首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jared SR  Rao JP 《Zoological science》2011,28(12):916-921
The aim of the present study is to study whether the presence of K(+) in bathing media is required for the action of ADH to the ionic transport across the skin in the frog species Rana hexadactyla. lonic transport was measured as transepithelial potential difference (TEPD) and short circuit current (SCC) by using an indigenously developed computer based voltage-clamp technique. Addition of ADH (40 nM) on the serosal side significantly increased the TEPD and SCC with Normal Ringer (NR) on both sides. ADH had no effect subsequent to amiloride (100 μM) pre-treatment, which confirmed the ADH-induced Na(+) transport. Chloride also has a significant role in the development of TEPD. To determine the role of K(+), Potassium-free Ringer (KFR) was placed on both sides; addition of ADH had no effect consequently. Further experiments were carried out to find out which side of K(+) was required for the action of ADH. There was a lack of ADH effect with apical NR and serosal KFR, demonstrating that serosal K(+) is essential to activate Na(+), K(+)- ATPase. Similarly, the ADH effect was lacking with apical KFR and serosal NR that was the novel finding of this study. Due to the concentration gradient, the K(+) was secreted from serosal side to apical side through barium (1 mM) blockable K(+) channel. This study provides evidence that serosal as well as apical K(+) are necessary for the action of ADH.  相似文献   

2.
The volume of individual cells in intact frog urinary bladders was determined by quantitative microscopy and changes in volume were used to monitor the movement of solute across the basolateral membrane. When exposed to a serosal hyposmotic solution, the cells swell as expected for an osmometer, but then regulate their volume back to near control in a process that involves the loss of KCl. We show here that volume regulation is abolished by Ba++, which suggests that KCl movements are mediated by conductive channels for both ions. Volume regulation is also inhibited by removing Ca++ from the serosal perfusate, which suggests that the channels are activated by this cation. Previously, amiloride was observed to inhibit volume regulation: in this study, amiloride-inhibited, hyposmotically swollen cells lost volume when the Ca++ ionophore A23187 was added to Ca++-replete media. We attempted to effect volume changes under isosmotic conditions by suddenly inhibiting Na+ entry across the apical membrane with amiloride, or Na+ exit across the basolateral membrane with ouabain. Neither of these Na+ transport inhibitors produced the expected results. Amiloride, instead of causing a decrease in cell volume, had no effect, and ouabain, instead of causing cell swelling, caused cell shrinkage. However, increasing cell Ca++ with A23187, in both the absence and presence of amiloride, caused cells to lose volume, and Ca++-free Ringer's solution (serosal perfusate only) caused ouabain-blocked cells to swell. Finally, again under isosmotic conditions, removal of Na+ from the serosal perfusate caused a loss of volume from cells exposed to amiloride. These results strongly suggest that intracellular Ca++ mediates cell volume regulation by exerting a negative control on apical membrane Na+ permeability and a positive control on basolateral membrane K+ permeability. They also are compatible with the existence of a basolateral Na+/Ca++ exchanger.  相似文献   

3.
H+ extrusion by the isolated skins of two amphibia, Rana ridibunda and Bufo bufo, was studied in order to test for the presence of exchange mechanisms of the type Na+/H+ and Cl-/HCO3-, which have been described in several epithelial structures. The preparations were mounted in chambers of the Ussing type, so that the short-circuit current could be used as a function of Na+ transport and the pH-stat techinique was utilize to determine the rates of H+ extrusion under different experimental conditions. The conditions were either the withdrawal of the ions intervening the mentioned exchanges (Cl- or Na+), or the addition of drugs with well-known effects on Na+ up-take and transport (antidiuretic hormone and amiloride). In the frog skin, H+ excretion was detected in solutions containing either Cl- or SO4-2-, with identical rates. Again, Na+ substitution by Mg-2+ had no effect on H+ excretion rates, neither did the suppression of Na+ influx by amiloride or its stimulation by antidiuretic hormone. These experiments were repeated with similar results in gland-free preparations of the epidermis of frog skin separated from the corion by the action of collagenase. Experiments in toad skin that H+ excretion could not be detected whan Cl- was present in the outer medium, but became apparent if an impermant anion, SO4-2-, was used. This observation is compatible with the existence of an exchange mechanism of the type Cl-/HCO3-. Secondly, in these preparations H+ extrusion increased after stimulation with antidiuretic hormone and decreased when amiloride was used or when Na+ was substituted by Mg+, suggesting that a least a fraction of the total H+ efflux is linked to Na+ influx. In the isolated frog skin this mechanism does not seem to be operative.  相似文献   

4.
1. The Na+ uptake in the isolated from skin of Rana esculenta was measured by the short-circuit current (Isc). Uranyl ions increase at pH 5.5 the Isc up to 200% at concentrations of 10 mM. The half-maximal value for this effect is at about 1 mM uranyl salt. 2. The effect is (a) specific for the Na+-selective membrane, (b) fully reversible. No stimulation can be seen in presence of 1 mM H+ or 0.1 mM amiloride. 3. The decrease of the sodium permeability of the apical membrane (PNa), normally induced by increasing concentrations of Na+ in the mucosal solution, %Na]o, is partially prevented by uranyl ions. The apparent Michaelis constant of the saturable Na+ uptake is shifted to much higher values. 4. A comparison between the uranyl effect and similar effects of the other drugs leads to the conclusion that uranyl ions might act in a polar hydrophobic environment, possibly by combining with phosphate groups (of phospholipids), and, thus, enhancing Na+ permeability by changes in tertiary structure near each Na channel. The interaction of mucosal Na+ with their receptor, normally triggering the [Na]o-dependent decrease of PNa, is thought to be diminished by uranyl association in a neighbouring region, causing a noncompetitive stimulation of the Na+ translocation though the apical frog skin membrane.  相似文献   

5.
Cadmium ions applied to either (outer or inner) surface of the isolated toad skin dose-dependently increased the short-circuit current (SCC), the potential difference (V) and the active sodium conductance (G(Na)) in the concentration range 0.07-0.50mM. Maximal stimulatory effect was over 30% with an EC(50) of about 0.1mM. The effect of the highest concentration used (0.75mM) decreased considerably, and when it was applied to the inner surface (10 experiments), induced between 30% and 40% inhibition of the electric parameters in four experiments. Pretreatment with amiloride inverted the stimulatory effect of externally applied Cd(2+), suggesting competitive action on the apical Na(+) channel. The effect of noradrenaline (NA) was increased after outer application of Cd(2+) and decreased after inner application of the metal: the latter effect might be due to cadmium inhibition of the activity of Na(+),K(+)-ATPase. On the other hand, pretreatment with amiloride was followed by partial although transient reversal of its effects by serosal Cd(2+), which might be explained by action of cadmium on cytoplasmic lysine residues concerned with Na(+) channel gating. The amiloride test showed that the increment of the electric parameters was due principally to stimulation of the driving potential for Na(+) (V-E(Na(+))) and that inhibition was accompanied by a reduction in the V-E(Na(+)) and by a significant decrease in skin resistance indicating possible disruption of membrane or cell integrity. These data are in favor of the possibility that externally applied Cd(2+) activates toad skin ion transport, partly by increasing apical sodium conductance and also by stimulating the V-E(Na(+)), and that internally applied Cd(2+), with easier access to membrane and cellular constituents, may inhibit the sodium pump.  相似文献   

6.
Whole skins and isolated epithelia were bathed with isotonic media (congruent to 244 mOsm) containing sucrose or glucose. The serosal osmolality was intermittently reduced (congruent to 137 mOsm) by removing the nonelectrolyte. Transepithelial and intracellular electrophysiological parameters were monitored while serosal osmolality was changed. Serosal hypotonicity increased the short-circuit current (ISC) and the basolateral conductance, hyperpolarized the apical membrane (psi mc), and increased the intracellular Na+ concentration. The increases in apical conductance and apical Na+ permeability (measured from Goldman fits of the relationship between amiloride-sensitive current and psi mc) were not statistically significant. To verify that the osmotically induced changes in ISC were mediated primarily at the basolateral membrane, the basolateral membrane potential of the experimental area was clamped close to 0 mV by replacing the serosal Na+ with K+ in Cl--free media. The adjoining control area was exposed to serosal Na+. Serosal hypotonicity produced a sustained stimulation of ISC across the control, but not across the adjoining depolarized tissue area. The current results support the concept that hypotonic cell swelling increases Na+ transport across frog skin epithelium by increasing the basolateral K+ permeability, hyperpolarizing the apical membrane, and increasing the electrical driving force for apical Na+ entry.  相似文献   

7.
1. 1-5 mM n-hexanol added to the outer (mucosal) medium of isolated skin of the frog Rana temporaria increases the short circuit current (Isc) across it. 2. This effect shows a saturable dependency on the outer sodium concentration, also when NaCl is replaced by Na2SO4. 3. n-Hexanol at a concentration of 1 mM, and cold acclimation of the frogs, which increases the fluidity of epidermal cell membranes, do not affect the sensitivity of Isc to the inhibiting effect of amiloride. 4. n-Hexanol at a concentration (5 mM) which causes a fluidization of cell membrane preparations from isolated frog epidermis also increases the sensitivity of Isc to amiloride. 5. The effects of low concentrations of n-hexanol and of cold acclimation probably depend on an increase of the permeability of apical membranes of epidermal cells to sodium caused by membrane fluidization. At higher concentrations of n-hexanol, a further disordering of the membrane structure occurs with a better access of amiloride to its action sites.  相似文献   

8.
We have compared the response of proton and water transport to oxytocin treatment in isolated frog skin and urinary bladder epithelia to provide further insights into the nature of water flow and H+ flux across individual apical and basolateral cell membranes. In isolated spontaneous sodium-transporting frog skin epithelia, lowering the pH of the apical solution from 7.4 to 6.4, 5.5, or 4.5 produced a fall in pHi in principal cells which was completely blocked by amiloride (50 microM), indicating that apical Na+ channels are permeable to protons. When sodium transport was blocked by amiloride, the H+ permeability of the apical membranes of principal cells was negligible but increased dramatically after treatment with antidiuretic hormone (ADH). In the latter condition, lowering the pH of the apical solution caused a voltage-dependent intracellular acidification, accompanied by membrane depolarization, and an increase in membrane conductance and transepithelial current. These effects were inhibited by adding Hg2+ (100 microM) or dicyclohexylcarbodiimide (DCCD, 10(-5) M) to the apical bath. Net titratable H+ flux across frog skin was increased from 30 +/- 8 to 115 +/- 18 neq.h-1.cm-2 (n = 8) after oxytocin treatment (at apical pH 5.5 and serosal pH 7.4) and was completely inhibited by DCCD (10(-5) M). The basolateral membranes of the principal cells in frog skin epithelium were found to be spontaneously permeable to H+ and passive electrogenic H+ transport across this membrane was not affected by oxytocin. Lowering the pH of the basolateral bathing solution (pHb) produced an intracellular acidification and membrane depolarization (and an increase in conductance when the normal dominant K+ conductance of this membrane was abolished by Ba2+ 1 mM). These effects of low pHb were blocked by micromolar concentrations of heavy metals (Zn2+, Ni2+, Co2+, Cd2+, and Hg2+). Lowering pHb in the presence of oxytocin (50 mU/ml) produced a transepithelial current (3 microA.cm-2 at pHb 5.5) which was blocked by 100 microM of Hg2+, Zn2+, or Ni2+ at the basolateral side, and by DCCD (10(-5) M) or Hg2+ (100 microM) from the apical side. The net hydroosmotic water flux (JH2O) induced by oxytocin in frog bladder sacs was blocked by inhibitors of H(+)-adenosine triphosphatase (ATPase). Diethylstilbestrol (DES 10(-5) M), oligomycin (10(-8) M), and DCCD (10(-5) M) prevented JH2O when present in the lumen. These effects cannot be attributed to inhibition of metabolism since cyanide (10(-4) M), or 2-deoxyglucose (10(-3) M) had no effect on JH2O.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Bernick EP  Stiffler DF 《Peptides》2000,21(6):779-783
A possible role for the peptide hormone guanylin was investigated in frog skin (Rana pipiens) epithelium. Sodium and chloride fluxes in response to this peptide were evaluated in Ussing-type chambers. Net and unidirectional Na(+) fluxes were measured by using (22)Na(+) and atomic absorption analysis of total [Na(+)], whereas net Cl(-) fluxes were measured by using electrometric titration for [Cl(-)]. Mucosal application of guanylin (0.5-2.0 micromol/l) caused marked increases in serosal to mucosal net flux and efflux of Na(+). Serosal application of guanylin over the same dose range caused similar large increases in net serosal to mucosal (S-->M) Na(+) and Cl(-) flux as well as Na(+) efflux. Responses of Na(+) influx were small and inconsistent. When frog skin was bathed on the serosal side with Cl(-)-free Ringer's solution mucosal application of guanylin stimulated large efflux and S-->M net fluxes of Na(+). Serosal treatment yielded large Na(+) effluxes and S-->M Na(+) and Cl(-) net fluxes. When frog skin serosal surfaces were bathed with Na(+)- free Ringer's solution mucosal guanylin treatment had no effect but serosal treatment produced large S-->M Cl(-) net fluxes.  相似文献   

10.
The effect of isoproterenol on apical and basolateral membrane conductance in principal cells of short-circuited frog skin was analyzed using microelectrodes. Isoproterenol (10(-6) mol/l) increased the apical membrane conductance in addition to stimulating Cl- conductive pathways outside the principal cells. The effect on apical Na+ channels explains the increase in amiloride sensitive short-circuit current. Basolateral membrane conductance increased only slightly. Steady-state I/V relationships of the basolateral membrane indicate that the inward rectification of basolateral membrane K+ channels was not altered.  相似文献   

11.
Adult amphibian skin actively transports Na+ from its apical to basolateral side while in turn, K+ is recycled through Na+, K+-ATPase and K+ channels located in the basolateral membrane. We previously found that PRL stimulates Na+ transport in the skin of the adult tree frog (Hyla arborea japonica) via an increase in the open-channel density of the epithelial Na+ channel (ENaC). If PRL also activates basolateral K+ channels, this activation would help to stimulate Na+ transport, too. Whether PRL does indeed stimulate basolateral K+ channels in the adult tree frog was examined by measuring the short-circuit current across nystatin-treated skin. Both tolbutamide, a K(ATP) channel blocker, and tetrapentylammonium (TPA), a KCa channel blocker, blocked the current, the effect of TPA being more powerful than that of tolbutamide. Contrary to expectation, PRL inhibited the basolateral K+ channels in this skin. In the presence of basolateral amiloride, PRL still inhibited the basolateral K+ current, suggesting that the (Na+)-H+ exchanger located in the basolateral membrane does not mediate the inhibitory effect of PRL on the basolateral K+ channels in Hyla.  相似文献   

12.
The binding of [3H]ouabain to the serosal side was studied in a chambered preparation of frog skin, free of connective tissue, while the short circuit (Isc) was concurrently monitored. Both ouabain binding and Isc inhibition proceeded as hyperbolic functions of time. A plot of the number of ouabain molecules bound vs. the corresponding values of Isc inhibition (percent) yielded a straight line, yet showed that one-third of the binding occurred before any inhibition of Isc. Upon separation of the skins into two groups based upon initial Isc(Isci)--high, greater than 20 microamperemeter/cm2 and low, less than 10 microamperemeter/cm2, we observed two distinct populations. The high Isci skins bound very little ouabain before inhibition of Isc whereas low Isci skins bound one-half of the total number of sites before exhibiting any inhibition of Isc. These observations strongly suggest that (a) the Na,K-ATPase is directly involved in the generation of Isc, and (b) at low Isc, inhibition of some pumps by ouabain causes a "recruitment" of other pumps to increase their turnover rate and maintain Isc relatively unaffected. In addition, the binding of ouabain also displayed various characteristics that were consistent with known properties of the Na,K-ATPase: (a) increased intracellular K/Na concentrations, whether achieved through the addition of amiloride or removal of Na from the outside medium, led to a significant decrease in ouabain binding rate relative to paired controls; and (b) ouabain binding, either with normal or decreased intracellular Na, was significantly reduced in the presence of elevated K in the serosal bathing medium. Finally, the number of ouabain molecules bound to the frog skins was not correlated with their initial Isc values, indicating that the spontaneous skin-to-skin variation in Isc was not related to the number of functional pump sites but, rather, to their turnover rate.  相似文献   

13.
Summary Cell K activity,a k, was measured in the short-circuited frog skin by simultaneous cell punctures from the apical surface with open-tip and K-selective microelectrodes. Strict criteria for acceptance of impalements included constancy of the open-tip microelectrode resistance, agreement within 3% of the fractional apical voltage measured with open-tip and K-selective microelectrodes, and constancy of the differential voltage recorded between the open-tip and the K microelectrodes 30–60 sec after application of amiloride or substitution of apical Na. Skins were bathed on the serosal surface with NaCl Ringer and, to reduce paracellular Cl conductance and effects of amiloride on paracellular conductance, with NaNO3 Ringer on the apical surface.Under control conditionsa k r was nearly constant among skins (mean±SD=92±8mM, 14 skins) in spite of a wide range of cellular currents (5 to 70 A/cm2). Cell current (and transcellular Na transport) was inhibited by either apical addition of amiloride or substitution of Na by other cations. Although in some experiments the expected small increase ina k r after inhibition of cell current was observed, on the average the change was not significant (98±11mM after amiloride, 101±12mM after Na substitution), even 30 min after the inhibition of cell current. The membrane potential, which in the control state ranged from –42 to –77 mV, hyperpolarized after inhibition of cell current, initially to –109±5mV, then depolarizing to a stable value (–88±5mV) after 15–25 min. At this time K was above equilibrium (E k=98±2mV), indicating that the active pump mechanism is still operating after inhibition of transcellular Na transport.The measurement ofa k r permitted the calculation of the passive K current and pump current under control conditions. assuming a constant current source with almost all of the basolateral conductance attributable to K. We found a significant correlation between pump current and cell current with a slope of 0.31, indicating that about one-third of the cell current is carried by the pump, i.e., a pump stoichiometry of 3Na/2K.  相似文献   

14.
High potassium diets lead to an inverse regulation of sodium and magnesium absorption in ruminants, suggesting some form of cross talk. Previous Ussing chamber experiments have demonstrated a divalent sensitive Na(+) conductance in the apical membrane of ruminal epithelium. Using patch-clamped ruminal epithelial cells, we could observe a divalent sensitive, nonselective cation conductance (NSCC) with K(+) permeability > Cs(+) permeability > Na(+) permeability. Conductance increased and rectification decreased when either Mg(2+) or both Ca(2+) and Mg(2+) were removed from the internal or external solution or both. The conductance could be blocked by Ba(2+), but not by tetraethylammonium (TEA). Subsequently, we studied this conductance measured as short-circuit current (I(sc)) in Ussing chambers. Forskolin, IBMX, and theophylline are known to block both I(sc) and Na transport across ruminal epithelium in the presence of divalent cations. When the NSCC was stimulated by removing mucosal calcium, an initial decrease in I(sc) was followed by a subsequent increase. The cAMP-mediated increase in I(sc) was reduced by low serosal Na(+) and serosal addition of imipramine or serosal amiloride and depended on the availability of mucosal magnesium. Luminal amiloride had no effect. Flux studies showed that low serosal Na(+) reduced (28)Mg fluxes from mucosal to serosal. The data suggest that cAMP stimulates basolateral Na(+)/Mg(2+) exchange, reducing cytosolic Mg. This increases sodium uptake through a magnesium-sensitive NSCC in the apical membrane. Likewise, the reduction in magnesium uptake that follows ingestion of high potassium fodder may facilitate sodium absorption, as observed in studies of ruminal osmoregulation. Possibly, grass tetany (hypomagnesemia) is a side effect of this useful mechanism.  相似文献   

15.
In a previous study, the amiloride-induced corner frequency (fc) was found to decrease as apical sodium was increased. This effect was small or absent when the basolateral surface was exposed to high potassium. It has been suggested that the apical sodium effect may be indirect, due either to increased intracellular [Na+] which repelled amiloride or to an increased potential at the apical surface which reduced amiloride affinity. High basolateral K+ might then suppress the sodium effect either by preventing intracellular [Na+] from increasing or by allowing a better clamp of the apical membrane potential by reducing basolateral membrane resistance and potential. We checked the effects of basolateral [K+], of cyanide and of ouabain at concentrations known to increase intracellular [Na+]. We found only negligible effects on fc. In addition, amphotericin B added to the basolateral bathing solution either in 115 mM Na+ or in 120 mM K+ had no significant effect on fc. We found that relatively wide variation in clamp potential under all conditions, even with active transport severely inhibited, left fc virtually constant. Since the amiloride kinetics were independent of clamp potential, we were able to measure paracellular and transcellular conductances separately by examining the voltage dependence of clamp current (linear) and amiloride noise power (quadratic). This made possible estimation of channel density and single-channel current.  相似文献   

16.
Using the voltage-clamp technique, a possible role of protein kinase C in regulation of Na+ transport in the skin of the frog Rana temporaria was investigated. It was shown that protein kinase C activator phorbol ester 12-myristate 13-acetate (PMA), applied to the apical surface of the skin, stimulated transepithelial Na+ transport, measured as amiloride-sensitive short-circuit current, and also increased such electrical characteristics of frog skin as the open-circuit potential and transepithelial conductance. PMA exerts a similar stimulation effect on Na+ transport across the tadpole skin. Specific inhibitors of protein kinase C, chelerythryne or H-7, almost fully prevented the PMA-induced stimulation of Na+ transport. These data support a concept that the response to PMA was indeed mediated by PKC activation. The results are compatible with the important role played by protein kinase C in regulation of transepithelial Na+ transport in the skin of R. temporaria.  相似文献   

17.
Amphotericin B (AmB) increased unidirectional Na transport and net transcellular sodium movements across the skin of the frog, Rana pipiens, when added to the solution bathing the corium side, but not from the outer epidermal surface. The AmB response was prevented with pretreatment with amiloride, ouabain and mucosal sodium substitution. Alteration in pH markedly reduced the permeability changes induced by AmB. AmB did not interfere with the increase in sodium transport induced by antidiuretic hormone. The present study demonstrates that AmB interacts with the skin of the frog, Rana pipiens, from the corium side specifically increasing transepithelial sodium transport. The increase in transport apparently occurs through the existing sodium pathway.  相似文献   

18.
Summary The pathway for movement of chloride ions across frog skin is not well understood. Mitochondria-rich (MR) cells have been proposed as the route for chloride across the skin. To test this hypothesis we studied the MR cells of the skin of the frog,Rana pipiens, by quantitative light microscopic determination of cell volume. MR cell volume was influenced by changes in the chloride concentration or osmolality of the outside bathing solution. MR cells shrank about 23% when all chloride was removed from the outside (mucosal) bathing solution. MR cells were also shown to be responsive to changes in the osmolality of either the mucosal or serosal bath. Osmotically-induced swelling caused by dilution of the serosal bath resulted in volume regulatory decrease. These results are consistent with the hypothesis that MR cells constitute the pathway for chloride movement across frog skin.  相似文献   

19.
La3+ was used to assess the role of membrane-bound Ca2+ in the regulation of basal and antidiuretic hormone (ADH)-induced Na+ transport by the isolated toad urinary bladder. Na+ transport was monitored by means of a short-circuit current (Isc) device. Mucosal La3+ (0.5-5 mM) increased Isc, while serosal La3+ (5 mM) produced a biphasic response (stimulation followed by inhibition). The stimulatory effects of La3+ were additive when present on both sides and were suppressed by mucosal amiloride or serosal ouabain. The action of mucosal La+ was reversible but the inhibition produced by serosal La3+ was not. In the presence of serosal La3+ the natriferic effect of ADH was abolished, but Theophylline, dibutyryl-cAMP, Amphotericin B, mucosal La3+, mucosal low pH, and phospho(enol) pyruvate, were able to increase Isc. These results suggest that Ca2+ binding sites in apical and basolateral membranes may play a key role in the modulation of both basal and ADH-induced Na+ transport. Serosal La3+ apparently inactivates the hormone-receptor interaction and/or the link between the ADH-receptor complex and the activation of adenylate cyclase, but does not interfere with the operation of the Na+ "pump", the basal activity of adenylate cyclase or any of the intracellular events that mediate the effect of ADH on Na+ transport.  相似文献   

20.
.5 mM Cu+ added to the mucosal side of frog skin caused rapid reversible inhibition of short-circuit current while no effect of Cu+ could be observed at the serosal side. In both cases Cu2+ was reduced to Cu+ by adding 10 mM ascorbic acid. Cu+ being similar to Na+ both in charge and crystal radius (0.096 and 0.095 nm, respectively) appears to block Na+ channels in the apical membrane. Cu2+ being of a smaller size (crystal radius 0.072 nm) was ineffective at the mucosal side causing only a rather slow irreversible inhibition of Na+ transport when added to the serosal bathing solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号