首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Penicillin G amidase from Providencia rettgeri is a heterodimer of 92 kDa. We have previously expressed the Pr. rettgeri pac gene coding for this enzyme in Saccharomyces cerevisiae, and now we report the expression and characterization in the methylotrophic yeast Pichia pastoris. The recombinant catalytically active enzyme (rPAC(Pr)) was secreted from shake flask-grown P. pastoris cells into the medium at a level of approximately 0.18 U ml(-1). This yield of rPAC(Pr) was higher, by two orders of magnitude, than that obtained using a single-copy expression plasmid in S. cerevisiae. In addition, the secreted recombinant enzyme was entirely N-glycosylated. The recombinant PAC(Pr) was further characterized in terms of specific activity, kinetic parameters and thermostability. Except the significantly higher thermostability of the glycosylated rPAC(Pr) produced in P. pastoris, the other parameters were very similar to those of the corresponding non-glycosylated enzymes produced in bacteria or in S. cerevisiae. The higher thermostability of this recombinant enzyme has a clear industrial advantage.  相似文献   

2.
Penicillin G amidase (PGA) is one of the most recognised biocatalysts because of its critical application in the antibiotic industry. Herein, the additive effects involved in transesterification catalysed by PGA are explored in detail using a combination of experimental analysis and theoretical modelling. The transesterification ability of PGA is experimentally determined with 17 N-containing compounds as additives, and, on this basis, a series of quantitative structure–activity relationship (QSAR) models are developed from various physicochemical parameters characterising structural variation over the additives. The resulting models exhibit both good stability and predictive power, from which five most important properties that highlight structural basis and reaction mechanism underlying the transesterification are extracted, revealing that the topological property and electrostatic profile of additives exert a significant effect on reaction yield; the charge distribution around additive molecules is the most significant factor controlling reaction yield, and then the topological structure. Furthermore, it is inferred that the additive imidazole might constitute the catalytic triad of Ser, Glu or Asp involved in PGA active site, which appears similar to lipase, rendering PGA with the catalytic ability of transesterfication. The study highlights the potential application of QSAR methodology in the field of enzymatic regulator design.  相似文献   

3.
Summary The penicillin G amidase (PGA) activity of a parent strain of E. coli (PCSIR-102) was enhanced by chemical mutagenization with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). After screening and optimization, a penicillinase deficient mutant (MNNG-37) was isolated and found effective for the production of penicillin G amidase as compared to the parent strain of E. coli (PCSIR-102). Penicillin G amidase activity of MNNG-37 appeared during an early stage of growth, whereas PCSIR-102 did not exhibit PGA activity due to the presence of penicillinase enzyme which inhibits the activity of enzyme PGA. However, MNNG-37 gave a three-fold increase in enzyme activity (231 IU mg−1) as compared to PCSIR-102 (77 IU mg−1) in medium containing 0.15 and 0.1% concentrations of phenylacetic acid, respectively which was added after 6 h of cultivation. The difference in K m values of the enzyme produced by parent strain PCSIR-102 (0.26 mM) and mutant strain MNNG-37 (0.20 mM) is significant (1.3-fold increase in K m value) which may show the superiority of the latter in terms of better enzyme properties.  相似文献   

4.
We have previously shown that a single-subunit thermosome from Methanocaldococcus jannaschii (rTHS) can stabilize enzymes in semi-aqueous media (Bergeron et al., 2008b). In the present study, rTHS was used to stabilize penicillin amidase (PGA) in methanol-water mixtures. Including methanol in the reaction medium for amoxicillin synthesis can suppress unwanted hydrolysis reactions but inactivate PGA. Inactivation and reactivation pathways proposed for PGA illustrate the predictability of enzyme stabilization by rTHS in co-solvents. Calcium was necessary for reversible dissociation of the two PGA subunits in methanol-water and the presence of calcium resulted in an enhancement of chaperone-assisted stabilization. rTHS also acted as a stabilizer in the enzymatic synthesis of the beta-lactam antibiotic amoxicillin. rTHS stabilized PGA, increasing its half-life in 35% methanol by fivefold at 37 degrees C. Stabilization by rTHS was enhanced but did not require the presence of ATP. Including rTHS in fed-batch reactions performed in methanol-water resulted in nearly 4 times more amoxicillin than when the reaction was run without rTHS, and over threefold higher selectivity towards amoxicillin synthesis compared to aqueous conditions without rTHS. The thermosome and other thermophilic chaperones may thus be generally useful for stabilizing enzymes in their soluble form and expanding the range of conditions suitable for biocatalysis.  相似文献   

5.
We investigated the effects of the lyophilisation medium (enzyme plus buffer salt and additives) and of water activity (a(w)) on the catalytic properties of lipase from Chromobacterium viscosum (lipase CV) in organic solvents; catalysis of ester and lactone synthesis were compared and, despite the similarities of the reactive groups involved in these reactions, some interesting differences were observed. Including 2-[N-morpholino]ethanesulfonic acid (MES) buffer in the lyophilisation medium of lipase CV increased its catalytic activity in transesterification and lactonisation, although the buffer salt requirement for maximal activity differed between the two reactions. Sorbitol, glucose, lactose, 18-crown-6 (crown ether 18-C-6), beta-cyclodextrin and bovine serum albumin were employed as alternative additives in the transesterification reaction, but were not as effective as MES buffer. Salt hydrates were used to investigate the effect of a(w) on esterification and lactonisation reactions catalysed by lipase CV. The maximum rate of hexadecanolide synthesis in toluene occurred at a(w) = 0.48. The optimum a(w) for the transesterification reaction in heptane/alcohol mixtures depended on the alcohol substrate employed (1-heptanol, 2-heptanol, or 3-methyl-3-hexanol) but not on the acyl donor (p-NP acetate or caprylate). The optimum a(w) values for both reactions were unchanged when a common solvent system (toluene/1-heptanol) was employed, indicating that the dependence of enzyme activity on a(w) is an intrinsic property of the enzyme-catalysed reaction and not a function of the solvent or other additives.  相似文献   

6.
The present study evaluated the influence of water activity and lactose concentration on the synthesis of galactooligosaccharides (GOS), by means of a hyperthermophilic beta-glycosidase in an organic system. The production of GOS gradually grew as water activity increased in the reaction system; later, their synthesis decreased as water activity increased. The authors used the response surface methodology to study how different water activities and different concentrations of lactose influenced the synthesis of GOS and their length. In every case, the variable that proved to have the greatest effect on GOS synthesis was water activity. Maximum GOS3 synthesis was reached at a water activity interval of 0.44-0.57, with lactose concentrations of 0.06%-0.1%, while GOS4 and GOS5 maxima were reached at water activity intervals of 0.47-0.57 and 0.49-0.60, respectively. The research showed that higher water activity was required to synthesize GOS of greater length. Synthesis of GOS would then depend on the flexibility of the enzyme, which in turn would depend on water activity of the reaction system. This hypothesis was supported by experiments in which the reaction temperature was modified in order to change the flexibility of the enzyme, thus leading to longer GOS.  相似文献   

7.
8.
A variety of alkyl and aryl glycosides were investigated as substrates for almond β-glucosidase catalysed synthesis of hexyl-β- -glycosides in low aqueous hexanol media. The rate-limiting step in the organic media was determined to be the glycosylation of the enzyme. The kinetic constants Vmax, Km (glycosyl donor) and Vmax/Km were all influenced by the water activity and they all increased in value with increasing water activity. The increase in Vmax/Km was mainly determined by the increase in Vmax and a plot of log(Vmax/Km) versus water activity resulted in a straight line with similar slopes for all glycosides but with different absolute values and thus the most reactive substrate p-nitrophenyl glucoside was the best one in the entire water activity range studied (0.53–0.96). The preference for the two competing acceptors, hexanol and water, was not affected by the aglycon part of the glucoside. Surprisingly, the ratio between trans glycosylation and hydrolysis increased with increasing water activity. A decrease in water activity caused an increase in equilibrium yield of hexyl glycoside, as expected, but was not beneficial for the kinetically controlled yield.  相似文献   

9.
The incorporation of radioactive N-acetylglucosamine into murein and lipopolysaccharide of synchronized cells of Escherichia coli K 12 was followed over 100 min in the presence of antibiotics. At 20 min intervals cell walls were prepared. Lipopolysaccharide and murein sacculi were isolated and the radioactivity was quantified in both polymers. Labelled, newly synthesized murein was characterized according to murein subunits linked to lipoprotein, and the degree of crosslinkage. Furthermore, murein subunits containing anhydromuramic acid were determined, permitting the calculation of the average glycan chain length. The results indicated that penicillin G at 30 g/ml stimulated the incorporation of new murein subunits into sacculi followed by a sudden increase in lipopolysaccharide incorporation into the outer membrane. The degree of crosslinkage in murein synthesized in the presence of 30 g/ml penicillin G was higher than in the control, and almost twice as high as in murein synthesized in the presence of 20 g/ml nalidixic acid. Both antibiotics inhibited cell division at the concentrations indicated. Murein synthesized in the presence of 2 g/ml mecillinam also showed higher crosslinkage. However, about twice as much anhydromuramic acid-containing subunits were observed as in the control. At the same time lipopolysaccharide incorporation into the outer membrane was stimulated two- to three-fold.Abbreviation GlcNAc N-acetylglucosamine  相似文献   

10.
The effects of organic solvents on the penicillin acylase-catalyzed, kinetically controlled synthesis of cefazolin have been examined in various water–solvent mixtures. In the presence of water-miscible solvents, the initial rate and maximum yield of cefazolin (CEZ) synthesis reaction were found to be reduced. The extent of inhibition was increased with increasing hydrophobicity of the solvent in the reaction mixtures. Enzymatic synthesis of cefazolin was also carried out in the water–solvent biphasic systems. Among the water-immiscible solvents tested, ethyl acetate (EtOAc) and carbon tetrachloride (CCl4) were found to markedly improve the yield of cefazolin in the two-phase reaction system. Our study showed that the enhancement effect of EtOAc and CCl4 on the synthetic yield was mainly caused by a reduction of the hydrolysis of acyl donor and product in the two-phase system rather than extraction of the product into the solvent phase.  相似文献   

11.
Methanogenic activity in thermophilic, anaerobic reactors was determined by comparing the amount of methane generated in single- and two-stage systems with the size of the methanogenic population, as determined by microscopy. The methanogenic activities were 2.71 × 10–9 ml methane cell–1 d–1 and 1.10 × 10–9 ml methane cell–1 d–1 for 10 and 4 days of the hydraulic retention time (HRT), in the single-stage system. In the two-stage system, 7.49 × 10–9 ml methane cell–1 d–1 in the acidogenic reactor and 1.56 × 10–9 ml methane cell–1 d–1 in the methanogenic reactor for 4 days of the HRT. A high correlation was evident between the methane production and methanogenic population [0.1354 ln(x) – 2.1375](R 2 0.8619).  相似文献   

12.
A combinatorial screening strategy was adopted for the development of a suitable medium for enhanced biosurfactant production by a marine strain. As a result, a modified marine medium (MMM) was developed, which contained urea and strontium chloride besides other salts important for the growth of marine bacteria. This medium supported growth, evident from a higher maximum growth rate value of 0.42 h(-1) and an enhanced biosurfactant production of 2.58 g/L. The critical micelle concentration (CMC) was determined for the biosurfactants obtained from all tested media combinations. The biosurfactant produced with this medium was stable at high temperature (100 °C), a wide range of pH (5-11) and salt concentration of 5-35%. The emulsifying activity and stability of the biosurfactant obtained using MMM was better than the biosurfactant obtained using conventional media. This biosurfactant with improved physiochemical properties is suitable for a wide range of applications in industry and for marine environmental cleaning.  相似文献   

13.
In this paper, we present the detailed synthetic protocol and characterization of Fmoc-Lys(Pac)-OH, its use for the preparation of octapeptides H-Gly-Phe-Tyr-N-MePhe-Thr-Lys(Pac)-Pro-Thr-OH and H-Gly-Phe-Phe-His-Thr-Pro-Lys(Pac)-Thr-OH by solid-phase synthesis, trypsin-catalyzed condensation of these octapeptides with desoctapeptide(B23-B30)-insulin, and penicillin G acylase catalyzed cleavage of phenylacetyl (Pac) group from Nepsilon-amino group of lysine to give novel insulin analogs [TyrB25, N-MePheB26,LysB28,ProB29]-insulin and [HisB26]-insulin. These new analogs display 4 and 78% binding affinity respectively to insulin receptor in rat adipose membranes.  相似文献   

14.
The incorporation of caproic acid in the sn-1 position of phosphatidylcholine (PC) catalyzed by lipase from Rhizopus oryzae was investigated in a water activity-controlled organic medium. The reaction was carried out either as esterification or transesterification. A comparison between these two reaction modes was made with regard to product yield, product purity, reaction time, and byproduct formation as a consequence of acyl migration. The yield in the esterification and transesterification reaction was the same under identical conditions. The highest yield (78%) was obtained at a water activity (a(w)) of 0.11 and a caproic acid concentration of 0.8 M. The reaction time was shorter in the esterification reaction than in the transesterification reaction. The difference in reaction time was especially pronounced at low water activities and high fatty acid concentrations. The loss in yield due to acyl migration and consequent enzymatic side reactions was around 16% under a wide range of conditions. The incorporation of a fatty acid in the sn-1 position of PC proved to be thermodynamically much more favorable than the incorporation of a fatty acid in the sn-2 position.  相似文献   

15.
A dynamic water and activity model was developed to assess how efficiently lichens can exploit in situ rain and humid air. The capacity to rehydrate and activate photosynthesis [i.e. photosystem II (PSII)] by these water sources was compared among four hydrophilic and one generalist epiphytic lichen. Hydration status, potential (instant activation) and realized (delayed activation) day‐light activity were simulated using a model based on species‐specific hydration, PSII activation characteristics and in situ water content for Platismatia norvegica in three microclimatic scenarios. The results showed that delayed PSII activation could have profound effects on lichens' ability to exploit environmental water sources. During rain, realized activity was reduced by 19, 34 and 56% compared to simulations assuming instant activation for three hydrophilic lichens in the driest microclimate. During humid air, the reduction was 81% for the most extreme species and scenario, because of slow hydration and low equilibrium water content. Many and brief hydration events may thus hamper species with slow activation and fast desiccation kinetics. No evidence of compensation by a ‘water‐holding’ morphology was observed among studied species. The developed model may provide a tool for identifying suitable habitats for long‐term persistence of lichens with physiological constraints.  相似文献   

16.
Summary The success of in vitro culture is related to several factors. Beside factors associated with the plant material or the medium composition, the physicochemical characteristics of gelled media can play an important role. In this paper, the latter aspect has been considered and the nature of agar powders has been investigated. Moreover, the process of gel formation for three different media and the availability of water and minerals for the corresponding gels have been studied. Analysis of agar powders showed that they can contain different amounts of impurities and the dialysis of these powders suggested that the impurities might be available to the tissues. Thermal analysis on the hygroscopic properties of the agar brands suggest the importance of these data to obtain comparable and reproducible gelled media. The study on the process of formation of gelled media indicates that there is a critical temperature Tss which can be used to control the gel processing. In fact, at this temperature, agar powders in water transform into a sol status through a rapid shift of electrical conductivity. Water potential of the medium, water loss from gels over the culture period, and the ease of releasing liquid from gels under pressure were shown to be different for different agar brands. A different availability of water and minerals in Murashige and Skoog medium was deduced from the gels prepared with three agar brands (Oxoid, Merck, and Roth).  相似文献   

17.
Food concentration (0.5 × 103 – 5 × 105 Scenedesmus cells m1–1) significant influenced the somatic growth, maturation and survivorship ofS. proboscideus larvae. A density of 5 × 104 cells m1–1 was optimal for early larval stages. Of four temperature tested (20–35 °C), 30 °C resulted in the best growth and survival. Maturation time was inversely related to temperature, and was size- rather that age-dependent. Larvae were tolerant of a wide conductivity range, but optimal growth and survival were observed at 260 µS cm–1. Nitrate-Nitrogen (NO2-N) caused a larval mortality of 50% after 24 h at 0.58 mg1–1.  相似文献   

18.
The effects of calcium ions (Ca2+) on the stability of artichoke (Cynara scolymus L.) peroxidase (AKPC) have been studied. The thermal stability of AKPC was improved by the addition of Ca2+; the melting temperature increased by 20 °C and the deactivation energy by 26 kJ mol−1. AKPC was stable in a selection of organic solvents but was less active with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) than under aqueous conditions. Ca2+-free AKPC retained more activity in the presence of organic solvents due to its better maintenance of the rate of compound I formation with hydrogen peroxide (H2O2) compared to AKPC-Ca2+. AKPC retained at least 75% activity over 24 h in the pH range 3.0–10.5 and about 50% over 1 month at pH 7.0 or 5.5, irrespective of the Ca2+ content. AKPC-Ca2+ was considerably more resistant to inactivation by H2O2 than Ca2+-free AKPC suggesting that the presence of Ca2+ boosts turnover under oxidizing conditions. AKPC has been applied as an alternative to horseradish peroxidase (HRP) in glucose concentration assays; the presence of Ca2+ or of the Ca2+ chelating agent ethylenediaminetetraacetic acid made no difference to the final result. The possibility is discussed that addition and removal of a labile Ca2+ from AKPC could be used to control enzyme activity both in vivo and in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号