and connectivity. Regional diversity was high, with up to 22 chloroplast DNA haplotypes being recorded within a species across the sampled populations. Geographical concordance of genetic and geographic structure was weak to absent in all species and there was little similarity of genetic structure between species. Haplotype sharing between mountain blocks was extremely limited. The generally weak phylogeographical structure, in conjunction with high regional diversity and genetic uniqueness of individual mountain forests does not support the assumption of widespread genetic connectivity of the mountain forests, indicating instead a pattern of past isolation and ongoing diversification. Our findings substantially add to understanding patterns of diversity in this region and lend weight to calls to use more sophisticated biodiversity assessments when setting regional conservation and research funding priorities.  相似文献   

9.
Distributions, endemism and diversity among East African linyphiids are analysed and discussed in relation to other forest organisms and the environmental history of eastern African. A total of 231 species are reported from eastern Africa, of which 14 are confined to the Afroalpine region and 114 species to moist forests. Only 12 of the latter are widely distributed. The rest are only known from one or two localities. Information on habitats and distributions of all species is tabulated. Few species are shared between East African mountains and there are no detectable gradients of species diversity between mountains. There is, however, a gradient of decreasing species diversity from high latitudes to the Equator. Vicariance patterns are demonstrated for Elgonia, Ophrynia and Callitrichia in the Eastern Arc Mountains, Tanzania—areas that also hold the highest degree of endemism (> 80% on individual mountains) among linyphiids. The many endemic species on nearby mountains suggest that intermontane dispersal (ballooning) is rare or non-existent. There is no evidence for a distinction between highland and lowland linyphiid faunas, but altitudinal segregation of single species is demonstrated. The question of the reality of highland and lowland faunas cannot be solved by studying the altitudinal distribution of single species. Phylogenetic relationships must be taken into consideration to determine where sister-groups/species are located (lowland or highland).  相似文献   

10.
Ants were extracted in Winkler bags from sifted leaf litter sampled in arange of forest and woodland types in and around Mkomazi Game Reserve innorth-eastern Tanzania, including the Eastern Arc Mountains of South Pare andWest Usambara. A total of 87 ant species were recorded, of which 32.2% were onlyrecorded from montane forests (1400–1850 m altitude), 6.9%only from lowland forest (540–810 m), 19.5% only fromwoodland (300–1080 m), and 16.1% in all three forest types.Of the 28 species recorded only from montane forests, 12 species were only foundin the Mkomazi forests, four only in the Pares and seven species only in theUsambaras. Sites of similar altitude grouped together in a cluster analysis, andspecies richness decreased with an increase in altitude. The lowland forest andclosed woodland sites did not form distinct communities. To ensure preservationof ant species, forests from a full range of altitudes need to be conserved.This study confirms the status of the West Usambara forests as having a highlyendemic biota, and the critical need to adequately conserve the remainingvestiges of montane forest within Mkomazi Game Reserve.  相似文献   

11.
Abstract

Bryophyte biomass and diversity vary strongly with altitude in the tropics. Low abundance and low species numbers in lowland rain forests are most likely due to reduced diurnal activity times combined with high nocturnal respiration rates at high temperatures. This may exclude many montane species from the warm lowlands. However, an alternative hypothesis explains the observed pattern, namely a limited desiccation tolerance of montane species, precipitation being more concentrated but less frequent in most lowland forests compared to montane cloud forests. To test this hypothesis, we studied the desiccation tolerance of four montane and four lowland bryophyte species. The effects of prolonged drought were quantified with chlorophyll fluorescence (Fv/Fm) and the extent of electrolyte leakage. Both montane and lowland species survived dry periods of ≧80 days, which far exceeds the duration of dry periods in the wet lowland tropics. We can thus exclude intolerance to long dry spells as an explaination for the absence of the tested montane species in the lowlands. We should continue to focus on other mechanisms to explain the altitudinal gradient of bryophyte abundance and diversity in the tropics, in order to understand this pattern, as well as to predict future trends under climatic warming.  相似文献   

12.
Geographical patterns of altitudinal zonation, floristic composition, and structural features of tropical montane rain forests were examined along latitudinal gradients in south and east Asia. On equatorial mountains, the tropical montane rain forests occur above 1000 m. Toward middle latitudes, they come farther down and reach sea level at c. 35° N. Thus, the forests are equivalent to the subtropical rain forests of the latitudinal, horizontal zonation series. They exhibit gradual changes in floristic composition and structure along both altitudinal and latitudinal gradients. On equatorial mountains, they are divided into three types, i.e. tropical lower montane, upper montane, and subalpine forests. The three tree regeneration types, having emergent, sporadic and inverse-J type stem-diameter class frequency distributions, coexist in the lower montane forests, but the upper and subalpine forests display only the inverse-J type species with a few species of the sporadic type. Toward the northern latitudinal limit, the distinction between the three tropical montane forest zones in equatorial mountains becomes less clear. This can be explained by temperature conditions: on equatorial mountains, a temperature sum of 85° C months which controls the upper limit of the lower montane forests, and a coldest month mean temperature of-1° C which controls the evergreen broad-leaved trees, appear at c. 2500 and c. 4000 m respectively. The altitudinal range between 2500 m and 3800 m, which is the upper forest limit, is covered by upper montane and subalpine forests. On the other hand, at the latitudinal northern limit, the tropical upper montane and subalpine forests cannot exist because the above mentioned two temperature conditions occur at nearly the same point. Thus, at the northern latitudinal limit of the tropical montane forests, the three zones of equatorial mountains amalgamate into a single subtropical lowland forest community. This is due to the seasonal temperature climate in middle latitudes in, e.g., central Japan and central China.A part of this paper was presented as an oral presentation at the Vth International Congress of Ecology, Yokohama 23–30.8.1990.  相似文献   

13.
In February/March 1995 we collected land snails (including slugs) at 12 stations in eastern Tanzania. A total of 571 person-hours yielded 9174 snails assigned to 159 morpho-species. The richest two sites each (<4ha of uniform forest) had 50 species (Amboni Cave) and 48 species (near Amani, Usambaras), nearly as great as the most species-rich sites known in the world; sieving of litter and soil would probably yield more species. In lowland (coastal) forests, both diversity and endemism seemed to decrease from north to south. Most snail species were found within only one of four coastal or one montane geographic regions, indicating substantial regional endemism. Only one species (Achatina fulica) appeared in all five regions, and 84% of all other species were found in only one (61%) or two regions (23%). The predatory streptaxids comprised about half the species and a third of the individuals at the Usambara site, an extremely high ratio of carnivores. Small snails (< 5mm greatest adult shell dimension) – many of which are probably undescribed species – comprise a substantial proportion of Tanzanian molluscan diversity; more surveys are needed, especially because of human pressures on the few forest patches remaining.  相似文献   

14.

Background  

The Eastern Arc Mountains of Africa have become one of the focal systems with which to explore the patterns and mechanisms of diversification among montane species and populations. One unresolved question is the extent to which populations inhabiting montane forest interact with those of adjacent lowland forest abutting the coast of eastern Africa. The Tiny Greenbul (Phyllastephus debilis) represents the only described bird species within the Eastern Arc/coastal forest mosaic, which is polytypic across an altitudinal gradient: the subspecies albigula (green head) is distributed in the montane Usambara and Nguru Mountains whereas the subspecies rabai (grey head) is found in Tanzanian lowland and foothill forest. Using a combination of morphological and genetic data, we aim to establish if the pattern of morphological differentiation in the Tiny Greenbul (Phyllastrephus debilis) is the result of disruptive selection along an altitudinal gradient or a consequence of secondary contact following population expansion of two differentiated lineages.  相似文献   

15.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

16.
Melanoscirtes gen.n. is established within Karniellina. The members of this subtribe are small conocephaline bush crickets, confined to Africa. Melanoscirtes is erected on Phlesirtes kibonotensis, a species restricted to forest clearings and forest edge in the submontane and montane zones of Mt. Kilimanjaro. A subspecies, M. kibonotensis uguenoensis, is described from the North Pare mountains, a mountain range of the Eastern Arc adjacent to Mt. Kilimanjaro. Further species of Melanoscirtes occur on other mountain ranges of the northern branch of the Eastern Arc mountains of northern Tanzania and southern Kenya. The South Pare mountains harbour M. shengenae; the West Usambaras, M. usambarensis, and the Taita Hills, M. taitensis. All species and subspecies of Melanoscirtes exhibit a similar morphology and occupy analogous habitats on the respective mountains. The song patterns for all species found within this genus are very similar, and this, together with evidence from molecular data, suggests that allopatric speciation is the reason for the biogeographic pattern found in this genus. A key for the subspecies and species of Melanoscirtes is provided.  相似文献   

17.
Genetic variation in the expanding moss species Pogonatum dentatum was studied using intersimple sequence repeat (ISSR) markers. The genetic consequences of range expansion were studied by comparing source populations in a mountain area with populations from a recently colonized lowland area in Sweden. Indices of genetic variation show slightly lower number of alleles per locus in the lowlands and a similar gene diversity in both areas. Three of four lowland populations had evidence of a recently passed bottleneck. Considerably higher haplotype diversity was found in the recently colonized lowlands compared to source populations in the mountains. Patterns of allelic diversity suggest that P. dentatum experiences loss of genetic variation through founder effects and genetic drift when expanding its distribution range. Higher haplotypic diversity, less linkage disequilibrium, and fewer compatible loci indicate that sexual recombination is relatively more important in the lowlands compared to the mountains. A likely explanation is higher success of establishment from spores in the lowlands, while clonal propagation predominates in the mountains. Less genetic differentiation among lowland populations indicates more gene flow in the lowland area, involving more spores and/or fragments moving among populations.  相似文献   

18.
The Rubeho Mountains are a poorly studied mountain block within the Eastern Arc Mountain range of Tanzania and Kenya. We present the results of field surveys for vertebrates undertaken during the period February 2000 to December 2002. One hundred and twelve man‐days of surveys recorded 35 mammal, 107 bird, ten reptile and nine amphibian species, including eleven species endemic and seven near‐endemic to the Eastern Arc, with one species new to science. Of these, nine species are regarded as threatened with extinction. The new survey data significantly elevate the biological importance of the Rubehos within the Eastern Arc range. Further analyses highlight how the overall biological ranking of the Eastern Arc mountain blocks is correlated with survey effort. The majority of the forest habitat on the Rubehos is contained in three national (Central Government) Forest Reserves (Mang'alisa, Mafwomero and Ukwiva). Our surveys recorded high levels of disturbance to the forest habitat in all three reserves and we draw attention to the need for additional conservation investment in this area.  相似文献   

19.
The montane forests of northern Mozambique’s isolated massifs are inhabited by numerous range-restricted and threatened bird species, but until recently were extremely little-known. We report on a first avifaunal survey of the isolated montane habitats of Mt Mecula (1 442 m), Niassa National Reserve, notable as the only currently protected montane area in northern Mozambique. Mount Mecula’s moist forest is small (approximately 136 ha in total) and patchy, and although known botanically to have some montane affinities, was found to support an avifauna more typical of riparian forests of medium to low altitude. The only montane forest species recorded was Lemon Dove Aplopelia larvata. Other montane elements included Vincent’s Bunting Emberiza (capensis) vincenti, one of six species recorded new to the Niassa National Reserve list. Overall, it appears that despite its intermediate location, Mt Mecula does not represent a biogeographical ‘stepping stone’ for montane forest bird species. This probably owes to its remoteness from the Eastern Arc Mountains of Tanzania to the north and the massifs of other parts of northern Mozambique, to the south and west.  相似文献   

20.
Forest fragmentation can lead to extinctions of some species at local levels and is eroding bird diversity at an increasing rate. While there is information on the distribution of forest bird species in most of the Eastern Arc Mountain forests, some forests, particularly the smaller fragments, have not been adequately surveyed. Using mist netting we surveyed avifauna in some of the poorly known forests (12.5–25 ha) located 320–1 300 m above sea level in the Uluguru Mountains in order to address their conservation importance. Proportions of seasonal altitudinal migrants were significantly higher in these lower-altitude forests during the cold season than the hot season. The results suggest that these forests support bird species of conservation concern, most of which are forest dependent and some of which make seasonal movements between high-altitude montane forests and lowland/ foothill forests. These forests are important cold-season habitat of altitudinal migrants and further fragmentation should be halted as a matter of regional and global priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号