首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorting of the prohormone POMC to the regulated secretory pathway necessitates the binding of a sorting signal to a sorting receptor, identified as membrane carboxypeptidase E (CPE). The sorting signal, located at the N terminus of POMC consists of two acidic (Asp10, Glu14) and two hydrophobic (Leu11, Leu18) residues exposed on the surface of an amphipathic loop. In this study, molecular modeling of CPE predicted that the acidic residues in the POMC-sorting signal bind specifically to two basic residues, Arg255 and Lys260, present in a loop unique to CPE, compared with other carboxypeptidases. To test the model, these two residues on CPE were mutated to Ser or Ala, followed by baculovirus expression of the mutant CPEs in Sf9 cells. Sf9 cell membranes containing CPE mutants with either Arg255 or Lys260, or both residues substituted, showed no binding of [125I]N-POMC1-26 (which contains the POMC-sorting signal motif), proinsulin, or proenkephalin. In contrast, substitution of an Arg147 to Ala147 at a substrate-binding site, Arg259 to Ala259 and Ser202 to Pro202, in CPE did not affect the level of [125I]N-POMC1-26 binding when compared with-wild type CPE. Furthermore, mutation of the POMC-sorting signal motif (Asp10, Leu11, Glu14, Leu18) eliminated binding to wild-type CPE. These results indicate that the sorting signal of POMC, proinsulin, and proenkephalin specifically interacts with Arg255 and Lys260 at a novel binding site, independent of the active site on CPE.  相似文献   

2.
The coupling of agonist-activated heptahelical receptors to their cognate G proteins is often dependent on the amino-terminal region of the third intracellular loop. Like many G protein-coupled receptors, the gonadotropin-releasing hormone (GnRH) receptor contains an apolar amino acid in this region at a constant distance from conserved Pro and Tyr/Asn residues in the fifth transmembrane domain (TM V). An analysis of the role of this conserved residue (Leu(237)) in GnRH receptor function revealed that the binding affinities of the L237I and L237V mutant receptors were unchanged, but their abilities to mediate GnRH-induced inositol phosphate signaling, G protein coupling, and agonist-induced internalization were significantly impaired. Receptor expression at the cell surface was reduced by replacement of Leu(237) with Val, and abolished by replacement with Ala, Arg, or Asp residues. These results are consistent with molecular modeling of the TM V and VI regions of the GnRH receptor, which predicts that Leu(237) is caged by several apolar amino acids (Ile(233), Ile(234), and Val(240) in TM V, and Leu(262), Leu(265), and Val(269) in TM VI) to form a tight hydrophobic cluster. These findings indicate that the conserved apolar residue (Leu(237)) in the third intracellular loop is an important determinant of GnRH receptor expression and activation, and possibly that of other G protein-coupled receptors.  相似文献   

3.
The type 1 corticotropin-releasing hormone receptor (CRH-R1) influences biological responses important for adaptation to stressful stimuli, through activation of multiple downstream effectors. The structural motifs within CRH-R1 that mediate G protein activation and signaling selectivity are unknown. The aim of this study was to gain insights about important structural determinants within the third intracellular loop (IC3) of the human CRH-R1α important for cAMP and ERK1/2 pathways activation and selectivity. We investigated the role of the juxtamembrane regions of IC3 by mutating amino acid cassettes or specific residues to alanine. Although simultaneous tandem alanine mutations of both juxtamembrane regions Arg(292)-Met(295) and Lys(311)-Lys(314) reduced ligand binding and impaired signaling, all other mutant receptors retained high affinity binding, indistinguishable from wild-type receptor. Agonist-activated receptors with tandem mutations at the proximal or distal terminal segments enhanced activation of adenylyl cyclase by 50-75% and diminished activation of inositol trisphosphate and ERK1/2 by 60-80%. Single Ala mutations identified Arg(292), Lys(297), Arg(310), Lys(311), and Lys(314) as important residues for the enhanced activation of adenylyl cyclase, partly due to reduced inhibition of adenylyl cyclase activity by pertussis toxin-sensitive G proteins. In contrast, mutation of Arg(299) reduced receptor signaling activity and cAMP response. Basic as well as aliphatic amino acids within both juxtamembrane regions were identified as important for ERK1/2 phosphorylation through activation of pertussis toxin-sensitive G proteins as well as G(q) proteins. These data uncovered unexpected roles for key amino acids within the highly conserved hydrophobic N- and C-terminal microdomains of IC3 in the coordination of CRH-R1 signaling activity.  相似文献   

4.
Claudins (Cld) are essential constituents of tight junctions. Domain I of Clostridium perfringens enterotoxin (cCPE) binds to the second extracellular loop (ECL2) of a subset of claudins, e.g. Cld3/4 and influences tight junction formation. We aimed to identify interacting interfaces and to alter claudin specificity of cCPE. Mutagenesis, binding assays, and molecular modeling were performed. Mutation-guided ECL2 docking of Cld3/4 onto the crystal structure of cCPE revealed a common orientation of the proposed ECL2 helix-turn-helix motif in the binding cavity of cCPE: residues Leu(150)/Leu(151) of Cld3/4 bind similarly to a hydrophobic pit formed by Tyr(306), Tyr(310), and Tyr(312) of cCPE, and Pro(152)/Ala(153) of Cld3/4 is proposed to bind to a second pit close to Leu(223), Leu(254), and Leu(315). However, sequence variation in ECL2 of these claudins is likely responsible for slightly different conformation in the turn region, which is in line with different cCPE interaction modes of Cld3 and Cld4. Substitutions of other so far not characterized cCPE residues lining the pocket revealed two spatially separated groups of residues (Leu(223), Asp(225), and Arg(227) and Leu(254), lle(258), and Asp(284)), which are involved in binding to Cld3 and Cld4, albeit differently. Involvement of Asn(148) of Cld3 in cCPE binding was confirmed, whereas no evidence for involvement of Lys(156) or Arg(157) was found. We show structure-based alteration of cCPE generating claudin binders, which interact subtype-specific preferentially either with Cld3 or with Cld4. The obtained mutants and mechanistic insights will advance the design of cCPE-based modulators to target specific claudin subtypes related either to paracellular barriers that impede drug delivery or to tumors.  相似文献   

5.
The conformation of a constrained peptide mimicking the putative first intracellular domain (iLP1) of thromboxane A(2) receptor (TP) was determined by (1)H 2D NMR spectroscopy. Through completed assignments of TOCSY, DQF-COSY, and NOESY spectra, a NMR structure of the peptide showed a beta-turn in residues 56-59 and a short helical structure in the residues 63-66. It suggests that residues 63-66 may be part of the second transmembrane domain (TM), and that Arg60, in an exposed position on the outer surface of the loop, may be involved in signaling through charge contact with Gq protein. The sequence alignment of Lys residue in the same position of other prostanoid receptors mediates different G protein couplings, suggesting that the chemical properties of Arg and Lys may also affect the receptor signaling activity. These hypotheses were supported by mutagenesis studies, in which the mutant of Arg60Leu completely lost activity in increasing intracellular calcium level through Gq coupling, and the mutant of Arg60Lys retained only about 35% signaling activity. The difference between the side chain functions of Lys and Arg in effecting the signaling was discussed.  相似文献   

6.
Export from the endoplasmic reticulum (ER) represents an initial step in intracellular trafficking of G protein-coupled receptors (GPCRs). However, the underlying molecular mechanisms remain poorly understood. We have previously demonstrated that a highly conserved Leu residue on the first intracellular loop (ICL1) is required for exit of several GPCRs from the ER. Here we found that, in addition to Leu64 residue in the ICL1, the neighboring positively charged residue Lys65also modulates the cell-surface transport of α2A-adrenergic receptor (α2A-AR). Mutation of Lys65 to Ala, Glu and Gln significantly attenuated, whereas mutation of Lys65 to Arg strongly augmented α2A-AR expression at the cell surface. Consistent with the effects on the cell-surface expression of α2A-AR, mutation of Lys65 to Ala and Arg produced opposing effects on α2A-AR-mediated ERK1/2 activation. Furthermore, confocal microscopy revealed that the α2A-AR mutant K65A displayed a strong intracellular expression pattern and was extensively co-localized with the ER marker DsRed2-ER, suggestive of ER accumulation. These data provide the first evidence indicating an important function for a single Lys residue on the ICL1 in the ER export and cell-surface expression of α2A-AR. These data also suggest that the ICL1 may possess multiple signals that control the cell-surface targeting of GPCRs via distinct mechanisms.  相似文献   

7.
To delineate domains essential for G-protein coupling in angiotensin II type 1 receptor (AT1), we mutated the receptor cDNA in the putative cytosolic regions and determined consequent changes in the effect of GTP analogs on angiotensin II (Ang II) binding and in inositol trisphosphate production in response to Ang II. Polar residues in targeted areas were replaced by small neutral residues. Mutations in the second cytosolic loop, carboxy terminal region of the third cytosolic loop or deletional mutation in the carboxyl terminal tail simultaneously abolished both the GTP-induced shift to the low affinity form and Ang II-induced stimulation of inositol trisphosphate production. These results suggest that polar residues in the second cytosolic loop, the carboxy terminal region of the third cytosolic loop, and the carboxy terminal cytosolic tail are important for G-protein coupling of AT1 receptor.  相似文献   

8.
The C-terminal region of the third intracellular loop of the AT(1) angiotensin receptor (AT(1)-R) is an important determinant of G protein coupling. The roles of individual residues in agonist-induced activation of G(q/11)-dependent phosphoinositide hydrolysis were determined by mutational analysis of the amino acids in this region. Functional studies on mutant receptors transiently expressed in COS-7 cells showed that alanine substitutions of the amino acids in positions 232-240 of the third loop had no major effect on signal generation. However, deletion mutations that removed Ile(238) or affected its position relative to transmembrane helix VI significantly impaired angiotensin II-induced inositol phosphate responses. Substitution of Ile(238) with an acidic residue abolished the ability of the receptor to mediate inositol phosphate production, whereas its replacement with basic or polar residues reduced the amplitude of inositol phosphate responses. Substitutions of Phe(239) with polar residues had relatively minor effects on inositol phosphate signal generation, but its replacement by aspartic acid reduced, and by positively charged residues (Lys, Arg) significantly increased, angiotensin II-induced inositol phosphate responses. The internalization kinetics of the Ile(238) and Phe(239) mutant receptors were impaired in parallel with the reduction in their signaling responses. These findings have identified Ile(238) and Phe(239) as the critical residues in the C-terminal region of the third intracellular loop of the AT(1)-R for receptor activation. They also suggest that an apolar amino acid corresponding to Ile(238) of the AT(1)-R is a general requirement for activation of other G protein-coupled receptors by their agonist ligands.  相似文献   

9.
alpha-Neurotoxins bind with high affinity to alpha-gamma and alpha-delta subunit interfaces of the nicotinic acetylcholine receptor. Since this high affinity complex likely involves a van der Waals surface area of approximately 1200 A(2) and 25-35 residues on the receptor surface, analysis of side chains should delineate major interactions and the orientation of bound alpha-neurotoxin. Three distinct regions on the gamma subunit, defined by Trp(55), Leu(119), Asp(174), and Glu(176), contribute to alpha-toxin affinity. Of six charge reversal mutations on the three loops of Naja mossambica mossambica alpha-toxin, Lys(27) --> Glu, Arg(33) --> Glu, and Arg(36) --> Glu in loop II reduce binding energy substantially, while mutations in loops I and III have little effect. Paired residues were analyzed by thermodynamic mutant cycles to delineate electrostatic linkages between the six alpha-toxin charge reversal mutations and three key residues on the gamma subunit. Large coupling energies were found between Arg(33) at the tip of loop II and gammaLeu(119) (-5.7 kcal/mol) and between Lys(27) and gammaGlu(176) (-5.9 kcal/mol). gammaTrp(55) couples strongly to both Arg(33) and Lys(27), whereas gammaAsp(174) couples minimally to charged alpha-toxin residues. Arg(36), despite strong energetic contributions, does not partner with any gamma subunit residues, perhaps indicating its proximity to the alpha subunit. By analyzing cationic, neutral and anionic residues in the mutant cycles, interactions at gamma176 and gamma119 can be distinguished from those at gamma55.  相似文献   

10.
Chen S  Lin F  Xu M  Hwa J  Graham RM 《The EMBO journal》2000,19(16):4265-4271
alpha(1)-adrenergic receptors (alpha(1)-ARs) are members of the G-protein-coupled receptor (GPCR) superfamily and activate inositol phosphate (IP) turnover. We show that glycine and asparagine mutations of Phe303 in transmembrane segment VI (TMVI) of the alpha(1B)-AR, a highly conserved residue in GPCRs, although increasing agonist affinity, abolish agonist-activated IP signalling. Co-expression of the Phe303 mutants also inhibited (-)epinephrine-stimulated IP signalling by wild-type alpha(1B)-AR and other G(q)-coupled receptors, as well as IP signalling mediated by AlF(4)(-) stimulation of both wild-type G(q alpha) and a constitutively active mutant. The inability of the Phe303 mutants to signal is due to induction of a receptor conformation that dissociates G-protein binding from activation. As a result, the Phe303 mutants sequester G(q alpha) and stoichiometrically inhibit Gq signalling in a dominant-negative manner. We further show that both the enhanced basal and agonist-stimulated IP-signalling activity of the constitutively active alpha(1B)-AR mutants, C128F and A293E, are inhibited in the double mutants, C128F/F303G and A293E/F303G. Phe303, therefore, appears to be critically involved in coupling TMVI alpha-helical movement, a key step in receptor activation, to activation of the cognate G-protein.  相似文献   

11.
The structures of peptide A, and six other 7-20 amino acid peptides corresponding to sequences in the A region (Thr671- Leu690) of the skeletal muscle dihydropyridine receptor II-III loop have been examined, and are correlated with the ability of the peptides to activate or inhibit skeletal ryanodine receptor calcium release channels. The peptides adopted either random coil or nascent helix-like structures, which depended upon the polarity of the terminal residues as well as the presence and ionisation state of two glutamate residues. Enhanced activation of Ca2+ release from sarcoplasmic reticulum, and activation of current flow through single ryanodine receptor channels (at -40 mV), was seen with peptides containing the basic residues 681Arg Lys Arg Arg Lys685, and was strongest when the residues were a part of an alpha-helix. Inhibition of channels (at +40 mV) was also seen with peptides containing the five positively charged residues, but was not enhanced in helical peptides. These results confirm the hypothesis that activation of ryanodine receptor channels by the II-III loop peptides requires both the basic residues and their participation in helical structure, and show for the first time that inhibition requires the basic residues, but is not structure-dependent. These findings imply that activation and inhibition result from peptide binding to separate sites on the ryanodine receptor.  相似文献   

12.
The present studies demonstrate that no single stretch of sequence in the third intracellular (3i) loop of the alpha(2A) adrenergic receptor (alpha(2A)-AR) can fully account for its previously described interactions with spinophilin (Richman, J. G., Brady, A. E., Wang, Q., Hensel, J. L., Colbran, R. J., and Limbird, L. E. (2001) J. Biol. Chem. 276, 15003-15008), 14-3-3zeta (Prezeau, L., Richman, J. G., Edwards, S. W., and Limbird, L. E. (1999) J. Biol. Chem. 274, 13462-13469), and arrestin 3 (Wu, G., Krupnick, J. G., Benovic, J. L., and Lanier, S. M. (1997) J. Biol. Chem. 272, 17836-17842), suggesting that a three-dimensional surface, rather than a linear sequence, provides the basis for these interactions as proposed for 3i loop tethering of the alpha(2A)-AR to the basolateral surface of Madin-Darby canine kidney cells (Edwards, S. W., and Limbird, L. E. (1999) J. Biol. Chem. 274, 16331-16336). Sequences at the extreme N-terminal and C-terminal ends of the 3i loop are critical for interaction with spinophilin but not for interaction with 14-3-3zeta or arrestin 3, for which the C-terminal half of the loop is more important. Competition binding for (35)S-labeled alpha(2A)-AR 3i loop binding to glutathione S-transferase (GST)-spinophilin amino acids 151-444 revealed a relative affinity of spinophilin congruent with arrestin > 14-3-3zeta for the unphosphorylated alpha(2A)-AR 3i loop. Agonist occupancy of the alpha(2A)-AR increases receptor association with spinophilin, and arrestin 3 appears to compete for this enrichment. However, when the G protein-coupled receptor kinase 2 substrate sequence was deleted from the 3i loop, arrestin 3 could not compete for the agonist-enriched binding of spinophilin to the mutant alpha(2A)-AR. These data are consistent with a model where sequential or competitive interactions among spinophilin, arrestin, and/or 14-3-3zeta play a role in alpha(2A)-AR functions.  相似文献   

13.
The S'1 binding pocket of carboxypeptidase Y is hydrophobic, spacious, and open to solvent, and the enzyme exhibits a preference for hydrophobic P'1 amino acid residues. Leu272 and Ser297, situated at the rim of the pocket, and Leu267, slightly further away, have been substituted by site-directed mutagenesis. The mutant enzymes have been characterized kinetically with respect to their P'1 substrate preferences using the substrate series FA-Ala-Xaa-OH (Xaa = Leu, Glu, Lys, or Arg) and FA-Phe-Xaa-OH (Xaa = Ala, Val, or Leu). The results reveal that hydrophobic P'1 residues bind in the vicinity of residue 272 while positively charged P'1 residues interact with Ser297. Introduction of Asp or Glu at position 267 greatly reduced the activity toward hydrophobic P'1 residues (Leu) and increased the activity two- to three-fold for the hydrolysis of substrates with Lys or Arg in P'1. Negatively charged substituents at position 272 reduced the activity toward hydrophobic P'1 residues even more, but without increasing the activity toward positively charged P'1 residues. The mutant enzyme L267D + L272D was found to have a preference for substrates with C-terminal basic amino acid residues. The opposite situation, where the positively charged Lys or Arg were introduced at one of the positions 267, 272, or 297, did not increase the rather low activity toward substrates with Glu in the P'1 position but greatly reduced the activity toward substrates with C-terminal Lys or Arg due to electrostatic repulsion. The characterized mutant enzymes exhibit various specificities, which may be useful in C-terminal amino acid sequence determinations.  相似文献   

14.
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alphabeta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alphabeta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alphabeta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin (as an allosterically acting 'competitive' antagonist) binds to this residue.  相似文献   

15.
Zhang L  Wu J  Ruan KH 《Biochemistry》2006,45(6):1734-1744
The amino acids (residues 39-51) responsible for the interaction between the first intracellular loop (iLP1) of the human prostacyclin receptor (IP) and G alpha s protein have been identified [Zhang, L., Huang, G., Wu, J., and Ruan, K. H. (2005) Biochemistry 44, 11389-11401]. To further characterize the structural/functional relationship of the iLP1 in coupling with the G alpha s protein, the solution structures of a constrained peptide (IP iLP1) that mimicked the iLP1 of the IP receptor in the absence and presence of a synthetic peptide, corresponding to the C-terminal 11 residues (Q384-L394 in the protein sequence) of the G alpha s protein (G alpha s-Ct), were determined by 2D 1H NMR spectroscopy. The NMR solution structural model of the iLP1 domain showed two turn structures in residues Arg41-Ala44 and Arg45-Phe49 with the conserved Arg45 at the center. The conformational change of the side chain of the Arg45 was observed upon the addition of the G alpha s-Ct peptide. On the other hand, the solution structural models of the G alpha s-Ct peptide in the absence and presence of the IP iLP1 peptide were also determined. The N-terminal domain (Q384-Q390 in the G alpha s protein) of the peptide adopted an alpha-helical conformation. However, the helical structure of the C-terminal domain (Q390-E392 in the G alpha s protein) of the peptide was destabilized upon addition of the IP iLP1 peptide. These structural studies have implied that there are direct or indirect contacts between the IP iLP1 domain and the C-terminal residues of the G alpha s protein in the receptor/G protein coupling. The possible charge and hydrophobic interactions between the two peptides were also discussed. These data prompted intriguing speculations on the IP/G alpha s coupling which mediates vasodilatation and inhibition of platelet aggregation.  相似文献   

16.
The T cell receptor (TCR) for antigen consists, on the majority of peripheral lymphocytes, of an immunoglobulin-like, disulfide-linked heterodimeric glycoprotein: the alpha and beta chain. These proteins are noncovalently linked to at least four nonvariant proteins which comprise the CD3 complex: CD3 gamma, delta, epsilon, and zeta. Whereas the TCR alpha and beta proteins have positively charged residues in the transmembrane region, all the CD3 proteins have similarly placed negatively charged amino acid residues. It has been suggested that these basic and acidic amino acid residues may play an important role in TCR.CD3 complex assembly and/or function. In this paper, the structural and functional role of the lysine and arginine residues of the TCR alpha chain was addressed using oligonucleotide mediated site directed mutagenesis. The Arg256 and Lys261 residues of the TCR alpha cDNA of the HPB-ALL cell line were mutated to either Gly256 and/or Ile261. The altered cDNAs were transfected into a TCR alpha negative recipient mutant cell line of REX, clone 20A. Metabolic labeling of the T cell transfectants showed that mutation of either the Arg256 or Lys261 amino acid residues had no effect on the ability of the TCR alpha chain to form either a heterodimer with the TCR beta chain or a complex with the CD3 gamma, delta, and epsilon proteins. Consequently, the Arg256 to Gly256 and Lys261 to Ile261 mutations did not prevent the formation of a mature, functional TCR.CD3 complex on the cell surface as determined by immunofluorescence, cell surface radioiodination, and the ability of the transfectants to mobilize intracellular calcium after stimulation with a mitogenic anti-CD3 epsilon monoclonal antibody. In contrast, a mutant cDNA in which both the Arg256 and Lys261 residues were mutated to Gly256 and Ile261, respectively, failed to reconstitute the cell surface expression of the TCR.CD3 complex and, consequently, the ability to respond to mitogenic stimuli. In the absence of both the Arg256 and Lys261 residues, TCR alpha beta heterodimer formation was not observed. Cotransfection studies in COS cells showed that the failure of assembly of a heterodimer was likely due to an inability of the mutated TCR alpha chain to form a subcomplex with either the CD3 gamma, delta, epsilon, or zeta proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The aminergic alpha(2b)-adrenergic receptor (alpha(2b)-AR) third intracellular loop (alpha(2b)-AR 3i) mediates receptor subcellular compartmentalization and signal transduction processes via ligand-dependent interaction with G(i)- and G(o)- proteins. To understand the structural origins of these processes we engineered several lengths of alpha(2b)-AR 3i into the third intracellular loop of the proton pump bacteriorhodopsin (bR) and produced the fusion proteins in quantities suitable for physical studies. The fusion proteins were expressed in the Archaeon Halobacterium salinarum and purified. A highly expressed fusion protein was crystallized from bicelles and diffracted to low resolution on an in-house diffractometer. The bR-alpha(2b)-AR 3i(203-292) protein possessed a photocycle slightly perturbed from that of the wild-type bR. The first half of the fusion protein photocycle, correlated with proton release, is accelerated by a factor of 3, whereas the second half, correlated with proton uptake, is slightly slower than wild-type bR. In addition, there is a large decrease in the pK(a), (from 9.6 to 8.3) of the terminal proton release group in the unphotolyzed state of bR-alpha(2b)-AR 3i as deduced from the pH-dependence of the M-formation. Perturbation of a cytoplasmic loop has thus resulted in the perturbation of proton release at the extracellular surface. The current work indicates that long-range and highly coupled intramolecular interactions exist that are capable of "transducing" structural perturbations (e.g., signals) across the cellular membrane. This gene fusion approach may have general applicability for physical studies of G-protein-coupled receptor domains in the context of the bR structural scaffold.  相似文献   

18.
Metabotropic glutamate receptors (mGluRs) are members of a unique class of G protein-coupled receptors (class III) that include the calcium-sensing and gamma-aminobutyric acid type B receptors. The activity of mGluRs is regulated by second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). The attenuation of both mGluR1a and mGluR1b signaling by GRK2 is phosphorylation- and beta-arrestin-independent and requires the concomitant association of GRK2 with both the receptor and Galpha(q/11). G protein interactions are mediated, in part, by the mGluR1 intracellular second loop, but the domains required for GRK2 binding are unknown. In the present study, we showed that GRK2 binds to the second intracellular loop of mGluR1a and mGluR1b and also to the mGluR1a carboxyl-terminal tail. Alanine scanning mutagenesis revealed a discrete domain within loop 2 that contributes to GRK2 binding, and the mutation of either lysine 691 or 692 to an alanine within this domain resulted in a loss of GRK2 binding to both mGluR1a and mGluR1b. Mutation of either Lys(691) or Lys(692) prevented GRK2-mediated attenuation of mGluR1b signaling, whereas the mutation of only Lys(692) prevented GRK2-mediated inhibition of mGluR1a signaling. Thus, the mGluR1a carboxyl-terminal tail may also be involved in regulating the signaling of the mGluR1a splice variant. Taken together, our findings indicated that kinase binding to an mGluR1 domain involved in G protein-coupling is essential for the phosphorylation-independent attenuation of signaling by GRK2.  相似文献   

19.
IGF-I induces alpha(1B)-adrenoceptor (alpha(1B)-AR) phosphorylation. The effect of IGF-I was rapid and transient, reaching near-maximal values at 10 min and decreasing after 30 min; it was observed at low IGF-I concentrations (EC(50) approximately 10 ng/ml) and was associated to receptor desensitization as evidenced by a decreased alpha(1B)-adrenergic effect on intracellular calcium and production of inositol phosphates. The effect of IGF-I was markedly decreased in cells treated with pertussis toxin suggesting involvement of pertussis toxin-sensitive G proteins. Transfection of the carboxyl terminus of the beta-adrenergic receptor kinase or the Deltap85 mutant of phosphoinositide 3-kinase (PI3K) markedly decreased the alpha(1B)-AR phosphorylation induced by IGF-I without decreasing the receptor phosphorylation induced by noradrenaline. Inhibitors of PI3K and protein kinase C blocked IGF-I-induced alpha(1B)-AR phosphorylation. In addition, it was observed that AG1478, an inhibitor of the epidermal growth factor (EGF) receptor kinase, and BB-94, a metalloproteinase inhibitor, also diminished IGF-I-induced adrenoceptor phosphorylation. The data clearly show that IGF-I triggers a complex signaling pathway, which leads to the phosphorylation and desensitization of a serpentine G protein-coupled receptor, suggesting the following hypothetical model: 1) stimulation of IGF-I receptors activate pertussis toxin-sensitive G proteins; 2) the growth factor action activates metalloproteinases, which catalyze heparin binding-EGF shedding, and transactivation of EGF receptors, and 3) dissociated Gbetagamma subunits and phosphotyrosine residues seem to trigger PI3K activity, which leads to activation of protein kinase C, resulting in alpha(1B)-AR phosphorylation and desensitization.  相似文献   

20.
Specific residues in the putative pore helix, selectivity filter, and S6 transmembrane helix of the inositol 1,4,5-trisphosphate receptor were mutated in order to examine their effects on channel function. Mutation of 5 of 8 highly conserved residues in the pore helix/selectivity filter region inactivated the channel (C2533A, G2541A, G2545A, G2546A, and G2547A). Of the remaining three mutants, C2527A and R2543A were partially active and G2549A behaved like wild type receptor. Mutation of a putative glycine hinge residue in the S6 helix (G2586A) or a putative gating residue at the cytosolic end of S6 helix (F2592A) had minimal effects on function, although channel function was inactivated by G2586P and F2592D mutations. The mutagenesis data are interpreted in the context of a structural homology model of the inositol 1,4,5-trisphosphate receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号