首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CHARGE syndrome is a well-established multiple-malformation syndrome with distinctive consensus diagnostic criteria. Characteristic associated anomalies include ocular coloboma, choanal atresia, cranial nerve defects, distinctive external and inner ear abnormalities, hearing loss, cardiovascular malformations, urogenital anomalies, and growth retardation. Recently, mutations of the chromodomain helicase DNA-binding protein gene CHD7 were reported to be a major cause of CHARGE syndrome. We sequenced the CHD7 gene in 110 individuals who had received the clinical diagnosis of CHARGE syndrome, and we detected mutations in 64 (58%). Mutations were distributed throughout the coding exons and conserved splice sites of CHD7. Of the 64 mutations, 47 (73%) predicted premature truncation of the protein. These included nonsense and frameshift mutations, which most likely lead to haploinsufficiency. Phenotypically, the mutation-positive group was more likely to exhibit cardiovascular malformations (54 of 59 in the mutation-positive group vs. 30 of 42 in the mutation-negative group; P=.014), coloboma of the eye (55 of 62 in the mutation-positive group vs. 30 of 43 in the mutation-negative group; P=.022), and facial asymmetry, often caused by seventh cranial nerve abnormalities (36 of 56 in the mutation-positive group vs. 13 of 39 in the mutation-negative group; P=.004). Mouse embryo whole-mount and section in situ hybridization showed the expression of Chd7 in the outflow tract of the heart, optic vesicle, facio-acoustic preganglion complex, brain, olfactory pit, and mandibular component of the first branchial arch. Microarray gene-expression analysis showed a signature pattern of gene-expression differences that distinguished the individuals with CHARGE syndrome with CHD7 mutation from the controls. We conclude that cardiovascular malformations, coloboma, and facial asymmetry are common findings in CHARGE syndrome caused by CHD7 mutation.  相似文献   

2.
3.
The chick homologue of the helix-loop-helix gene Id3 was isolated, and its expression pattern was analyzed during early stages of chick development. Chick Id3 is dynamically expressed in the olfactory, lens, and otic placodes. It is also observed in the epiphysis, nephric primordium, stomodeum, dermomyotome, distal branchial arches, dorsolateral hindbrain, foregut endoderm, dorsal spinal cord, and somites.  相似文献   

4.
5.
Immunofluorescence and immunoperoxidase labeling for fibronectin was used to study the early events of cephalic neural crest cell migration in avian embryos. Prior to crest cell appearance, fibronectin was associated with the basement membranes of all tissues. The loose mesenchymal cells were also surrounded by this glycoprotein. The crest cell individualization phase included a transient rounding up and a rapid increase in cell number in a very limited space. Whereas the neural tube basement membrane was not formed dorsally at the site of emergence of crest cells, it was partially fused laterally with the ectoderm basement membrane apparently preventing immediate crest cell emigration. Further increase in cell number occurred concomitantly with their penetration between the two developing basement membranes of the neural tube and the ectoderm. The localization of migrating crest cells is apparently greatly influenced by local interactions between the ectoderm and the neural tube, whose morphogenesis differs considerably at each axial level: at the mesencephalic-rhombencephalic levels, crest cells rapidly reached a cell-free space that was mostly devoid of fibronectin. Further migration occurred laterally in that space while pioneer crest cells became surrounded by fibronectin in their environment. Crest cells progressed as a confluent multicellular layer with an apparent velocity of 70 μm/hr. At the prosencephalic and median rhombencephalic levels, crest cells accumulated between the fibronectin-rich basement membranes of the ectoderm and the neural tube. Pioneer crest cells were arrested at the site of attachment of the ectoderm and the neural tube basement membranes (i.e., optic vesicles and otic placodes). Crest cells resumed their migration when more space became available during the constriction of the optic vesicles and the invagination of the otic placodes.  相似文献   

6.
Development of neural ectoderm, neural crest, and otic placode with special reference to a new placodal derivative, the ectodermal lining of the opercular cavity, is described in a teleost fish, the Atlantic cod Gadus morhua, from a stage-by-stage examination of embryonic development. The ectodermal lining of the opercular cavity forms by invagination of the otic placode. The neural plate “infolds” by a wave of cellular rearrangement that transforms the neural plate into a neural rod. This transformation creates a distinct dorsal ectodermal cell layer. When the neural rod is arranged as monostratified columnar cells in the forebrain and midbrain, dorsal ectoderm at the midbrain level thickens lateral to the neural rod to form a cell cluster—the presumptive neural crest and placode. Upon migration of the neural crest from the postoptic midbrain, the dorsolateral area of the dorsal ectoderm thickens and segregates from the neural crest as a placode that is continuous with the presumptive lens placode. As the neural crest migrates from the hindbrain, this placode extends along the hindbrain as a single continuous cluster of cells. At the onset of formation of the lens placode, this continuous placode becomes the placode in the postoptic area of the midbrain and separates into the otic placode at the hindbrain. The otic placode gives rise to the otic neuromast and probably the otic lateral line nerves rostrally and to the ectodermal cell lining of the opercular cavity and otic vesicles caudally. The opercular cavity forms by invagination of the otic placode, creating an internal lumen lined by ectoderm that becomes continuous with evaginated endodermal pharyngeal cells. Free neuromasts are observed along the trailing edge of the external opening of the opercular cavity, which lies horizontally, ventral to the otic vesicles. As embryos develop to hatching, the opening rotates and takes up a vertical position. The adult opercular apparatus, including associated bones and muscles, forms during larval stages. The otic neuromast may be a remnant of neuromasts in the spiracle organ. The spiracle opening lies between the mandibular and hyoid arches, whereas the opercular cavity opens between the hyoid and the first branchial arches. The spiracle opening is, therefore, not homologous with the external opening of the opercular cavity, although the cell lining of the spiracle opening may be of placodal origin. J Morphol 231:231–252, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
ActR-I is a type I serine/threonine kinase receptor which has been shown to bind activin and bone morphogenetic proteins (BMPs). To study the function of ActR-I, we have generated novel monoclonal antibodies that specifically recognize the extracellular domain of mouse ActR-I. We examined the level of ActR-I protein during mouse development by immunohistochemistry. We found that in the embryonic body, ActR-I protein first appears in a restricted part of the primitive streak region and is present throughout the length of notochord. Furthermore, ActR-I protein is expressed in the facial sensory organ primordia, including eye area, otic vesicle and olfactory placode, which all contain invaginating ectoderm. In addition, ActR-I is produced in pituitary primordium (Rathke's pouch), mammary buds and the epithelial layer of branchial arches. Interestingly, in the lens placodes and in early Rathke's pouch, ActR-I protein is transiently localized at the apical surface of the epithelial cells, indicating the presence of an apical-basal asymmetry in these cells.  相似文献   

8.
9.
We isolated the chick orthologue of the Id1 helix-loop-helix gene and analyzed its expression pattern during early chick embryo development by whole-mount in situ hybridization. The Id1 expression pattern is dynamic and confined to discrete locations including the neural plate border, prospective olfactory placode, hindbrain, mesenchyme of distal branchial arches and adjacent to placodes, and the distal mesoderm of the limb buds.  相似文献   

10.
Vertebrate craniofacial sensory organs derive from ectodermal placodes early in development. It has been suggested that all craniofacial placodes arise from a common ectodermal domain adjacent to the anterior neural plate, and a number of genes have been recently identified that mark such a 'pre-placodal' domain. However, the functional significance of this pre-placodal domain is still unclear. In the present study, we show that Fgf signaling is necessary and sufficient to directly induce some, but not all, markers of the otic placode in ectoderm taken from the pre-placodal domain. By contrast, ectoderm from outside this domain is not competent to express otic markers in response to Fgfs. Grafting na?ve ectoderm into the pre-placodal domain causes upregulation of pre-placodal markers within 8 hours, together with the acquisition of competence to respond to Fgf signaling. This suggests a two-step model of craniofacial placode induction in which ectoderm first acquires pre-placodal region identity, and subsequently differentiates into particular craniofacial placodes under the influence of local inducing signals.  相似文献   

11.
The Dlx5 gene encodes a Distal-less-related DNA-binding homeobox protein first expressed during early embryonic development in anterior regions of the mouse embryo. In later developmental stages, it appears in the branchial arches, the otic and olfactory placodes and their derivatives, in restricted brain regions, in all extending appendages and in all developing bones. We have created a null allele of the mouse Dlx5 gene by replacing exons I and II with the E. coli lacZ gene. Heterozygous mice appear normal. Beta-galactosidase activity in Dlx5+/- embryos and newborn animals reproduces the known pattern of expression of the gene. Homozygous mutants die shortly after birth with a swollen abdomen. They present a complex phenotype characterised by craniofacial abnormalities affecting derivatives of the first four branchial arches, severe malformations of the vestibular organ, a delayed ossification of the roof of the skull and abnormal osteogenesis. No obvious defect was observed in the patterning of limbs and other appendages. The defects observed in Dlx5-/- mutant animals suggest multiple and independent roles of this gene in the patterning of the branchial arches, in the morphogenesis of the vestibular organ and in osteoblast differentiation.  相似文献   

12.
13.
14.
Hindbrain neural crest cells were labeled with DiI and followed in ovo using a new approach for long-term time-lapse confocal microscopy. In ovo imaging allowed us to visualize neural crest cell migration 2-3 times longer than in whole embryo explant cultures, providing a more complete picture of the dynamics of cell migration from emergence at the dorsal midline to entry into the branchial arches. There were aspects of the in ovo neural crest cell migration patterning which were new and different. Surprisingly, there was contact between neural crest cell migration streams bound for different branchial arches. This cell-cell contact occurred in the region lateral to the otic vesicle, where neural crest cells within the distinct streams diverted from their migration pathways into the branchial arches and instead migrated around the otic vesicle to establish a contact between streams. Some individual neural crest cells did appear to cross between the streams, but there was no widespread mixing. Analysis of individual cell trajectories showed that neural crest cells emerge from all rhombomeres (r) and sort into distinct exiting streams adjacent to the even-numbered rhombomeres. Neural crest cell migration behaviors resembled the wide diversity seen in whole embryo chick explants, including chain-like cell arrangements; however, average in ovo cell speeds are as much as 70% faster. To test to what extent neural crest cells from adjoining rhombomeres mix along migration routes and within the branchial arches, separate groups of premigratory neural crest cells were labeled with DiI or DiD. Results showed that r6 and r7 neural crest cells migrated to the same spatial location within the fourth branchial arch. The diversity of migration behaviors suggests that no single mechanism guides in ovo hindbrain neural crest cell migration into the branchial arches. The cell-cell contact between migration streams and the co-localization of neural crest cells from adjoining rhombomeres within a single branchial arch support the notion that the pattern of hindbrain neural crest cell migration emerges dynamically with cell-cell communication playing an important guidance role.  相似文献   

15.
CHARGE syndrome is an autosomal dominant congenital disorder known to be caused by the haploinsufficiency of the CHD7 gene. Heterozygous mutations in the CHD7 gene have been identified in approximately 60–70% of patients clinically diagnosed with CHARGE syndrome. Although there have been many reports on the mutational spectrum of the CHD7 gene in patients with CHARGE syndrome worldwide, little is known about this syndrome in the Korean population. In this study, three Korean patients with CHARGE syndrome including one patient with Patau syndrome were evaluated for genetic analysis of the CHD7 gene using direct sequencing of all 38 exons and the flanking intronic regions. One nonsense and two novel missense mutations were identified in the CHD7 gene. Clinical symptoms caused by the missense mutations were much milder compared to the nonsense mutation, confirming the previously determined genotype–phenotype correlation in CHARGE syndrome. Our study demonstrates the importance of mutational screening of CHD7 in patients who have been diagnosed with other syndromes but display clinical features of CHARGE syndrome.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号