首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine cardiac troponin isolated in a highly phosphorylated form shows four 31P-NMR signals [Beier, N., Jaquet, K., Schnackerz, K. & Heilmeyer, L.M.G. Jr (1988) Eur. J. Biochem. 176, 327-334]. Troponin I, which contains phosphate covalently linked to serine-23 and/or -24 [Swiderek, K., Jaquet, K., Meyer, H. E. & Heilmeyer, L. M. G. Jr (1988) Eur. J. Biochem. 176, 335-342], shows three resonances. Mg2(+)-saturation of holotroponin shifts these troponin I resonances to higher fields. Direct binding of Mg2+ to the phosphate groups can be excluded. Both these serine residues of troponin I, 23 and 24, are substrates for cAMP- and cGMP-dependent protein kinases as well as for protein kinase C. Isolated bovine cardiac troponin T contains 1.5 mol phosphoserine/mol protein, indicating that minimally two serine residues are phosphorylated. One phosphoserine residue is located at the N-terminus. An additional phosphoserine is located in the C-terminal cyanogen bromide fragment, CN4, which contains covalently bound phosphate. Protein kinase C phosphorylates serine-194, thus demonstrating exposure of this residue on the surface of holotoponin.  相似文献   

2.
R C Gupta  E G Kranias 《Biochemistry》1989,28(14):5909-5916
A Ca2+-calmodulin-dependent protein kinase was purified to apparent homogeneity from the cytosolic fraction of canine myocardium, with phospholamban as substrate. Purification involved sequential chromatography on DEAE-cellulose, calmodulin-agarose, DEAE-Bio-Gel A, and phosphocellulose. This procedure resulted in a 987-fold purification with a 5.4% yield. The purified enzyme migrated as a single band on native polyacrylamide gels, and it exhibited an apparent molecular weight of 550,000 upon gel filtration. Gel electrophoresis under denaturing conditions revealed a single protein band with Mr 55,000. The purified kinase could be autophosphorylated in a Ca2+-calmodulin-dependent manner, and under optimal conditions, 6 mol of Pi was incorporated per mole of 55,000-dalton subunit. The activity of the enzyme was dependent on Ca2+, calmodulin, and ATP.Mg2+. Other ions which could partially substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations were Sr2+ greater than Mn2+ greater than Zn2+ greater than Fe2+. The substrate specificity of the purified Ca2+-calmodulin-dependent protein kinase for cardiac proteins was determined by using phospholamban, troponin I, sarcoplasmic reticulum membranes, myofibrils, highly enriched sarcolemma, and mitochondria. The protein kinase could only phosphorylate phospholamban and troponin I either in their purified forms or in sarcoplasmic reticulum membranes and myofibrils, respectively. Exogenous proteins which could also be phosphorylated by the purified protein kinase were skeletal muscle glycogen synthase greater than gizzard myosin light chain greater than brain myelin basic protein greater than casein. However, phospholamban appeared to be phosphorylated with a higher rate as well as affinity than glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1. Porcine cardiac native tropomyosin was phosphorylated by bovine cardiac 3':5'-cyclic AMP-dependent protein kinase. Most of the phosphate incorporation was observed in troponin I, the maximum of which was 0.7 mol of Pi per mol of troponin I. 2. In the presence of phosphorylated native tropomyosin, actomyosin ATPase activity was 15-40% lower than that in the presence of the unphosphorylated preparation at all calcium ion concentrations (1.5 x 10(-8) M-2.4 x 10(-5) M). Half-maximum activation of ATPase was obtained with a concentration of 7 x 10(-7) M Ca2+ (unphosphorylated) and 1.3 x 10(-6) M Ca2+ (phosphorylated), respectively. Maximum ATPase activity was reached with 3 x 10(-6) M Ca2+ (unphosphorylated) and 1.0 x 10(-5) M Ca2+ (phosphorylated). 3. Porcine cardiac troponin I isolated by affinity chromatography inhibited ATPase activity of desensitized actomyosin in the presence of tropomyosin. There was little difference between phosphorylated troponin I and a control preparation with regard to the inhibitory effect of ATPase activity. 4. Troponin C from rabbit skeletal muscle neutralized the inhibitory effect of troponin I. The minimum amount of troponin C required for complete neutralization was approximately equimolar to troponin I. The inhibitory effect of phosphorylated troponin I was neutralized by troponin C less effectively than that of unphosphorylated preparation.  相似文献   

4.
Isolated bovine cardiac troponin C forms dimers in presence of Mg2+ dependent on the protein concentration which has been determined by sedimentation velocity and sedimentation equilibrium. Dimer formation is correlated with a decrease in Ca2+ affinity. Positive inotropic drugs (benzimidazol derivatives) influence Ca2+ sensitivity either by changing the association state or by affecting the Ca2+ binding properties directly.  相似文献   

5.
The phosphorylation of the whole troponin complex and of the cardiac and skeletal troponin components by Ca2+-phospholipid-dependent protein kinase was studied. The activity of enzyme isolated from rat brain by ion-exchange chromatography on DEAE-Sephadex and by affinity chromatography on phosphatidylserine immobilized on polyacrylamide gel was shown to be completely dependent on Ca2+ and phospholipids and was equal to 0.4-0.6 mumol of phosphate/min.mg protein with histone H1 as substrate. The resulting preparation of Ca2+-phospholipid-dependent protein kinase was able to phosphorylate the isolated troponin I; the amount of phosphate transferred per mol of cardiac and skeletal troponin I was equal to 1.1 and 0.4, respectively. The maximal degree of phosphorylation of isolated troponin T by Ca2+-phospholipid-dependent protein kinase was 0.6 mol of phosphate per mol of troponin T both for skeletal and cardiac proteins. The rate and degree of phosphorylation were independent of the initial level of troponin T phosphorylation. Ca2+-phospholipid-dependent protein kinase did not phosphorylate the first serine residue of troponin T, i.e., the site which was phosphorylated in the highest degree after isolation of troponin T from skeletal muscles. The data obtained and the fact that the rate and degree of phosphorylation of troponins I and T within the whole troponin complex are 10-20 times less than those for isolated components provide little evidence for the participation of protein kinase C in troponin phosphorylation in vivo.  相似文献   

6.
Phosphorylation of the cardiac specific amino-terminus of troponin I has been demonstrated to reduce the Ca2+ affinity of the cardiac troponin C regulatory site. Recombinant N-terminal cardiac troponin I proteins, cardiac troponin I(33-80), cardiac troponin I(1-80), cardiac troponin I(1-80)DD and cardiac troponin I(1-80)pp, phosphorylated by protein kinase A, were used to form stable binary complexes with recombinant cardiac troponin C. Cardiac troponin I(1-80)DD, having phosphorylated Ser residues mutated to Asp, provided a stable mimetic of the phosphorylated state. In all complexes, the N-terminal domain of cardiac troponin I primarily makes contact with the C-terminal domain of cardiac troponin C. The nonphosphorylated cardiac specific amino-terminus, cardiac troponin I(1-80), was found to make additional interactions with the N-terminal domain of cardiac troponin C.  相似文献   

7.
A human skeletal actin.tropomyosin.troponin complex was phosphorylated in the presence of [gamma-32 P]ATP, Mg2+, adenosine 3':5'-monophosphate (cyclic AMP) and cyclic AMP-dependent protein kinase (protein kinase). Phosphorylation was not observed when the actin complex was incubated in the absence of protein kinase or 1 microM cyclic AMP. In the presence of 10(-7) M Ca2+ and protein kinase 0.1 mole of [32P]phosphate per 196 000 g of protein was incorporated. This was two-fold higher than the [32P]phosphate content of a rabbit skeletal actin complex but two-fold lower than that of a bovine cardiac actin complex. At high Ca2+, 5.10(-5) M, little change in the phosphorylation of a human skeletal actin complex occurred. Phosphoserine and phosphothreonine were identified in the [32P]phosphorylated actin complex. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that 60% of the label was associated with the tropomyosin binding component of troponin. The inhibitory component of troponin contained 16% of the bound [32P]phosphate. Increasing the Ca2+ concentration did not significantly decrease the [32P]phosphate content of the phosphorylated proteins in the actin complex. No change in the distribution of phosphoserine or phosphothreonine was observed. Half maximal calcium activation of the ATPase activity of reconstitute human skeletal actomyosin made with the [32P] phosphorylated human skeletal actin complex was the same as a reconstituted actomyosin made with an actin complex incubated in the absence of protein kinase at low or high Ca2+.  相似文献   

8.
Fast skeletal and cardiac troponin C (TnC) contain two high affinity Ca2+/Mg2+ binding sites within the C-terminal domain that are thought to be important for association of TnC with the troponin complex of the thin filament. To test directly the function of these high affinity sites in cardiac TnC they were systematically altered by mutagenesis to generate proteins with a single inactive site III or IV (CBM-III and CBM-IV, respectively), or with both sites III and IV inactive (CBM-III-IV). Equilibrium dialysis indicated that the mutated sites did not bind Ca2+ at pCa 4. Both CBM-III and CBM-IV were similar to the wild type protein in their ability to regulate Ca(2+)-dependent contraction in slow skeletal muscle fibers, and Ca(2+)-dependent ATPase activity in fast skeletal and cardiac muscle myofibrils. The mutant CBM-III-IV is capable of regulating contraction in permeabilized slow muscle fibers but only if the fibers are maintained in a contraction solution containing a high concentration of the mutant protein. CBM-III-IV also regulates myofibril ATPase activity in fast skeletal and cardiac myofibrils but only at concentrations 10-100-fold greater than the normal protein. The pCa50 and Hill coefficient values for Ca(2+)-dependent activation of fast skeletal muscle myofibril ATPase activity by the normal protein and all three mutants are essentially the same. Competition between active and inactive forms of cardiac and slow TnC in a functional assay demonstrates that mutation of both sites III and IV greatly reduces the affinity of cardiac and slow TnC for its functionally relevant binding site in the myofibrils. The data indicate that although neither high affinity site is absolutely essential for regulation of muscle contraction in vitro, at least one active C-terminal site is required for tight association of cardiac troponin C with myofibrils. This requirement can be satisfied by either site III or IV.  相似文献   

9.
The effects of pH,Mg2+, and ionic strength on Ca2+ binding to rabbit skeletal troponin C were studied by using a Ca2+ sensitive electrode. Troponin C has two high affinity and two low affinity sites and the Ca2+ affinity of both sites was increased by increasing pH in a pH range from pH 5.6 to 10.4. The affinity was decreased by increasing ionic strength. The change of the Ca2+ affinity can be explained by the electrostatic interaction between Ca2+ and the protein. At alkaline pH, the four Ca2+ binding sites bind Ca2+ with the same affinity and the distinction between the high and the low affinity sites vanished. This result shows that the difference of the Ca2+ affinity is owing to differences of the secondary or the tertiary structure of the Ca2+ binding sites, not owing to a difference of the primary structures of the Ca2+ binding sites. The two high affinity sites bound two Ca2+ ions cooperatively in neutral pH. The cooperativity was diminished at both acidic and alkaline pH. Mg2+ ion decreased the affinity of the low affinity sites.  相似文献   

10.
Calcium binding to troponin C and troponin was examined by a metallochromic indicator method under various conditions to obtain a further understanding of the regulatory roles of these proteins in muscle contraction. Troponin C has four Ca binding sites, of which 2 sites have a high affinity of 4.5 X 10(6) M-1 for Ca2+ and the other 2 sites have a low affinity of 6.4 X 10(4) M-1 in a reaction medium consisting of 100 mM KCl, 20 mM MOPS-KOH pH 6.80 and 0.13 mM tetramethylmurexide at 20 degrees C. Magnesium also binds competitively to both the high and low affinity sites: the apparent binding constants are 1,000 M-1 and 520 M-1, respectively. Contrary to the claim by Potter and Gergely (J. Biol. Chem. 250, 4628-4633, 1975), the low affinity sites are not specific only for Ca2+. The high and low affinity sites of troponin C showed different dependence on the ionic strength: the high affinity sites were similar to GEDTA, while the low affinity sites were similar to calmodulin, which has a steeper ionic strength dependence than GEDTA. Ca binding to troponin C was not affected by change of pH between 6.5 and 7.2. Troponin I enhanced the apparent affinity of troponin C for Ca2+ to a value similar to that for troponin. Trifluoperazine also increased Ca binding to troponin C. Troponin has four Ca binding sites as does troponin C, but the affinities are so high that the precise analysis was difficult by this method. The apparent binding constants for Ca2+ and Mg2+ were determined to be 3.5 X 10(6) M-1 and 440 M-1, respectively, for low affinity sites under the same conditions as for troponin C, being independent of change in pH between 6.5 and 7.2. The competitive binding of Mg2+ to the low affinity sites of troponin is consistent with the results of Kohama (J. Biochem. 88, 591-599, 1980). The estimate for the high affinity sites is compatible with the reported results.  相似文献   

11.
Protein kinase C phosphorylation of cardiac troponin, the Ca(2+)-sensing switch in muscle contraction, is capable of modulating the response of cardiac muscle to a Ca(2+) ion concentration. The N-domain of cardiac troponin I contains two protein kinase C phosphorylation sites. Although the physiological consequences of phosphorylation at Ser(43)/Ser(45) are known, the molecular mechanisms responsible for these functional changes have yet to be established. In this work, NMR was used to identify conformational and dynamic changes in cardiac troponin C upon binding a phosphomimetic troponin I, having Ser(43)/Ser(45) mutated to Asp. Chemical shift perturbation mapping indicated that residues in helix G were most affected. Smaller chemical shift changes were observed in residues located in the Ca(2+)/Mg(2+)-binding loops. Amide hydrogen/deuterium exchange rates in the C-lobe of troponin C were compared in complexes containing either the wild-type or phosphomimetic N-domain of troponin I. In the presence of a phosphomimetic domain, exchange rates in helix G increased, whereas a decrease in exchange rates for residues mapping to Ca(2+)/Mg(2+)-binding loops III and IV was observed. Increased exchange rates are consistent with destabilization of the Thr(129)-Asp(132) helix capping box previously characterized in helix G. The perturbation of helix G and metal binding loops III and IV suggests that phosphorylation alters metal ion affinity and inter-subunit interactions. Our studies support a novel mechanism for protein kinase C signal transduction, emphasizing the importance of C-lobe Ca(2+)/Mg(2+)-dependent troponin interactions.  相似文献   

12.
Troponin from the myocardium and skeletal muscles: structure and properties   总被引:1,自引:0,他引:1  
The literary and experimental data on the structure and properties of cardiac and skeletal muscle troponin are reviewed. The cation--binding sites of cardiac and skeletal muscle troponin C are distinguished by specificity; the sites localized in the C-terminal part of the protein molecule can bind both Ca2+ and Mg2+, whereas the sites localized at the N-end specifically bind Ca2+. The use of bifunctional reagents revealed a number of helical sites within the structure of cardiac troponin C (residues 84-92 and 150-158) and of skeletal muscle troponin C (residues 90-98 and 125-136). A comparison of experimental data with the results of an X-ray analysis testifies to the presence in the central part of the troponin C molecule of a long alpha-helical sequence responsible for troponin C interaction with the inhibiting peptide of troponin I. The efficiency of interaction of troponin components depends on Ca2+ concentration; the integrity of the overall troponin complex is mainly provided for by troponin C interaction with troponin I and by troponin I interaction with troponin T. The interaction between troponins T and C is relatively weak, especially in the case of cardiac troponin components. Both skeletal and cardiac muscles synthesize several troponin T isoforms differing in length and amino acid composition of N-terminal 40-60 member peptides. Troponin T isoforms can undergo phosphorylation by several protein kinases. The single site of troponin T which exists in a phosphorylated state in vivo (residue Ser-1) undergoes phosphorylation by specific protein kinase (troponin T kinase) related to casein kinases II. It was assumed that the phosphorylation of Ser-1 residue of troponin T as well as the synthesis of troponin T isoforms differing in the structure of the N-terminal peptide, provides for the regulation of interaction between two neighbouring tropomyosin molecules.  相似文献   

13.
Porcine left ventricular cardiac myosin and rabbit white skeletal myosin were phosphorylated by rabbit skeletal myosin light chain kinase and their Ca2+ binding properties were examined by equilibrium dialysis techniques. No significant effect of phosphorylation on the Ca2+ binding properties of these myosins was observed. Both types of striated muscle myosins bound approximately 2 mol of Ca2+/mol of myosin with similar affinities of 3 x 10(7) M-1. In the presence of 3 x 10(-4) M Mg2+ the myosins bound Ca2+ with a reduced affinity of 3 to 4 x 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the binding sites on myosin, the changes in Ca2+ binding can be accounted for by a Mg2+ affinity of 2.5 to 3.0 x 10(5) M-1.  相似文献   

14.
The cardiac troponin (Tn) complex, consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT), has been reconstituted from purified troponin subunits isolated from bovine heart muscle. The Ca2+-binding properties of cardiac Tn were determined by equilibrium dialysis using either EGTA or EDTA to regulate the free Ca2+ concentration. Cardiac Tn binds 3 mol Ca2+/mol and contains two Ca2+-binding sites with a binding constant of 3 X 10(8) M-1 and one binding site with a binding constant of 2 X 10(6) M-1. In the presence of 4 mM MgC12, the binding constant of the sites of higher affinity is reduced to 3 X 10(7) M-1, while Ca2+ binding to the site at the lower affinity is unaffected. The two high affinity Ca2+-binding sites of cardiac Tn are analogous to the two Ca2+-Mg2+ sites of skeletal Tn, while the single low affinity site is similar to the two Ca2+-specific sites of skeletal Tn (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4625-5633). The Ca2+-binding properties of the complex of TnC and TnI (1:1 molar ratio) were similar to those of Tn. Cardiac TnC also binds 3 mol of Ca2+/mol and contains two sites with a binding constant of 1 X 10(7) M-1 and a single site with a binding constant of 2 X 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the high affinity sites of TnC and Tn, the binding constants for Mg2+ were 0.7 and 3.0 X 10(3) M-1, respectively. The Ca2+ dependence of cardiac myofibrillar ATPase activity was similar to that of an actomyosin preparation regulated by the reconstituted troponin complex. Comparison by the Ca2+-binding properties of cardiac Tn and the cardiac myofibrillar ATPase activity as a function of [Ca2+] and at millimolar [Mg2+] suggests that activation of the ATPase occurs over the same range of [Ca2+] where the Ca2+-specific site of cardiac Tn binds Ca2+.  相似文献   

15.
Cardiac thin filaments contain many troponin C (TnC) molecules, each with one regulatory Ca2+ binding site. A statistical mechanical model for the effects of these sites is presented and investigated. The ternary troponin complex was reconstituted with either TnC or the TnC mutant CBMII, in which the regulatory site in cardiac TnC (site II) is inactivated. Regardless of whether Ca2+ was present, CBMII-troponin was inhibitory in a thin filament-myosin subfragment 1 MgATPase assay. The competitive binding of [3H]troponin and [14C]CBMII-troponin to actin.tropomyosin was measured. In the presence of Mg2+ and low free Ca2+ they had equal affinities for the thin filament. When Ca274+ was added, however, troponin's affinity for the thin filament was 2.2-fold larger for the mutant than for the wild type troponin. This quantitatively describes the effect of regulatory site Ca2+ on troponin's affinity for actin.tropomyosin; the decrease in troponin-thin filament binding energy is small. Application of the theoretical model to the competitive binding data indicated that troponin molecules bind to interdependent rather than independent sites on the thin filament. Ca2+ binding to the regulatory site of TnC has a long-range rather than a merely local effect. However, these indirect TnC-TnC interactions are weak, indicating that the cooperativity of muscle activation by Ca2+ requires other sources of cooperativity.  相似文献   

16.
L Massom  H Lee  H W Jarrett 《Biochemistry》1990,29(3):671-681
Binding of trifluoperazine (TFP), a phenothiazine tranquilizer, to porcine brain calmodulin (CaM) and rabbit skeletal muscle troponin C (Tn C) was measured by an automated high-performance liquid chromatography binding assay using a molecular sieving column; 10 micrograms of either protein per injection is sufficient for determining TFP binding, and results are comparable to those obtained by equilibrium dialysis. Very little binding was observed to either protein in the absence of Ca2+ while in the presence of Ca2+ both proteins bind 4 equiv of TFP. Other characteristics of TFP binding however are different for each protein. For CaM, half-maximal binding occurs at 5.8 microM TFP, the Hill coefficient is 0.82, and the fit of the data to the Scatchard equation is consistent with four independent TFP-binding sites. Binding of one melittin displaces two TFP from CaM. Thus, there are two recognizable classes of TFP-binding sites: those that are displaced by melittin and those that are not. TFP causes an increase in the Ca2+ affinity of CaM, and three Ca2+ must be bound to CaM for TFP binding to occur. The studies also yielded a measure of the intrinsic affinity of three of CaM's Ca2(+)-binding sites that is in agreement with previous reports. For troponin C, half-maximal binding occurs at 16 microM TFP, the Hill coefficient is 1.7, and the data best fit the Adair equation for four binding sites. The measured constants K1, K2, K3, and K4 were 2.5 X 10(4), 6.6 X 10(3), 5.8 X 10(5), and 2.0 X 10(5) M-1, respectively, in 1 mM Ca2+ and were similar when Mg2+ was additionally included. TFP also increases troponin C's Ca2+ affinity, and it is the low-affinity, Ca2(+)-specific binding sites that are affected. These studies yielded a measure of the intrinsic affinity of these Ca2(+)-binding sites that is in agreement with previous measurements.  相似文献   

17.
The trigger Ca2+-binding sites in troponin C, those which initiate muscle contraction, are thought to be the first two of four potential sites (sites I-IV). In cardiac troponin C, the first Ca2+-binding site is inactive, and initiation of contraction in cardiac muscle appears to involve only the second site. To study this phenomenon and associated Ca2+-dependent protein conformational changes in cardiac troponin C, the cDNA for the chicken protein was incorporated into a bacterial expression plasmid to allow site-specific mutagenesis. Ca2+-binding site I was activated by deletion of Val-28 and conversion of amino acids 29-32 to those found at the first four positions in the active site I of fast skeletal troponin C. In a series of proteins, Ca2+-binding site II was inactivated by mutation of amino acids Asp-65, Asp-67, and Gly-70. All mutated proteins exhibited the predicted calcium-binding characteristics. The single mutation of converting Asp-65 to Ala was sufficient to inactivate site II. Ca2+-dependent conformational changes in the normal and mutated proteins were monitored by labeling with a sulfhydryl-specific fluorescent dye. Activation of Ca2+-binding site I or inactivation of site II, eliminated the large Ca2+-dependent increase in fluorescence seen in the wild type protein and there was, instead, a Ca2+-dependent decrease in fluorescence. All mutant proteins could associate with troponin I and troponin T to form a troponin complex. Activation of Ca2+-binding site I changed the characteristics of contraction in skinned slow skeletal muscle fibers such that the response to Ca2+ was more cooperative. Inactivation of Ca2+-binding site II abolished Ca2+-dependent contraction in skinned muscle fibers. The data provide a direct demonstration that Ca2+-binding site II in cardiac troponin C is essential for triggering muscle contraction and support the hypothesis that site I functions to modify the characteristics of contraction.  相似文献   

18.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule.  相似文献   

19.
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase.  相似文献   

20.
Cardiac troponin I is a phosphorylation target for endothelin-activated protein kinase C. Earlier work in cardiac myocytes expressing nonphosphorylatable slow skeletal troponin I provided evidence that protein kinase C-mediated cardiac troponin I phosphorylation accelerates relaxation. However, replacement with the slow skeletal isoform also alters the myofilament pH response and the Ca2+ transient, which could influence endothelin-mediated relaxation. Here, differences in the Ca2+ transient could not explain the divergent relaxation response to endothelin in myocytes expressing cardiac versus slow skeletal troponin I nor could activation of Na+/H+ exchange. Three separate clusters within cardiac troponin I are phosphorylated by protein kinase C, and we set out to determine the contribution of the Thr144 and Ser23/Ser24 clusters to the endothelin-mediated contractile response. Myocyte replacement with a cardiac troponin I containing a Thr144 substituted with the Pro residue found in slow skeletal troponin I resulted in prolonged relaxation in response to acute endothelin compared with control myocytes. Ser23/Ser24 also is a target for protein kinase C phosphorylation of purified cardiac troponin I, and although this cluster was not acutely phosphorylated in intact myocytes, significant phosphorylation developed within 1 h after adding endothelin. Replacement of Ser23/Ser24 with Ala indicated that this cluster contributes significantly to relaxation during more prolonged endothelin stimulation. Overall, results with these mutants provide evidence that Thr144 plays an important role in the acute acceleration of relaxation, whereas Ser23/Ser24 contributes to relaxation during more prolonged activation of protein kinase C by endothelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号