首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved procedure is described for the purification of fructose 1,6-bisphosphatase (FbPase) from chicken liver. The purified enzyme shows a single band in gel electrophoresis either in the presence or absence of sodium dodecyl sulfate. From 200 g of frozen liver, we have obtained about 29 mg of homogeneous enzyme, with the pH profile indistinguishable from that of the enzyme in crude extracts. The overall recovery of enzyme activity is about 71%. The FbPase protein was estimated to represent approximately 0.36% of the total soluble protein of crude liver extract. Treatment of purified enzyme with papain or subtilisin results in a rapid increase in activity at pH 9.2 and a gradual decrease at pH 7.5, while digestion with trypsin or chymotrypsin results in a concomitant decrease in activities at both pH 9.2 and 7.5. The rates of hydrolysis by these four proteases are all markedly decreased in the presence of AMP. Both AMP and fructose 1,6-bisphosphate increase the thermal stability of the enzyme, and their effects are additive. Attempts were made to investigate the structural requirements for histidine activation. The results suggest that activation by this amino acid involves not only the imidazole ring but also the α-amino and α-carboxyl groups.  相似文献   

2.
3.
Characterization of rat muscle fructose 1,6-bisphosphatase   总被引:1,自引:0,他引:1  
Fructose 1,6-bisphosphatase has been purified from rat muscle. Although the specific activity of the enzyme in the crude extract of rat muscle was extremely low, purification by the present procedure is highly reproducible. The purified enzyme showed a single band in SDS-polyacrylamide gel electrophoresis. The subunit molecular weight of the muscle enzyme was 37,500 in contrast to 43,000 in the case of the liver enzyme. Immunoreactivity of the muscle enzyme to anti-muscle and anti-liver fructose 1,6-bisphosphatase sera was clearly distinct from that of the liver enzyme. All one-dimensional peptide mappings of the muscle enzyme with staphylococcal V8 protease, chymotrypsin, and papain showed different patterns from those of the liver enzyme. When incubated with subtilisin, the extent of activation of muscle fructose 1,6-bisphosphatase at pH 9.1 was smaller than that of the liver enzyme. The subtilisin digestion pattern of the muscle enzyme on SDS-polyacrylamide gel electrophoresis was distinct from that of the liver enzyme. The AMP-concentration giving 50% inhibition of the muscle enzyme was 0.54 microM, whereas that of the liver enzyme was 85 microM. The concentrations of fructose 2,6-bisphosphate that gave 50% inhibition of rat muscle and liver enzymes were 6.3 and 1.5 microM, respectively. Fructose 1,6-bisphosphatase protein was not detected in soleus muscle by immunoelectroblotting with anti-muscle fructose 1,6-bisphosphatase serum.  相似文献   

4.
5.
Vitellogenin (Vg) was purified from the serum of vitellogenic female carp (Cyprinus carpio) by hydroxylapatite column chromatography and gel filtration. Vg had an apparent molecular mass of 490 kDa and appeared as two bands corresponding to 190 and 156 kDa after SDS-PAGE under reducing conditions. These bands were immunoreacted in Western blotting using antiserum against carp lipovitellin (anti-Lv) which is an egg yolk protein derived from Vg. The amino acid composition of carp Vg was similar to previous reports of cyprinids. The chemiluminescent immunoassay (CLIA) for carp Vg was developed to quantify serum Vg using purified carp Vg and anti-Lv. Its measurable range was from 1.95 to 1000 ng/ml. The dilution curve in the CLIA of vitellogenic female serum was parallel to the standard curve of purified Vg. The coefficient variations of intra- and inter-assay were less than 5%, respectively. Furthermore, the assay had cross-reactivity with the sera of other female cyprinids (crucian carp and Japanese dace). In fish diets-experiments, Vg was detected in all fish in the fish meal containing soybean (20%) group, but was not detected in almost all of the fish in the fish meal-group. This suggests that a soybean based-diet may induce Vg production in the serum of cultivated carp.  相似文献   

6.
A simple procedure has been developed for the purification of mouse liver and kidney fructose-1,6-bisphosphatase. In addition to the conventional method, including substrate elution from phosphocellulose, Blue Sepharose column chromatography made the purification procedure highly reproducible. The enzyme from rabbit liver was also purified by this method with a small modification. The isolated preparation was electrophoretically homogeneous. The mouse liver enzyme was identical with the kidney enzyme, and different from the rabbit liver enzyme electrophoretically. The structural properties and the amino acid composition were similar to those of this enzyme from other mammalian livers; the molecular weight was 143,000, subunit size was 37,500, S20, w was 7.0, and partial specific volume was 0.74. Cysteine and methionine residues amounted to 5-6 mol per subunit. Tryptophan was not detected. The Km value for fructose-1,6-bisphosphate was 1.3 microM. The Ki value for AMP was 19 microM. EDTA strongly activated the activity of the mouse liver enzyme at neutral pH. A partial proteolytic digestion of the mouse liver enzyme decreased the activity at neutral pH, and increased it at alkaline pH.  相似文献   

7.
A trypsin inhibitor was purified from carp muscle to apparent homogeneity by the successive chromatographies of DEAE-cellulose, DEAE-Sepharose CL-6B, Con A-Sepharose, Ultrogel AcA 44 and hydroxylapatite. The mol. wt of the inhibitor was estimated to be 58,000 by SDS-polyacrylamide gel electrophoresis or 50,000 by gel filtration. The inhibitor seemed to form a 1:1 stoichiometric complex with trypsin, alpha-chymotrypsin and elastase, respectively. Carp muscle trypsin inhibitor was likely to be identical with serum alpha 1-proteinase inhibitor judging from its glycoprotein nature, mol. wt and the inhibition stoichiometry.  相似文献   

8.
Three distinct lines of evidence suggest interaction and possible complex formation between fructose 1,6-biphosphate aldolase (EC 4.1.2.13) and fructose 1,6-biphosphatase (EC 3.1.3.11) from rabbit liver. (1) Fructose 1,6-biphosphatase, which does not contain tryptophan, causes changes in the fluorescence emission spectrum of tryptophan in rabbit liver aldolase. (2) Aldolase reduces the affinity of binding of Zn2+ to the two high-affinity sites of fructose 1,6-biphosphatase. (3) Gel penetration coefficients are decreased for both enzymes when they are tested together, as compared to the coefficients observed when each is tested separately. These interactions were not observed when either liver enzyme was replaced by the corresponding enzyme purified from rabbit muscle; this specificity for enzymes purified from the same tissue excludes effects attributable to the catalytic activities of the enzyme. Maximum interaction was observed in the pH range between 8.0 and 8.5 and appeared to require the presence of two fructose 1,6-biphosphatase tetramers per tetramer of aldolase. The change in fluorescence emission spectrum was also observed, to a smaller extent, when muscle fructose 1,6-biphosphatase was added to a solution of muscle aldolase.  相似文献   

9.
Histidine and its derivatives increased rabbit muscle fructose 1,6-bisphosphatase activity at neutral pH with positive cooperativity. In the presence of histidine and carnosine the optimum pH shifted from pH 8.0 to 7.4. The cooperative response of the enzyme to AMP and fructose 1,6-bisphosphate was observed in the presence of the histidine derivatives. Of a number of divalent cations tested, only Zn2+ was found to be an effective inhibitor of enzyme activity at low concentrations. The kinetic data suggested that Zn2+ acted as inhibitor as well as activator for the enzyme activity; a high affinity binding site was associated with Ki of approximately 0.5 microM Zn2+ and a catalytic site was associated with Km of approximately 10 microM Zn2+. Rabbit muscle fructose 1,6-bisphosphatase bound 4 equivalents of Zn2+/mol, presumably 1 per subunit, in the absence of fructose 1,6-bisphosphate. Two equivalents of Zn2+/mol bound to the enzyme were readily removed by dialysis or gel filtration in the absence of a chelating agent. The other two equivalents of Zn2+/mol were removed by histidine and histidine derivatives of naturally occurring chelators with concomitant increase in activity.  相似文献   

10.
Interaction between rabbit muscle fructose 1,6-bisphosphatase (FBPase) and rabbit muscle F-actin results in heterologous complex formation [A. Gizak, D. Rakus, A. Dzugaj, Histol. Histopathol. 18 (2003) 135]. Calculated on the basis of co-sedimentation-binding experiments and ELISA assay-binding constant (Ka) revealed that FBPase binds to F-actin with Ka equal to 7.4 x 10(4) M(-1). The binding is down-regulated by ligands interacting with the FBPase active site (fructose 6-phosphate, fructose 1,6-bisphosphate, fructose 2,6-bisphosphate) and with the FBPase allosteric inhibitory site (AMP). The binding and the kinetic data suggests that FBPase may bind F-actin using a bipartite motif which includes the amino acids residues involved in the binding of the substrate as well as of the allosteric inhibitor of the enzyme. The in situ co-localization experiment, in which FBPase was diffused into skinned muscle fibres pre-incubated with phalloidin (polymeric actin-interacting toxin), has shown that FBPase binds predominantly to the region of the Z-line.  相似文献   

11.
Rakus D  Pasek M  Krotkiewski H  Dzugaj A 《Biochemistry》2004,43(47):14948-14957
Fructose 1,6-bisphosphatase (FBPase) is known to form a supramolecular complex with alpha-actinin and aldolase on both sides of the Z-line in skeletal muscle cells. It has been proposed that association of aldolase with FBPase not only desensitizes muscle FBPase toward AMP inhibition but it also might enable the channeling of intermediates between the enzymes [Rakus et al. (2003) FEBS Lett. 547, 11-14]. In the present paper, we tested the possibility of fructose 1,6-bisphosphate (F1,6-P(2)) channeling between aldolase and FBPase using the approach in which an inactive form of FBPase competed with active FBPase for binding to aldolase and thus decreased the rate of aldolase-FBPase reaction. The results showed that F1,6-P(2) is transferred directly from aldolase to FBPase without mixing with the bulk phase. Further evidence that F1,6-P(2) is channeled from aldolase to FBPase comes from the experiments investigating the inhibitory effect of a high concentration of magnesium ions on aldolase-FBPase activity. FBPase in a complex with aldolase, contrary to free muscle FBPase, was not inhibited by high Mg(2+) concentrations, which suggests that free F1,6-P(2) was not present in the assay mixture during the reaction. A real-time interaction analysis between aldolase and FBPase revealed a dual role of Mg(2+) in the regulation of the aldolase-FBPase complex stability. A physiological concentration of Mg(2+) increased the affinity of muscle FBPase to muscle aldolase, whereas higher concentrations of the cation decreased the concentration of the complex. We hypothesized that the presence of Mg(2+) stabilizes a positively charged cavity within FBPase and that it might enable an interaction with aldolase. Because magnesium decreased the binding constant (K(a)) between aldolase and FBPase in a manner similar to the decrease of K(a) caused by monovalent cations, it is postulated that electrostatic attraction might be a driving force for the complex formation. It is presumed that the biological relevance of F1,6-P(2) channeling between aldolase and FBPase is protection of this glyconeogenic, as well as glycolytic, intermediate against degradation by cytosolic aldolase, which is one of the most abundant enzyme of glycolysis.  相似文献   

12.
1. The activity of fructose 1,6-bisphosphatase (EC 3.1.3.11) in the fatty endosperm of castor bean (Ricinus communis) increases 25-fold during germination and then declines. The developmental pattern follows that of catalase, a marker enzyme for gluconeogenesis in this tissue. 2. The enzyme at its peak of development was partially purified, and its properties were studied. It has an optimal activity at neutral pH (7.0-8.0). The apparent Km value for fructose 1,6-bisphosphate is 3.8 X 10(-5) M. The activity is inhibited by AMP allosterically with an apparent Ki value of 2.2 X 10(-4) M. The enzyme hydrolyses fructose 1,6-bisphosphate and not ribulose 1,5-bisphosphate or sedoehptulose 1,7-bisphosphate. 3. Treatment of the partially purified enzyme with acid leads to an 80% decrease in activity. The remaining activity is insensitive to AMP and has optimal activity at pH 6.7 and a high apparent Km value (2.5 X 10(-4) M) for fructose 1.6-bisphosphate. Enzyme extracted from the tissue with water instead of buffer has a similar modification. The effect of acid explains the discrepancies between this report and previous ones on the properties of the enzyme in this tissue. 4. The storage tissues of various fatty seedlings all contain a 'neutral' fructose 1,6-bisphosphatase. The activities of the enzyme from some of the tissues are inhibited by AMP. 5. The properties of the enzyme in fatty seedlings and in green leaves are discussed in comparison with that in animal tissues.  相似文献   

13.
Rapid quench kinetic experiments on fructose 1,6-bisphosphatase demonstrate a stereospecificity for the alpha anomer of fructose 1,6-bisphosphate relative to the beta configuration. The beta anomer is only utilized after mutarotation to the alpha form in a process that is not enzyme catalyzed. Studies employing analogues of the acyclic keto configuration indicate that the keto form is utilized at a rate less than 5% that of the alpha anomer, a finding also confirmed by computer simulation of the rapid quench data. Chemical trapping experiments of the keto analogue, xylulose 1,5-bisphosphate, and the normal substrate suggest that interconversion of the acyclic and anomeric configurations is retarded by their binding to the enzyme. A hypothesis is advanced attributing substrate inhibition of fructose 1,6-bisphosphatase to possible binding of the keto species.  相似文献   

14.
The concentration of Mg(2+) required for optimal activity of chloroplast fructose 1,6-bisphosphatase (FBPase) decreases when a disulfide, located on a flexible loop containing three conserved cysteines, is reduced by the ferredoxin/thioredoxin system. Mutation of either one of two regulatory cysteines in this loop (Cys155 and Cys174 in spinach FBPase) produces an enzyme with a S(0.5) for Mg(2+) (0.6 mM) identical to that observed for the reduced WT enzyme and significantly lower than the S(0.5) of 12.2 mM of oxidized WT enzyme. E(m) for the regulatory disulfide in WT spinach FBPase is -305 mV at pH 7.0, with an E(m) vs pH dependence of -59 mV/pH unit, from pH 5.5 to 8.5. Aerobic storage of the C174S mutant produces a nonphysiological Cys155/Cys179 disulfide, rendering the enzyme partially dependent on activation by thioredoxin. Circular dichroism spectra and thiol titrations provide supporting evidence for the formation of nonphysiological disulfide bonds. Mutation of Cys179, the third conserved cysteine, produces FBPase that behaves very much like WT enzyme but which is more rapidly activated by thioredoxin f, perhaps because the E(m) of the regulatory disulfide in the mutant has been increased to -290 mV (isopotential with thioredoxin f). Structural changes in the regulatory loop lower S(0.5) for Mg(2+) to 3.2 mM for the oxidized C179S mutant. These results indicate that opening the regulatory disulfide bridge, either through reduction or mutation, produces structural changes that greatly decrease S(0.5) for Mg(2+) and that only two of the conserved cysteines play a physiological role in regulation of FBPase.  相似文献   

15.
A serine proteinase inhibitor, termed serpin62, was purified to homogeneity from carp serum with an increase in specific inhibitory activity of 6.2-fold and a 3% recovery rate after separation from α1-antitrypsin. Specific inhibitory activity of serpin62 against bovine pancreatic trypsin was less than half of the specific antitryptic activity of α1-antitrypsin. Under both reducing and nonreducing conditions, serpin62 was estimated to have a molecular weight (62,000) apparently larger than that of α1-antitrypsin (55,000). They both consist of single polypeptide chains, but serpin62 differs from serine proteinase inhibitors from muscles of carp and white croaker in molecular weight and structure. Antibody raised against serpin62 immunologically crossreacted with serpin62 and had no crossreactivity with fish serum α1-antitrypsin and muscular analogues. The antibody was susceptible to both serpin62 and its derivatives, which were widely distributed in carp tissues. Serpin62 is most likely distinct from other fish serine proteinase inhibitors expressing antitryptic activity physicochemically and immunologically. Received June 4, 1998; accepted September 10, 1998.  相似文献   

16.
Rat and rabbit muscle fructose 1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) are inhibited by fructose 2,6-bisphosphate. In contrast with the liver isozyme, the inhibition of muscle fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is not synergistic with that of AMP. Activation of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate has been observed at high concentrations of substrate. An attempt is made to correlate changes in concentrations of hexose monophosphate, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate with changes in fluxes through 6-phosphofructokinase and fructose-1,6-bisphosphatase in isolated epitrochlearis muscle challenged with insulin and adrenaline.  相似文献   

17.
18.
A fructose 1,6-bisphosphatase (EC 3.1.3.11) (FBPase) was purified over 100-fold from Anacystis nidulans. At variance with a previous report (R. H. Bishop, Arch. Biochem. Biophys. 196:295-300, 1979), the regulatory properties of the enzyme were found to be like those of chloroplast enzymes rather than intermediate between chloroplast (photosynthetic) and heterotrophic FBPases. The pH optimum of Anacystis FBPase was between 8.0 and 8.5 and shifted to lower values with increasing Mg2+ concentration. Under the experimental conditions used by Bishop, we found the saturation curve of the enzyme to be sigmoidal for Mg2+ ions and hyperbolic for fructose 1,6-bisphosphate. The half-maximal velocity of the Anacystis FBPase was reached at concentrations of 5 mM MgCl2 and 0.06 mM fructose 1,6-bisphosphate. AMP did not inhibit the enzyme. The activity of the FBPase was found to be under a delicate control of oxidizing and reducing conditions. Oxidants like O2, H2O2, oxidized glutathione, and dehydroascorbic acid decreased the enzyme activity, whereas reductants like dithiothreitol and reduced glutathione increased it. The oxido-reductive modulation of FBPase proved to be reversible. Reduced glutathione stimulated the enzyme activity at physiological concentrations (1 to 10 mM).l The reduced glutathione-induced activation was higher at pH 8.0 than at pH 7.0.  相似文献   

19.
At low concentrations (<1 μM), and in the presence of Mg2+, Zn2+ inhibits the activity of rabbit muscle fructose 1,6-bisphosphatase (EC 3.1.3.11). At higher concentrations Zn2+ can replace Mg2+ as the activating cation. The inhibitory effects of Zn2+ are associated with its binding to 4 high-affinity sites (1 per subunit). Binding to a second set of 4 sites requires the presence of the substrate, fructose 1,6-bisphosphate, and binding of Zn2+ to this set of sites restores the catalytic activity. In the absence of EDTA, Zn2+ is a better activating cation than Mg2+. The muscle enzyme differs from rabbit liver fructose 1,6-bisphosphatase in the number of binding sites (8 as compared to 12 for the rabbit liver enzyme) and in showing higher activity with Zn2+ as the activating cation. The results suggest that Zn2+ may be the physiological activator.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号