首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Litter decomposition: a Russian matriochka doll   总被引:1,自引:0,他引:1  
Litter is decomposed in a sequential process. In a concerted action animals and microorganisms break down complex organic matter to mineral products. Higher animals fragment and partially solubilize plant material. Subsequently, microorganisms (protozoa, fungi and bacteria) further degrade the organic matter to end products that cannot be metabolized further under the prevailing environmental conditions. During the process of decomposition some parts of the organic substrate and the excess energy are used to form new biomass. Some free organic intermediates may interact chemically to form relatively recalcitrant organic matter, such as humic substances. The degree of mineralization depends strongly on the type of organic matter in the litter and the physical and chemical conditions of the environment.  相似文献   

2.
Organic matter release by scleractinian corals fulfils an important ecological role as energy carrier and particle trap in reef ecosystems, but the hypothetically stimulating impact of water currents, an essential and ubiquitous environmental factor in coral reefs, on this process has not been investigated yet. This study therefore quantifies organic matter release by two species of scleractinian corals subjected to ambient water current velocities ranging from 4 to 16?cm?s?1 using closed-system flow-through chambers. Findings revealed that particulate organic matter (POM) concentration was significantly increased in the flow-through chambers in all investigated coral species compared to still water conditions, while no effect on dissolved organic carbon (DOC) concentration could be observed. These results suggest that POM release by corals may be controlled by hydro-mechanical impacts, while DOC fluxes are rather influenced by the physiological condition of the corals. Hence, this study indicates that previous POM release quantification results are conservative estimates and may have underestimated in situ POM release through corals in reef environments. The contribution of coral-derived POM to biogeochemical cycles in reef ecosystems, therefore, may be more pronounced than already assumed.  相似文献   

3.
A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H(2) and CO(2), which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H(2)-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H(2)-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.  相似文献   

4.
Anaerobic digestion of cattle manure was studied under thermophilic and mesophilic conditions with the purpose of evaluating the effect of temperature on the quality of the final digestate. Non-isothermal thermogravimetric kinetic analysis was applied for assessing organic matter conversion of biological stabilization. The mathematical approximation proves to be a useful tool for evaluating the differences attained during biological degradation. The anaerobic digestion of the organic substrate resulted in a reduction of the activation energy value obtained from the different applied kinetic models. Results obtained from thermal kinetic analysis were in accordance with those from the monitoring of the anaerobic digestion process. The higher values of methane yield reported for the mesophilic digestion in comparison to that of the thermophilic indicated a greater capability of the former process in the utilization of substrate and thus a higher conversion of organic matter which can be quantified by the activation energy value.  相似文献   

5.
Soil nematodes are fundamentally aquatic animals, requiring water to move, feed, and reproduce. Nonetheless, they are ubiquitous in desert soils because they can enter an anhydrobiotic state that allows them to persist when water is biologically unavailable. In the hyper‐arid Namib Desert of Namibia, rain is rare, but fog routinely moves inland from the coast and supports plant and animal life. Very little is understood about how this fog may affect soil organisms. We investigated the role of fog moisture in the ecology of free‐living, soil nematodes across an 87‐km fog gradient in the gravel plains of the Namib Desert. We found that nematodes emerged from anhydrobiosis and became active during a fog event, suggesting that they can utilize fog moisture to survive. Nematode abundance did not differ significantly across the fog gradient and was similar under shrubs and in interplant spaces. Interplant soils harbor biological soil crusts that may sustain nematode communities. As fog declined along the gradient, nematode diversity increased in interplant soils. In areas where fog is rare, sporadic rainfall events can stimulate the germination and growth of desert ephemerals that may have a lasting effect on nematode diversity. In a 30‐day incubation experiment, nematode abundance increased when soils were amended with water and organic matter. However, these responses were not evident in field samples, which show no correlations among nematode abundance, location in the fog gradient, and soil organic matter content. Soil nematodes are found throughout the Namib Desert gravel plains under a variety of conditions. Although shown to be moisture‐ and organic matter‐limited and able to use moisture from the fog for activity, variation in fog frequency and soil organic matter across this unique ecosystem may be biologically irrelevant to soil nematodes in situ.  相似文献   

6.
Fermentative and methanogenic bacteria have been found repeatedly as important members of microbial flora in anoxic zones of the subsurface—in pristine as well as in contaminated groundwater aquifers. These bacteria, which together with obligate proton reducers form complex methanogenic communities, are significant as decomposers of organic matter under conditions of exogenous electron acceptor depletion. Their metabolic activity has been demonstrated in laboratory microcosms derived from aquifer material, and also in the subsurface in situ. Methanogenic communities have been shown to transform numerous organic pollutants, or even to completely degrade these compounds with the production of carbon dioxide and methane. Depending on the chemical structure of the pollutant, such a compound can be used as an electron donor and a carbon/energy source for fermentative microorganisms (which is typically the case with highly reduced compounds); alternatively, a highly oxidized pollutant can be used as a potential electron acceptor or electron sink. This review addresses fermentative/methanogenic degradation of chlorinated and nonchlorinated aromatic hydrocarbons and phenols by subsurface microorganisms; for comparison, it briefly relates also other types of anaerobic transformations (under sulfate‐reducing, iron‐reducing, and denitrifying conditions). Furthermore, it outlines transformation pathways, those that are proposed as well as those that are already partially proved, for aromatic hydrocarbons and phenols under fermentative/methanogenic conditions; finally, it discusses the relevance of these processes to bioremediation of contaminated groundwater aquifers.  相似文献   

7.
In a study to determine the relative importance of various apparent molecular weight fractions to the metabolism (heat output) of attached microorganisms in rivers, a marked lack of response to gross changes in the external organic matter supply was noted over the course of several hours. Such a response by a mixed autotrophic-heterotrophic community could be attributed to the autotrophs being the sole organic energy source for the heterotrophs. However, substantial metabolic activities were noted in attached microbial communities grown in darkness (algae free), thus indicating that riverborne organic matter was a major energy source. This paradox was attributed to a proposed lag in the availability of dissolved and colloidal organic matter to the heterotrophic microorganisms.  相似文献   

8.
SUMMARY. 1. The sulphate reduction capacity of six shallow soft water sediments, differing in pH and organic matter content, was studied under controlled pH adjustments ranging from pH 3 to pH 8.
2. In the acid sediments, relatively rich in organic matter, the sulphate reduction capacity reached values of 0.09-0.12 μmol g−1 d−1. In the circumneutral mineral sediments the values ranged between 0.04 and 0.08 μmol g−1 d−1.
3. The latter group of sediments was very sensitive to the effects of experimental acidification as sulphate reduction was almost fully inhibited when pH decreased from 7 to 5. In the acid sediments inhibition occurred at lower pH values, in the range pH 5 to pH 3.
4. Sulphate reduction governed the production of free sulphides, whereas putrefaction processes were only of minor importance. It is suggested that in acid sediments, relatively rich in organic matter, the sulphate reducing bacterial population is less sensitive to acidification than in circumneutral mineral sediments.
5. The presence of organic matter appeared to be important in counteracting the inhibiting effects of acidification on sulphate reduction. This is important for the in situ sulphate reduction in sediments of soft waters which become enriched with organic matter during the long-term process of acidification.  相似文献   

9.
The paper presents a mini-review on EDDS use for ex situ chemical washing of potentially toxic metal contaminated soil. The attention is focused, initially, on studies aimed at verifying the biodegradability and the toxicity of free EDDS and metal-EDDS complexes. Free EDDS is found to be highly biodegradable. Metal-EDDS complexes, instead, are indicated as having variable biodegradability, but their toxicity is found to be always very low. The results obtained during soil washing treatments are successively reviewed. Removal percentages as high as 80–90 % are indicated as maximum obtained values. The extraction process is initially very fast, and then tends to slow down reaching the final equilibrium in about 1 week or even more. Generally acidic conditions are favourable to enhance the process. The influence of organic matter on process efficiency and the interactions between EDDS and soil minerals are also considered, revealing variable effects of the organic matter presence depending on its characteristics, and highlighting the possibility of iron and aluminium washing off during the remediation treatment.  相似文献   

10.
Recent investigations of anchialine caves and sinkholes have identified complex food webs dependent on detrital and, in some cases, chemosynthetically produced organic matter. Chemosynthetic microbes in anchialine systems obtain energy from reduced compounds produced during organic matter degradation (e.g., sulfide, ammonium, and methane), similar to what occurs in deep ocean cold seeps and mud volcanoes, but distinct from dominant processes operating at hydrothermal vents and sulfurous mineral caves where the primary energy source is mantle derived. This review includes case studies from both anchialine and non-anchialine habitats, where evidence for in situ chemosynthetic production of organic matter and its subsequent transfer to higher trophic level metazoans is documented. The energy sources and pathways identified are synthesized to develop conceptual models for elemental cycles and energy cascades that occur within oligotrophic and eutrophic anchialine caves. Strategies and techniques for testing the hypothesis of chemosynthesis as an active process in anchialine caves are also suggested.  相似文献   

11.
贵州山区土壤中微生物担是能源物质碳流动的源与汇   总被引:7,自引:0,他引:7  
在传统的农业生态系统的研究中 ,主要精力放在营养物 (如N)上 ,认为它们是限制生产力的因素 ;而往往忽略了土壤中碳的重要性 ,认为收获不受C限制的影响。然而 ,碳循环中的有机碳的分解作用部分控制着出现在地表下和显露在地表上的农业过程[4]。土壤中所储存的有机质 ,其数量既反映土壤从植物残留物的输入所获得的有机质与微生物群落的能量和营养需求之间的平衡 ,又反映植物对营养物的需求与有机质分解作用之间的平衡。因此 ,土壤中碳的平衡能反映出有机质中能量物质的储存[5]。大部分由光合作用形成的碳 ,是通过地表下的生态系统来流动的[…  相似文献   

12.
The present study was conducted to examine the changes in some key metabolites in drought-stressed sunflower plants supplied with glycine betaine externally. Imposition of drought stress at the vegetative or reproductive growth stages decreased the plant dry matter production and increased the accumulation of organic solutes (glycine betaine, proline, soluble proteins, free amino acids and soluble sugars) in two sunflower lines, i.e., Glushan-98 and Suncross. In general, decrease in dry matter production and increase in the endogenous levels of organic solutes, were more pronounced when drought stress applied at the vegetative stage than at the reproductive stage. Glycine betaine applied as a pre-sowing seed treatment was not found to be effective in reducing the negative effects of drought stress in sunflower plants. Foliar application of GB further enhanced the leaf endogenous levels of GB, soluble proteins and total soluble sugars in drought stressed plants without exerting any negative effects on other osmotica. However, this GB-induced increase in endogenous levels of organic solutes was found to be not associated with plant dry matter production under stress conditions.  相似文献   

13.
In aquatic sciences, the agreement between laboratory and field observations remains a challenge. Using kinetic modeling, this research aims to compare the decomposition in laboratory and in situ conditions. In the in situ incubations, the mass decreases of the aquatic macrophytes (Echinodorus tenellus, Hydrocotyle verticillata, Najas microcarpa and Pontederia parviflora) were described using a litter bag technique and in the laboratory their decomposition was maintained under controlled conditions. The plants and water samples were collected from a tropical reservoir (Brazil). To describe the particulate organic carbon (POC) decay we adopted a two stage kinetic model that considered the heterogeneity of resources. The released organic carbon (i.e., losses related to mineralization, dissolution and sedimentation of smaller particles than the litter bag mesh) were used to compare the results derived from the field and laboratory incubations. Despite the methodological differences, the results show equivalence among the POC decay. The decomposition measured by litter bags method was 1.32 faster, owing to the effects of losses by sedimentation of the smaller particles, abrasion, action of decomposer organisms (e.g., fragmentation and enzymatic attack) and synergy among these factors. From a mathematical modeling approach, the results validate the use of decomposition data obtained under controlled conditions providing estimations of energy and matter fluxes within aquatic ecosystems. However, it is necessary to adopt a coefficient to acquire the similarity (e.g., 1.32).  相似文献   

14.
AIM: To study the microbiology of intensive, in-vessel biodegradation of a mixture of sewage sludge and vegetable food waste. METHODS AND RESULTS: The biodegradation was performed in a closed reactor with the addition of a starter culture of Bacillus thermoamylovorans SW25 under conditions of controlled aeration, stirring, pH and temperature (60 degrees C). The content of viable bacterial cells, determined by flow cytometry, increased from 5 x 108 g-1 of dry matter to 61 x 108 g-1 for 6 days of the process and then dropped to the initial value at the end of the process. The reductions of organic matter, 16S rRNA of methanogens and coenzyme F420 fluorescence during 10 days of the treatment were 67, 54 and 87% of the initial values, respectively. The biodegradability of the organic matter decreased during the 10 days of the treatment from 3.8 to 1.3 mg CO2 g-1 of organic matter per day. The treatment of sewage sludge and food waste at 60 degrees C did not remove enterobacteria, which are the agents of intestinal infections, from the material. The percentage of viable enterobacterial cells, determined by fluorescent in situ hybridization (FISH) with Enterobacteriaceae-specific oligonucleotide probe and flow cytometry, varied from 1 to 14% of the viable bacterial cells. CONCLUSIONS: The mixture of sewage sludge and food waste can be degraded by the aerobic thermophilic bacteria; the starter culture of Bacillus thermoamylovorans SW25 can be used to perform this process; and enterobacteria can survive under treatment of sewage sludge and food waste at 60 degrees C for 13 days. SIGNIFICANCE AND IMPACT OF THE STUDY: The results show that FISH with an oligonucleotide probe can be used to study not only the growth but also the degradation of biomass. Obtained results could be used to design the bioconversion of sewage sludge and food waste into organic fertilizer.  相似文献   

15.
Although phosphate concentrations have been reduced, the rivers Meuse and Rhine are still polluted with sulphate, which most probably affects vegetation development in newly created riverine wetlands. The influence of flooding with river water rich in sulphate was tested on three soil types from floodplains of the river Meuse using flow-through and batch experiments. Soils were selected for contrasting concentrations of iron and organic matter and originated from a floating fen (iron-poor, organic), an alder carr (iron-rich, organic) and a clay pit (iron-rich, low in organic matter). Flooding induced mobilisation of phosphate. Sulphate only enhanced this effect in the alder carr soil, where sulphide and phosphate competed for binding to iron. Only in the floating fen soil did the addition of sulphate result in the formation of free sulphide, which reduced the growth of Glyceria maxima, serving as a phytometer. In addition, the floating soil started to sink, due to falling methane concentrations. In the different soil types methane production was hampered by the presence of more favourable electron acceptors such as sulphate in the water and Fe(III) in the soil. It was concluded that the effects of inundation with sulphate-polluted water strongly depend on the soil type: under iron-poor circumstances, free sulphide may accumulate, leading to phytotoxicity, while in soils rich in iron, sulphide toxicity is prevented, but phosphate availability may be increased. In addition, shortage of easily degradable organic matter can limit the formation of potential toxicants such as ammonium, iron and sulphide. Results are discussed in terms of their implications for nature management.  相似文献   

16.
Digestion of cattle manure collected from a livestock farm together with bedding material (straw) has been studied under mesophilic and thermophilic conditions in batch reactors. The digestion was carried out for a prolonged period with the aim of evaluating the changes undergone by the organic matter. The mesophilic digestion carried out revealed a greater capacity to produce gas and transform organic matter, while a higher conversion rate, but a lower gas yield, was obtained under thermophilic conditions. Degradation of the organic matter was evaluated by means of thermal analysis and 1H NMR. Stabilisation through anaerobic digestion (either mesophilic or thermophilic) resulted in an increase in the quality of the organic matter, as characterised by an enrichment in thermostable compounds, and an accumulation of long chain aliphatic materials. The experiments performed demonstrated the transformation of organic matter into complex materials under anaerobic conditions with an accumulation of aliphatic components under both types of conditions tested. Degradation through mesophilic digestion, in comparison to the thermophilic process, resulted in a greater destruction of straw particles.  相似文献   

17.
The effect of forest fires differing in intensity on organic matter dynamics in forest soils has been assessed in different types of forest sites using the EFIMOD system of models. Differences between the patterns of organic matter dynamics according to scenarios of forest ecosystem development under normal conditions and upon forest fires have been analyzed. Recovery rates of soil organic matter pools after fires depend on their intensity and frequency. The most profound changes take place upon high-intensity crown fires, which may even result in ecosystem destruction.  相似文献   

18.
During 1975, measurements were made to quantify all sources of input of organic matter in the Dollard. This made a comparison possible between in situ primary production, import from natural sources and organic waste discharges in terms of organic carbon. In order to make a carbon budget, mineralization and the amount of organic matter buried in the sediment was also measured. Input of organic carbon was mainly based on primary production on the tidal flats (measured in situ as O2 production, 9.3×106 kg C · year–1), accumulation of suspended matter originating from the North Sea and the River Ems (maximal 37.1×106 kg C · year–1) and discharge of heavily polluted water (33.0×106 kg C · year–1). Input from primary production in the water phase was negligibly low (0.7×106 kg C · year–1). Loss of organic carbon was due to mineralization in the sediment (measured in situ as oxygen consumption, 18.2×106 kg C · year–1), mineralization in the water phase (using the BOD technique, 7.2×106 kg C · year–1) and burying of organic matter in the sediment (9.9·106 kg C · year–1). The loss of dissolved organic matter to the adjacent Waddensea was not measured but must be considerable. Allochthonous detritus was the main source of energy for the food-webs in the Dollard. The role of bacteria as an important source of food for higher organisms in the Dollard is discussed.  相似文献   

19.
Ten fungal and nine bacterial strains were isolated from a weathering sandstone building. Their growth, organic acid production, and acidification capacity were assessed in culture under nutritional conditions similar to those in situ. Biomass (10–50 nmol phospholipid-PO4g−1) within the rock was small compared to soils. The isolated organisms were able to produce high amounts of those acids found in the sandstone, but acid production did not cause a drastic reduction in culture pH. It is suggested that the importance of acidification in microbial degradation of sandstone has been overestimated and that, under in situ pH and nutritional conditions, cation chelation by microbially produced organic acid anions may be more relevant to the weathering process.  相似文献   

20.
Gichuki  J.  Guebas  F. Dahdouh  Mugo  J.  Rabuor  C.O.  Triest  L.  Dehairs  F. 《Hydrobiologia》2001,450(1-3):99-106
The release of phosphate from anoxic sediments is still not precisely understood. The proposal by Einsele (1936), later adapted by Mortimer (1941, 1942), that this release is caused by the reduction of a FeOOH-phosphate complex, is generally accepted as the reaction mechanism, although there is no experimental evidence for it. Golterman (1995a) and De Groot (1991) have shown that this P-release may indeed be brought about by H2S, but only if a large excess of H2S is available. In lakes, however, the reducing capacity is relatively small as most of the organic carbon produced by primary production is used for other reduction processes. The solubilization of apatite is a likely alternative, as anoxic conditions are automatically concomitant with a pH decrease, and in hard waters the formation of apatite is well demonstrated. This mechanism is not active in soft waters, such as those studied by Mortimer. Another proposed process is the release of polyphosphate by sediment bacteria. Experimental evidence for this mechanism is, however, weak. The fourth possibility is the need for bacteria to mineralize a larger part of the sediment organic matter under anoxic conditions in order to obtain the same amount of energy, as some energy will be retained in the fermentation products. There is circumstantial evidence for this hypothesis, but laboratory experiments are needed before real evidence will be available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号