首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The estrous cycles of a group of female laboratory rats (Rattus norvegicus) who live together become significantly more synchronized than either the cycles of solitary female rats (P 0.01) or the cycles of female rats randomly selected from different living groups (P 0.01). Airborne chemical communication between otherwise isolated groups of female rats is sufficient to produce the same level of estrous synchrony found among female rats that are actually living together.  相似文献   

2.
To explore the possibility that compounds which were identified as pheromones in experimental animals mediate human menstrual synchrony, we examined the relationship between menstrual synchrony and the ability to smell putative pheromones, 5alpha-androst-16-en-3alpha-ol (3alpha-androstenol) and 5alpha-androst-16-en-3-one (5alpha-androstenone). When we examined menstrual synchrony among 64 women living together in a college dormitory, we found that 24 (38%) of them became synchronized with room-mates in 3 months. Afterwards, dilution series of 3alpha-androstenol and 5alpha-androstenone and the control odorant (pyridine) were presented to the 64 women and sensitivity to the odors was compared between synchronized and non-synchronized women. No difference was found between the two groups of women in the detection threshold for pyridine, indicating that general olfactory ability did not differ between them. The detection threshold for 3alpha-androstenol of synchronized women was significantly lower than that of non-synchronized women, but no difference in the threshold for 5alpha-androstenone was found between synchronized and non-synchronized women. These results indicate that the women who showed menstrual synchrony had a higher sensitivity to 3alpha-androstenol but not necessarily to 5alpha-androstenone.  相似文献   

3.
The role of he vomeronasal organ on the estral cycle reduction induced by pheromones is studied in adult female wistar rats. The animals were divided in three groups: I, intact rats; II, vomeronasalectomized rats (VNX); and III, sham operated rats (sham). Each group was submitted to another three distinct conditions from the day they were weaned (21 days old): Isolated female rats; with male odors from two adult males of tested sexual potency, and isolated rats again. The isolated intact rats show mainly 5 day length cycles. The groups I and III (intacts and sham) with male odors, show 4 day length cycles. The VNX animals show 5 day cycles in any one experimental conditions. These results support the idea that the vomeronasal organ is the receptor of the male reducing cycle pheromone in the female rat.  相似文献   

4.
PHEROMONES AND CHEMICAL ECOLOGY OF LOCUSTS   总被引:1,自引:0,他引:1  
Modern studies of chemical ecology and behaviour of the locusts Schistocerca gregaria and Locusta migratoria in the laboratory need to be more closely coupled with field experiments and observations. The life history relating to oviposition, transformation to gregarious phases, and adult maturation mediated by pheromones is reviewed. The principles of pheromone isolation and identification are discussed. The long-term effects of the gregarization pheromone on the physiology are presented, with discussion of morphological changes, chiasma frequency increases, and synchronization of moulting induced by the pheromone. Isolation of the purported gregarization pheromone, locustol, from faeces is discussed in regard to inconsistent effects. Other more immediate effects of the pheromone on the social (gregarious) behaviour and the isolation of possible pheromone components different from but related to locustol are presented. It is stressed that more rigorous isolation studies should be undertaken to resolve conflicting reports and methodological problems. The possibility of an anti-gregarization pheromone or solitarizing pheromone is discounted. The source and biosynthesis of locustol (or gregarization pheromone) from degradation of lignin by symbiotic bacteria is discussed. Theories of reception of the gregarization pheromone such as inhalation through the spiracles or sensory perception by the antennae are presented. Also an internal mechanism involving cAMP and/or corpora allata may be induced by gregarization pheromone to effect the physiological phase changes. The advantages to an individual of reception of the gregarization pheromone from a group of gregarious and pre-migrating locusts is discussed. Also the possible benefits of gregarious behaviour, phase polymorphism and migration are dealt with. An adult (sexual) maturation pheromone has long-term effects on reducing the period of maturation, and immediate effects on the behavioural vibration response. The epidermal source of the pheromone and glandular cells responsible for the production of the pheromone are discussed. The reception and internal mechanisms of response via the corpora allata are mentioned. The benefits to individuals of synchronized and rapid adult maturation in a gregarious group are considered. An oviposition-stimulating pheromone produced by the male accessory reproductive glands appears to be a proteinaceous substance of large molecular weight. On the other hand, an oviposition-aggregating pheromone volatilizes from epidermal areas of either sex and causes higher oviposition rates in the area of release. The behavioural and ecological aspects of this pheromone are discussed. Several other possible pheromones and semiochemicals are discussed, such as a long-range sex pheromone, sex-recognition pheromone, grass odours and feeding stimulants and deterrents. Several possible control strategies using locust pheromones are considered. The general conclusion is that the chemical isolation of the various pheromones is necessary before further progress can be achieved on the source and biosynthesis of pheromone, reception of pheromone, behavioural effects of pheromone, and control measures.  相似文献   

5.
Bark beetle infested pines are an ephemeral habitat utilized by a diverse assemblage of insects. Although many bark beetle insect associates have little or no measurable impact on bark beetle brood production, some reduce brood production by either competing with brood for the limited phloem tissue or by feeding on brood. Several studies have observed synchrony between the colonization of hosts by bark beetles and the arrival of insect associates. Some insect associates mediate synchrony with bark beetle mass attacks with kairomonal responses to bark beetle aggregation pheromones. The objectives of this study were to document the community of Coleoptera associated with the southern Ips (Ips avulsus, Ips calligraphus and Ips grandicollis) and to test the hypothesis that synchrony of insect associates with the southern Ips is mediated by kairomonal responses to aggregation pheromones. A large community of Coleoptera (109 species) was recorded from traps baited with southern Ips pheromones. A significant treatment effect was observed for the guilds of meristem feeders, natural enemies and woodborers. The southern Ips pheromone ipsenol was broadly attractive to meristem feeders, natural enemies and woodborers and in general blends were more attractive than individual compounds. These results demonstrate that a diverse community of Coleoptera is associated with the southern Ips and that several members of this community facilitate synchrony with kairomonal responses to southern Ips aggregation pheromones.  相似文献   

6.
Pheromonal communication plays a key role in the sociosexual behavior of rodents. The coadaptation between pheromones and chemosensory systems has been well illustrated in insects but poorly investigated in rodents and other mammals. We aimed to investigate whether coadaptation between male pheromones and female reception might have occurred in brown rats Rattus norvegicus. We recently reported that major urinary protein (MUP) pheromones are associated with male mating success in a brown rat subspecies, R. n. humiliatus (Rnh). Here, we discovered that MUPs were less polymorphic and occurred at much lower concentrations in males of a parapatric subspecies, R. n. caraco (Rnc), than in Rnh males, and found no association between pheromones and paternity success. Moreover, the observation of Rnc males that experienced chronic dyadic encounters and established dominance–submission relationships revealed that the dominant males achieved greater mating success than the subordinate males, but their MUP levels did not differ by social status. These findings suggest that male mating success in Rnc rats is related to social rank rather than to pheromone levels and that low concentration of MUPs might not be a reliable signal for mate choice in Rnc rats, which is different from the findings obtained in Rnh rats. In addition, compared with Rnh females, Rnc females exhibited reduced expression of pheromone receptor genes, and a lower number of vomeronasal receptor neurons were activated by MUP pheromones, which imply that the female chemosensory reception of pheromones might be structurally and functionally coadapted with male pheromone signals in brown rats.  相似文献   

7.
Although many species display endogenous circannual rhythms of biological activity that are synchronized by day length, the specific photoperiodic requirements for synchronizing such rhythms are not established for any species. We tested the hypothesis that the circannual reproductive rhythm of sheep can be synchronized by exposure to just one or two discrete blocks of photoperiodic information each year. Ewes were pinealectomized to prevent their ability to transduce photoperiodic information into altered reproductive neuroendocrine activity. During the 53/4 yr following pinealectomy, specific photoperiodic signals were restored for discrete periods of time via replacement of 24-h patterns of melatonin, the pineal hormone that transmits photic information to the reproductive neuroendocrine axis. The ewes were kept in a 12-mo photoycycle that alternated between short (8L:16D) and long (16L:8D) days every 6 mo and that was 6 mo out of phase with the geophysical year. Pineal-intact control ewes exhibited synchronous annual reproductive cycles. Noninfused pinealectomized control ewes did not exhibit synchronous cycles. Pinealectomized ewes infused with alternating 70-day blocks of short- and long-day patterns of melatonin every 6 mo for the first 21/2 yr of the experiment exhibited synchronous annual reproductive cycles that were 6 mo out of phase with those of ewes maintained outdoors. This synchrony persisted when the frequency of the melatonin treatment was reduced to just one 70-day block of a long-day pattern of melatonin each 365 days. Cycle period was 368 +/- 3 days; standard deviation of the date of onset of reproductive induction averaged only 3 days. Our study provides the first direct evidence that a single block of photoperiodic information a year can synchronize a circannual rhythm.  相似文献   

8.
白蚁信息素研究进展   总被引:5,自引:1,他引:4  
采用信息素防治白蚁这种世界性害虫是当前白蚁研究的一大热点。本文从化学和生物两个方面总结了几十年来国内外白蚁信息素及其类似物研究进展。讨论了影响信息素活性的几个因素。并根据最新的研究情况,对今后的信息素及其类似物的理论研究和应用情况进行了展望。  相似文献   

9.
Plain-tailed wrens (Thryothorus euophrys) live in groups that sing synchronized choruses, the contributions of females and males alternating with each other in cycles, within which each sex sings two of the four parts, the whole achieving near perfect synchrony. As each bird has a repertoire of ca 20 phrases of each type, the synchrony also requires them to choose the same type at the same time as others of their sex. Songs can last up to 2min, during which individuals join in and drop out. This must be one of the most complex singing performances yet described in a non-human animal.  相似文献   

10.
Research over the past 15 years indicates, contrary to earlier results, that women do not synchronize their menstrual cycles. If women do not synchronize their cycles, this implies there is no mechanism for synchronizing cycles. Since a pheromone mechanism of synchronization is the only plausible mechanism that has been proposed, it follows that that there are no pheromones that modulate the length of menstrual cycles. To test this hypothesis, eight studies were reviewed that reported pheromone effects on menstrual cycles, other behavior, or physiological correlates in women. The prediction was that serious problems would be found in each of these studies. As predicted, serious problems were found in all eight studies. Taken together, these results cast doubt on the existence of pheromones that modulate the length of menstrual cycles. Jeff Schank is associate professor of psychology at the University of California, Davis. His main research interests are in computational and biorobotic modeling of group behavior and the development of sensorimotor behavior in animals.  相似文献   

11.
The honeybee queen pheromones promote both worker sterility and worker-like pheromone composition; in their absence workers become fertile and express the queen pheromones. Which of the queen pheromones regulate worker pheromone expression and how, is still elusive. Here we investigated how two queen pheromones, the mandibular and Dufour’s, singly or combined, affect worker ovarian activation and occurrence of queen-like Dufour’s esters. Although queen mandibular pheromone (QMP) alone, or combined with Dufour’s secretion, inhibited to some extent worker reproduction, neither was as effective as the queen. The effect of the queen pheromones on worker pheromone expression was limited to workers with developed ovaries. Here too, QMP and Dufour’s combined had the greatest inhibitory effect. In contrast, treatment with Dufour’s alone resulted in augmentation of esters in the workers. This is another demonstration that a pheromone emitted by one individual affects the rates of its production in another individual. Ester production was tightly coupled to ovarian development. However fertile workers from queenright or QMP-treated colonies had significantly higher amounts of esters in their Dufour’s gland than untreated queenless colonies. The fact that the queen or QMP exert greater suppression on signal production than on ovary activation, suggests disparate regulatory pathways, and presents a challenging ultimate as well as proximate questions.  相似文献   

12.
Synchronization of ovarian events has been reported in a number of primate species, with the temporal resolution of synchrony ranging from the occurrence of seasonal breeding within the annual cycle to a close matching of ovarian events within a single ovarian cycle. However, ovarian synchrony has not been reported in a New World primate. The temporal association of ovarian events was examined in female golden lion tamarins (Leontopithecus rosalia) living in the same or different social groups. Ovarian cyclicity was monitored by measuring the excretion of urinary estrogen metabolites. There was a high degree of synchronization in the occurrence of urinary estrogen peaks for females in different social groups (mean peak discrepancy = 2.1 days) and in females housed in the same social group (mean peak discrepancy = 1.3 days). Contrary to previous reports on callitrichid primates, daughters housed in their natal family group exhibited cyclic patterns of urinary estrogen excretion. These findings represent the first explicit demonstration of ovarian synchrony in a New World primate, and the tight coupling of ovarian cycles in female tamarins resembles the nature of menstrual synchrony in human females.  相似文献   

13.
Living in a medium that can limit visual information but readily exposes the olfactory organ to hormonal compounds released by conspecifics, fish throughout their long evolutionary history have had both clear cause and ample opportunity to evolve olfactory responsiveness to these potentially important chemical cues (hormonal pheromones). Indeed, water-borne steroids, prostaglandins, and their metabolites are detected with great sensitivity and specificity by the olfactory organs of diverse fishes, and exert important effects on reproductive behavior and physiology in major taxa including carps (goldfish), catfishes, salmon, and gobies. Best understood are goldfish, where periovulatory females sequentially release a preovulatory steroid pheromone and a postovulatory prostaglandin pheromone that dramatically affect male behavior, physiology, and reproductive fitness. Although the diverse array of hormonal products released and detected by fish indicates clear potential for species-specific hormonal pheromones, olfactory recordings showing similar patterns of hormone detection among closely related species provide little evidence of selection for specificity. By demonstrating that the actions of sex hormones and related products are not limited to reproductive synchrony within the individual, the relatively recent discovery of hormonal pheromones has considerably expanded our understanding of fish reproductive function, while providing valuable model systems for future study of olfactory function and pheromone evolution.  相似文献   

14.
Expression of candidate pheromone receptor genes in vomeronasal neurons   总被引:1,自引:0,他引:1  
Dulac  C; Axel  R 《Chemical senses》1998,23(4):467-475
In mammals, olfactory sensory perception is mediated by two anatomically and functionally distinct organs: the main olfactory epithelium (MOE) and the vomeronasal organ (VON). Pheromones activate the VNO and elicit a characteristic array of innate reproductive and social behaviors, along with dramatic neuroendocrine responses. Recent approaches have provided new insights into the molecular biology of sensory transduction in the VNO. Differential screening of cDNA libraries constructed from single sensory neurons from the rat VNO has led to the isolation of a family of genes which are likely to encode mammalian pheromone receptors. The isolation of these receptors from the VNO might permit the analysis of the molecular events which translate the bindings of pheromones into innate stereotypic behaviors and help to elucidate the logic of pheromone perception in mammals.   相似文献   

15.
Artificial Pheromone System Using RFID for Navigation of Autonomous Robots   总被引:1,自引:0,他引:1  
Navigation system based on the animal behavior has received a growing attention in the past few years. The navigation systems using artificial pheromone are still few so far. For this reason, this paper presents our research that aim to implement autonomous navigation with artificial pheromone system. By introducing artificial pheromone system composed of data carriers and autonomous robots, the robotic system creates a potential field to navigate their group. We have developed a pheromone density model to realize the function of pheromones with the help of data carriers. We intend to show the effectiveness of the proposed system by performing simulations and realization using modified mobile robot. The pheromone potential field system can be used for navigation of autonomous robots.  相似文献   

16.
Macrolepidopteran female moths in families such as Geometridae produce epoxyalkenyl sex pheromones, which are biosynthesized via epoxidation of polyunsaturated hydrocarbons in their pheromone glands. The precursors, however, are expected to be produced outside of the pheromone glands, probably in oenocytes or in the fat body, and transported to the glands via hemolymph. Based on these facts, the selectivity of the epoxidation substrates and of the precursor uptake by pheromone glands was examined with two geometrid species, Hemerophila artilineata and Ascotis selenaria cretacea, using binary mixtures of deuterated precursors and their analogs, which were topically applied to the pheromone glands or injected into the abdomen. GC-MS measurements of pheromone extracts showed equal epoxidation of two polyenes, indicating a low selectivity for both processes, while the epoxidation proceeded at only one double bond specific to each species. This result makes it possible to conclude that the formation of species-specific epoxyalkenyl pheromones results from the rigid formation of polyunsaturated precursors and their epoxidation at a fixed position. Next, the neuroendocrine regulation of these processes was studied with in vivo and in vitro experiments using decapitated females. The epoxy pheromones disappeared completely within 36 h of decapitation, and epoxidation of the injected precursors was not detected in the decapitated females, which restarted the reaction by treatment with a pheromone biosynthesis-activating neuropeptide (PBAN). The precursors topically applied to glands of the decapitated females, however, were converted into epoxy pheromones without PBAN, indicating that this neuropeptide hormone accelerated the precursor uptake by pheromone glands but not the epoxidation already underway in the glands.  相似文献   

17.
Worker sterility in honeybees is neither absolute nor irreversible. Whether under queen or worker control, it is likely to be mediated by pheromones. Queen-specific pheromones are not exclusive to queens; workers with activated ovaries also produce them. The association between ovarian activation and queen-like pheromone occurrence suggests the latter as providing a reliable signal of reproductive ability. In this study we investigated the effect of queen pheromones on ovary development and occurrence of queen-like esters in workers' Dufour's gland. Workers separated from the queenright compartment by a double mesh behaved like queenless workers, activating their ovaries and expressing a queen-like Dufour's gland secretion, confirming that the pheromones regulating both systems are non-volatile. Workers with developed ovaries produced significantly more secretion than sterile workers, which we attribute primarily to increased ester production. Workers separated from the queenright compartment by a single mesh displayed a delayed ovarian development, which we attribute to interrupted transfer of the non-volatile pheromone between compartments. We suggest that worker expression of queen-like characters reflects a queen-worker arms race; and that Dufour's gland secretion may provide a reliable signal for ovarian activation. The associative nature between ovary development and Dufour's gland ester production remains elusive.  相似文献   

18.
We developed a multicellular model characterized by a high degree of heterogeneity to investigate possible mechanisms that underlie circadian network synchronization and rhythmicity in the suprachiasmatic nucleus (SCN). We populated a two-dimensional grid with 400 model neurons coupled via γ-aminobutyric acid (GABA) and vasoactive intestinal polypeptide (VIP) neurotransmitters through a putative Ca2+ mediated signaling cascade to investigate their roles in gene expression and electrical firing activity of cell populations. As observed experimentally, our model predicted that GABA would affect the amplitude of circadian oscillations but not synchrony among individual oscillators. Our model recapitulated experimental findings of decreased synchrony and average periods, loss of rhythmicity, and reduced circadian amplitudes as VIP signaling was eliminated. In addition, simulated increases of VIP reduced periodicity and synchrony. We therefore postulated a physiological range of VIP within which the system is able to produce sustained and synchronized oscillations. Our model recapitulated experimental findings of diminished amplitudes and periodicity with decreasing intracellular Ca2+ concentrations, suggesting that such behavior could be due to simultaneous decrease of individual oscillation amplitudes and population synchrony. Simulated increases in Cl levels resulted in increased Cl influx into the cytosol, a decrease of inhibitory postsynaptic currents, and ultimately a shift of GABA-elicited responses from inhibitory to excitatory. The simultaneous reduction of IPSCs and increase in membrane resting potential produced GABA dose-dependent increases in firing rates across the population, as has been observed experimentally. By integrating circadian gene regulation and electrophysiology with intracellular and intercellular signaling, we were able to develop the first (to our knowledge) multicellular model that allows the effects of clock genes, electrical firing, Ca2+, GABA, and VIP on circadian system behavior to be predicted.  相似文献   

19.
The study of fish pheromones is particularly relevant because of the conserved nature of chemoreception in vertebrates. However, most fish pheromone systems remain unstudied. All the major known pheromones of freshwater fish and their associated behaviours were reviewed. Importantly, those studies that have demonstrated the connection between behaviour and pheromones in freshwater fishes have resulted in a wide range of applications in management. For example, pheromones released by the sea lamprey Petromyzon marinus have a practical function in pheromone traps, showing how chemical communication can be used in the management of invasive species. Future research on fish pheromones should include olfactory systems in a wider range of species testing the possibility that a few distinct models could be applied to the all fishes. Progress in research on fish pheromones should include a closer collaboration with other research fields such as evolutionary biology to allow a better understanding of fish pheromones systems divergence and mate selection where correlation between phenotypic dominance and pheromone production is still largely ignored. Finally, the example of pheromone interaction between an invasive species topmouth gudgeon Pseudorasbora parva and a native endangered species sunbleak Leucaspius delineatus is provided to illustrate the concept of pheromone pollution that assists its establishment in a novel ecosystem.  相似文献   

20.
Cell synchrony is a critical requirement for the study of eukaryotic cells. Although several chemical and genetic methods of cell cycle synchronization are currently available, they have certain limitations, such as unnecessary perturbations to cells. We developed a novel cell cycle synchronization method that is based on a cell chip platform. The budding yeast, Saccharomyces cerevisiae, is a simple but useful model system to study cell biology and shares many similar features with higher eukaryotic cells. Single yeast cells were individually captured in the wells of a specially designed cell chip platform. When released from the cell chip, the yeast cells were synchronized, with all cells in the G1 phase. This method is non-invasive and causes minimal chemical and biological damage to cells. The capture and release of cells using cells chips with microwells of specific dimensions allows for the isolation of cells of a particular size and shape; this enables the isolation of cells of a given phase, because the size and shape of yeast cells vary with the phase of the cell cycle. To test the viability of synchronized cells, the yeast cells captured in the cell chip platform were assessed for response to mating pheromone (α-factor). The synchronized cells isolated using the cell chip were capable of mediating the mating signaling response and exhibited a dynamic and robust response behavior. By changing the dimensions of the well of the cell chip, cells of other cell cycle phases can also be isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号