首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vibrio cholerae can utilize haemin or haemoglobin as its sole source of iron. Four haem utilization mutants of a classical strain of V. cholerae were isolated. These mutations were complemented with pHUT1, a cosmid clone isolated from a library of wild-type CA401 DNA. Two independent Tn5 insertions into the cloned sequence disrupted function in all of the complemented mutants. Escherichia coli 1017 transformed with pHUT1 failed to utilize haemin as an iron source; a second plasmid containing a different cloned fragment of V. cholerae DNA (pHUT3) was required in addition to pHUT1 to reconstitute the system in E. coli. Minicell analysis and SDS-PAGE of protein fractions indicate that pHUT10 (a subclone of p>HUT1) encodes a 26 kDa inner membrane protein, and pHUT3 encodes a 77 kDa outer membrane protein. Loss of either protein by Tn5 mutagenesis abolishes haem utilization in E. coli. An E. coli hemA mutant that cannot synthesize porphyrins was transformed with the recombinant plasmids to determine whether the plasmids encoded the ability to transport the porphyrin as well as the iron. The transformants grew aerobically in media containing haemin, whereas the parental strain was unable to grow under these conditions. This indicates that V. cholerae haem-iron utilization genes allow transport of the entire haem moiety into the cell.  相似文献   

3.
Iron acquisition, mediated by specific outer membrane receptors, is critical for colonization of the urinary tract by uropathogenic Escherichia coli (UPEC). The role of specific iron sources in vivo , however, remains largely unknown. In this study, we identified a 79 kDa haem receptor, h ae m a cquisition protein Hma, and established that it functions independently of ChuA to mediate haemin uptake by UPEC strain CFT073. We demonstrated that expression of hma promotes TonB-dependent haemin utilization and the Hma protein binds haemin with high affinity ( K d = 8 μM). Hma, however, lacks conserved His residues shown to mediate haem uptake by other bacterial receptors. In contrast, we identified Tyr-126 as a residue necessary for Hma-mediated haemin utilization. In a murine co-infection model of UTI, an isogenic hma mutant was out-competed by wild-type CFT073 in the kidneys ( P  < 0.001) and spleens ( P  <  0.0001) of infected mice, indicating its expression provided a competitive advantage in these organs. Furthermore, a hma chuA double mutant, which is unable to utilize haemin, was unable to colonize the kidneys to wild-type levels during independent infection ( P  = 0.02). Thus, we demonstrate that UPEC requires haem for kidney colonization and that uptake of this iron source is mediated, in part, by the novel receptor, Hma.  相似文献   

4.
The major mechanism by which bacteria acquire free or haemoglobin-bound haem involves direct binding to specific outer membrane receptors. Serratia marcescens also secretes a haem-binding protein, HasA, which functions as a haemophore that catches haem and shuttles it to a cell surface specific outer membrane receptor, HasR. We report the isolation and characterization of hasAp , a gene from Pseudomonas aeruginosa. HasAp is an iron-regulated extracellular haem-binding protein that shares about 50% identity with HasA. HasAp is required for P. aeruginosa utilization of haemoglobin iron. It can replace HasA for HasR-dependent haemoblobin acquisition in a system reconstituted in Escherichia coli. HasAp, like HasA, lacks a signal peptide and is secreted by an ABC transporter. These findings show that haemophore-dependent haem acquisition is not unique to S. marcescens .  相似文献   

5.
Vibrio cholerae has multiple iron transport systems, one of which involves haem uptake through the outer membrane receptor HutA. A hutA mutant had only a slight defect in growth using haemin as the iron source, and we show here that V. cholerae encodes two additional TonB-dependent haem receptors, HutR and HasR. HutR has significant homology to HutA as well as to other outer membrane haem receptors. Membrane fractionation confirmed that HutR is present in the outer membrane. The hutR gene was co-transcribed with the upstream gene ptrB, and expression from the ptrB promoter was negatively regulated by iron. A hutA, hutR mutant was significantly impaired, but not completely defective, in the ability to use haemin as the sole iron source. HasR is most similar to the haemophore-utilizing haem receptors from Pseudomonas aeruginosa and Serratia marcescens. A mutant defective in all three haem receptors was unable to use haemin as an iron source. HutA and HutR functioned with either V. cholerae TonB1 or TonB2, but haemin transport through either receptor was more efficient in strains carrying the tonB1 system genes. In contrast, haemin uptake through HasR was TonB2 dependent. Efficient utilization of haemoglobin as an iron source required HutA and TonB1. The triple haem receptor mutant exhibited no defect in its ability to compete with its Vib- parental strain in an infant mouse model of infection, indicating that additional iron sources are present in vivo. V. cholerae used haem derived from marine invertebrate haemoglobins, suggesting that haem may be available to V. cholerae growing in the marine environment.  相似文献   

6.
Yersinia pestis strains utilize haem and several haem-protein complexes as sole sources of iron. In this study, the haemin uptake locus (hmu) of Y. pestis KIM6+ was selected from a genomic library by trans-duction into an Escherichia coli siderophore synthesis (entC) mutant. Recombinant plasmids containing a common 16 kb BamHI insert were isolated that allowed E. coli entC to use haemin as an iron source. An 8.6 kb region of this insert was found to be essential for haemin utilization and encoded at least five proteins with molecular masses of 79/77, 44, 37, 35, and 30/27.5 kDa. A 10.9 kb Clal fragment containing the hmu locus showed varying degrees of homology to genomic DNA from Yersinia pseudotuberculosis, Yersinia enter-ocolitica, and other genera of Enterobacteriaceae. An E. coli hemA aroB strain harbouring cloned hmu genes used haemin as both an iron and porphyrin source but only on iron-poor medium, suggesting that haemin uptake is tightly iron regulated. Additionally, haemoglobin and myoglobin were used as iron sources by an E. coli entC (pHMU2.2) strain. Deletion of the hmu locus from Y. pestis KIM6+ chromosome generated a mutant that grew poorly on iron-depleted medium containing free haemin as well as mammalian haem-protein complexes including haemoglobin, haemoglobin-haptoglobin, myoglobin, haem-haemopexin, and haem-albumin unless it was complemented with cloned hmu genes.  相似文献   

7.
A virulent phage, named PP01, specific for Escherichia coli O157:H7 was isolated from swine stool sample. The phage concentration in a swine stool, estimated by plaque assay on E. coli O157:H7 EDL933, was 4.2x10(7) plaque-forming units per g sample. PP01 infects strains of E. coli O157:H7 but does not infect E. coli strains of other O-serogroups and K-12 strains. Infection of an E. coli O157:H7 culture with PP01 at a multiplicity of infection of two produced a drastic decrease of the optical density at 600 nm due to cell lysis. The further incubation of the culture for 7 h produced phage-resistant E. coli O157:H7 mutant. One PP01-resistant E. coli O157:H7 mutant had lost the major outer membrane protein OmpC. Complementation by ompC from a O157:H7 strain but not from a K-12 strain resulted in the restoration of PP01 susceptibility suggesting that the OmpC protein serves as the PP01 receptor. DNA sequences and homology analysis of two tail fiber genes, 37 and 38, responsible for the host cell recognition revealed that PP01 is a member of the T-even bacteriophages, especially the T2 family.  相似文献   

8.
9.
Outer membrane permeability of Escherichia coli O157:H7 was determined by an in vivo kinetic model with the periplasmic enzyme alkaline phosphatase [Martinez et al. (1996) Biochemistry 35, 1179-1186]. p-Nitrophenyl phosphate (PNPP) substrate, added to intact bacteria, must diffuse through the outer membrane to reach the enzyme. At low substrate concentration the bacterium was in the perfectly reactive state where all molecules that entered the periplasm were captured and converted to product. Transmembrane diffusion was rate limiting, and the permeability of the outer membrane was determined from kinetic properties. The O157:H7 strain grown at 30 degrees C showed one-sixth the permeability of wild-type E. coli grown at 30 degrees C. Wild-type bacteria grown at >/=37 degrees C show a physiological response with a shift in expression of outer membrane porins that lowered permeability to PNPP by approximately 70%. The O157:H7 strain did not display this temperature-sensitive shift in permeability even though a change in porin expression could be visualized by staining intensity of Omp F and Omp C on acrylamide gels. Altered behavior of the O157:H7 membrane was also indicated by a several thousand-fold lower response to transformation relative to wild-type E. coli. Matrix-assisted laser desorption ionization time of flight mass spectrometry and electrospray ionization mass spectrometry confirmed the expression of the Omp F and Omp C variants that are unique to E. coli O157:H7. This reduced outer membrane permeability can contribute to enhanced resistance of O157:H7 to antimicrobial agents.  相似文献   

10.
We have identified and characterized a protein of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7 that shares homology with antigen 43 and AIDA-I of E. coli. The gene encoding this protein consists of a 2850 bp open reading frame and was named cah for calcium binding antigen 43 homologue. The prototype EHEC strain EDL933 possesses identical duplicate copies of cah (cah1 and cah2), which showed 100% identity at the nucleotide level. We showed that E. coli K-12 containing the recombinant cah gene produced two proteins, an approximately 80 kDa outer membrane protein and a 43.0 kDa heat-extractable protein. The Cah protein contains a predicted 52-amino-acid extended signal sequence found in several autotransporter proteins, and N-terminal sequencing data indicated that the 43.0 kDa passenger protein was derived from cleavage of the signal sequence from alanine at position 53. Phenotypes such as autoaggregation and change in bacterial shape were observed when a recombinant plasmid containing the cah gene was introduced into a laboratory E. coli strain, and these phenotypes were eliminated upon mutation of the cah gene. The passenger domain contains six domains found in calcium-binding proteins, and the recombinant Cah passenger protein bound 45Ca2+. In E. coli O157:H7, Cah is a heat-extractable protein, the expression of which is induced in minimal essential media and under divalent ion-depleting conditions; it also participates in the formation of biofilms. Our results provide insight into the expression, secretion and preliminary features of the calcium-binding Cah autotransporter protein of EHEC O157:H7.  相似文献   

11.
Identification and cloning of a fur regulatory gene in Yersinia pestis.   总被引:37,自引:15,他引:22       下载免费PDF全文
Yersinia pestis is one of many microorganisms responding to environmental iron concentrations by regulating the synthesis of proteins and an iron transport system(s). In a number of bacteria, expression of iron uptake systems and other virulence determinants is controlled by the Fur regulatory protein. DNA hybridization analysis revealed that both pigmented and nonpigmented cells of Y. pestis possess a DNA locus homologous to the Escherichia coli fur gene. Introduction of a Fur-regulated beta-galactosidase reporter gene into Y. pestis KIM resulted in iron-responsive beta-galactosidase activity, indicating that Y. pestis KIM expresses a functional Fur regulatory protein. A cloned 1.9-kb ClaI fragment of Y. pestis chromosomal DNA hybridized specifically to the fur gene of E. coli. The coding region of the E. coli fur gene hybridized to a 1.1-kb region at one end of the cloned Y. pestis fragment. The failure of this clone to complement an E. coli fur mutant suggests that the 1.9-kb clone does not contain a functional promoter. Subcloning of this fragment into an inducible expression vector restored Fur regulation in an E. coli fur mutant. In addition, a larger 4.8-kb Y. pestis clone containing the putative promoter region complemented the Fur- phenotype. These results suggest that Y. pestis possesses a functional Fur regulatory protein capable of interacting with the E. coli Fur system. In Y. pestis Fur may regulate the expression of iron transport systems and other virulence factors in response to iron limitation in the environment. Possible candidates for Fur regulation in Y. pestis include genes involved in ferric iron transport as well as hemin, heme/hemopexin, heme/albumin, ferritin, hemoglobin, and hemoglobin/haptoglobin utilization.  相似文献   

12.
13.
Shigella species can use heme as the sole source of iron. In this work, the heme utilization locus of Shigella dysenteriae was cloned and characterized. A cosmid bank of S. dysenteriae serotype 1 DNA was constructed in an Escherichia coli siderophore synthesis mutant incapable of heme transport. A recombinant clone, pSHU12, carrying the heme utilization system of S. dysenteriae was isolated by screening on iron-poor medium supplemented with hemin. Transposon insertional mutagenesis and subcloning identified the region of DNA in pSHU12 responsible for the phenotype of heme utilization. Minicell analysis indicated that a 70-kDa protein encoded by this region was sufficient to allow heme utilization in E. coli. Synthesis of this protein, designated Shu (Shigella heme uptake), was induced by iron limitation. The 70-kDa protein is located in the outer membrane and binds heme, suggesting it is the S. dysenteriae heme receptor. Heme iron uptake was found to be TonB dependent in E. coli. Transformation of an E. coli hemA mutant with the heme utilization subclone, pSHU262, showed that heme could serve as a source of porphyrin as well as iron, indicating that the entire heme molecule is transported into the bacterial cell. DNA sequences homologous to shu were detected in strains of S. dysenteriae serotype 1 and E. coli O157:H7.  相似文献   

14.
FrpB1 is a novel membrane protein of Helicobacter pylori that is capable of binding both haem and haemoglobin but consistently shows more affinity for haem. The mRNA levels of frpB1 were repressed by iron and lightly modulated by haem or haemoglobin. The overexpression of the frpB1 gene supported cellular growth when haem or haemoglobin were supplied as the only iron source. Three-dimensional modelling revealed the presence of motifs necessary to bind either haem or haemoglobin. Our overall results support the idea that FrpB1 is a membrane protein of H. pylori that allows this pathogen to survive in the human stomach.  相似文献   

15.
Whereas several important virulence factors in Escherichia coli O157 have been identified, studies suggest they are not always essential and are probably insufficient to account for the severe clinical manifestation of E. coli O157 infection. Identification of putative virulence determinants is crucial to the understanding of bacterial pathogenesis and genomic comparison analysis may aid the characterisation of unidentified virulence attributes. In this study, representational difference analysis (RDA) was used for genomic comparison of E. coli O157 with the proposed ancestral strain, E. coli O55. Unique E. coli O157 gene sequences were isolated and one, termed RDA-1, taken forward for further analysis. Southern blotting with labelled RDA-1 as a probe showed it to be present in 77% of E. coli O157 isolates and absent in all non-E. coli O157 screened. Sequence flanking RDA-1 was obtained from a genomic clone identified by hybridisation, and contained an open reading frame predicted to encode a novel iron-regulated outer membrane protein.  相似文献   

16.
Two types of pathogenic Escherichia coli, enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), cause diarrheal disease by disrupting the intestinal environment through the intimate attachment of the bacteria to the intestinal epithelium. This process is mediated by intimin, an outer membrane protein that is homologous to the invasins of pathogenic Yersinia. The intimin (eae) gene is part of a pathogenicity island, a 35-kb segment of DNA that has been acquired independently in different groups of pathogens. Nucleotide sequences of eae of three EPEC and four EHEC strains representing distinct clonal lineages revealed an exceptionally high level of divergence (15%) in the amino acid sequences of alpha, beta, and gamma intimin molecules, most of which is concentrated in the C-terminal region. The gamma intimin sequences from E. coli strains with serotypes O157:H7, O55:H7, and O157:H- are virtually identical, supporting the hypothesis that these bacteria belong to a single clonal lineage. Sequences of beta intimin of EPEC strains of serotypes O111:H2 and O128:H2 show substantial differences from alpha and gamma intimins, indicating that these strains have evolved independently. Strong nonrandom clustering of polymorphic sites indicates that the intimin genes are mosaics, suggesting that protein divergence has been accelerated by recombination and diversifying selection.  相似文献   

17.
In Gram-negative bacteria, the TonB-ExbB-ExbD inner membrane multiprotein complex is required for active transport of diverse molecules through the outer membrane. We present evidence that Serratia marcescens, like several other Gram-negative bacteria, has two TonB proteins: the previously characterized TonBSM, and also HasB, a newly identified component of the has operon that encodes a haemophore-dependent haem acquisition system. This system involves a soluble extracellular protein (the HasA haemophore) that acquires free or haemoprotein-bound haem and presents it to a specific outer membrane haemophore receptor (HasR). TonBSM and HasB are significantly similar and can replace each other for haem acquisition. However, TonBSM, but not HasB, mediates iron acquisition from iron sources other than haem and haemoproteins, showing that HasB and TonBSM only display partial redundancy. The reconstitution in Escherichia coli of the S. marcescens Has system demonstrated that haem uptake is dependent on the E. coli ExbB, ExbD and TonB proteins and that HasB is non-functional in E. coli. Nevertheless, a mutation in the HasB transmembrane anchor domain allows it to replace TonBEC for haem acquisition. As the change affects a domain involved in specific TonBEC-ExbBEC interactions, HasB may be unable to interact with ExbBEC, and the HasB mutation may allow this interaction. In E. coli, the HasB mutant protein was functional for haem uptake but could not complement the other TonBEC-dependent functions, such as iron siderophore acquisition, and phage DNA and colicin uptake. Our findings support the emerging hypothesis that TonB homologues are widespread in bacteria, where they may have specific functions in receptor-ligand uptake systems.  相似文献   

18.
Gram-negative bacteria contain multiple secretion pathways that facilitate the translocation of proteins across the outer membrane. The two-partner secretion (TPS) system is composed of two essential components, a secreted exoprotein and a pore-forming beta barrel protein that is thought to transport the exoprotein across the outer membrane. A putative TPS system was previously described in the annotation of the genome of Escherichia coli O157:H7 strain EDL933. We found that the two components of this system, which we designate OtpA and OtpB, are not predicted to belong to either of the two major subtypes of TPS systems (hemolysins and adhesins) based on their sequences. Nevertheless, we obtained direct evidence that OtpA and OtpB constitute a bona fide TPS system. We found that secretion of OtpA into the extracellular environment in E. coli O157:H7 requires OtpB and that when OtpA was produced in an E. coli K-12 strain, its secretion was strictly dependent on the production of OtpB. Furthermore, using OtpA/OtpB as a model system, we show that protein secretion via the TPS pathway is extremely rapid.  相似文献   

19.
Iron transport systems of Serratia marcescens.   总被引:2,自引:0,他引:2       下载免费PDF全文
A Angerer  B Klupp    V Braun 《Journal of bacteriology》1992,174(4):1378-1387
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.  相似文献   

20.
The ability of Haemophilus influenzae, H. parainfluenzae and H. paraphrophilus to utilize iron complexes, iron-proteins and exogenous microbial siderophores was evaluated. In a plate bioassay, all three species used not only ferric nitrate but also the iron chelates ferric citrate, ferric nitrilotriacetate and ferric 2,3-dihydroxybenzoate. Each Haemophilus species examined also used haemin, haemoglobin and haem-albumin as iron sources although only H. influenzae could acquire iron from transferrin or from haemoglobin complexed with haptoglobin. None of the haemophili obtained iron from ferritin or lactoferrin or from the microbial siderophores aerobactin or desferrioxamine B. However, the phenolate siderophore enterobactin supplied iron to both H. parainfluenzae and H. paraphrophilus, and DNA isolated from both organisms hybridized with a DNA probe prepared from the Escherichia coli ferric enterobactin receptor gene fepA. In addition, a monospecific polyclonal antiserum raised against the E. coli 81 kDa ferric enterobactin receptor (FepA) recognized an iron-repressible outer membrane protein (OMP) in H. parainfluenzae of between 80 and 82 kDa (depending on the strain). This anti-FepA serum did not cross-react with any of the OMPs of H. paraphrophilus or H. influenzae. The OMPs of each Haemophilus species were also probed with antisera raised against the 74 kDa Cir or 74 kDa IutA (aerobactin receptor) proteins of E. coli. Apart from one H. parainfluenzae strain (NCTC 10665), in which an OMP of about 80 kDa cross-reacted with the anti-IutA sera, no cross-reactivity was observed between Cir, IutA and the OMPs of H. influenzae, H. parainfluenzae or H. paraphrophilus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号