首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitrile metabolising strains AJ270, AJ300 and AJ115 were isolated from the same location. The strains have very similar nitrile metabolising profiles. Sequencing of the 16S rRNA gene indicates that strains AJ270 and AJ300 are novel strains of Rhodococcus erythropolis while strain AJ115 is a novel Microbacterium strain very closely related to Microbacterium oxydans and Microbacterium liquefaciens. Analysis of the structure of the nitrile hydratase/amidase gene clusters in the three strains indicates that this region is identical in these strains and that this structure is different to other nitrile hydratase/amidase gene clusters. The major difference seen is the insertion of a complete copy of the insertion sequence IS1166 in the nhr2 gene. This copy of IS1166 generates a 10 bp direct duplication at the point of insertion and has one ORF encoding a protein of 434 amino acids, with 98% homology to the transposase of IS666 from Mycobacterium avium. A gene oxd, encoding aldoxime dehydratase is found upstream of the nitrile hydratase gene cluster and an open reading frame encoding a protein with homology to GlnQ type ABC transporters is found downstream of the nitrile hydratase/amidase genes. The identity of the nitrile hydratase/amidase gene clusters in the three strains suggests horizontal gene transfer of this region. Analysis of the strains for both linear and circular plasmids indicates that both are present in the strains but hybridisation studies indicate that the nitrile hydratase/amidase gene cluster is chromosomally located. The nitrile hydratase/amidase enzymes of strain AJ270 are inducible with acetonitrile or acetamide. Interestingly although a number of Fe-type nitrile hydratases have been shown to be photosensitive, the enzyme from strain AJ270 is not.  相似文献   

2.
Aldoxime–nitrile pathway is one of the important routes of carbon and nitrogen metabolism in many life forms and a key interface for plant–microbe interactions. This pathway starts with transformation of amino acids to aldoximes, which are converted to nitriles and the later are ultimately hydrolyzed to acids and ammonia. Understanding and engineering of the enzymes involved in this pathway viz. cytochrome P450/CYP79, aldoxime dehydratase, nitrilase, nitrile hydratase, amidase and hydroxynitrile lyase, presents unprecedented opportunities in biocatalysis and green chemistry. Co-expressing these enzymes in prokaryotic and eukaryotic microbial hosts and tailoring their properties i.e. activity, specificity, stability and enantioselectivity may lead to develop sustainable bioprocesses for the synthesis of industrially important nitriles, amides and acids.  相似文献   

3.
Two open reading frames (nhpS and acsA) were identified immediately downstream of the previously described Pseudomonas chlororaphis B23 nitrile hydratase (NHase) gene cluster (encoding aldoxime dehydratase, amidase, the two NHase subunits, and an uncharacterized protein). The amino acid sequence deduced from acsA shows similarity to that of acyl-CoA synthetase (AcsA). The acsA gene product expressed in Escherichia coli showed acyl-CoA synthetase activity toward butyric acid and CoA as substrates, with butyryl-CoA being synthesized. From the E. coli transformant, AcsA was purified to homogeneity and characterized. The quality of the recombinant protein was verified by the NH2-terminal amino acid sequence and the results of matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The apparent Km values for butyric acid, CoA, and ATP were 0.32 +/- 0.04, 0.37 +/- 0.02, and 0.22 +/- 0.02 mm, respectively. AcsA was shown to be a short-chain acyl-CoA synthetase, according to the catalytic efficiencies (kcat/Km) for various acids. The substrate specificity of AcsA was similar to those of aldoxime dehydratase, NHase, and amidase, the genes of which coexist in the same orientation in the gene cluster. P. chlororaphis B23 grew when cultured in a medium containing butyraldoxime as the sole carbon and nitrogen source. The activities of aldoxime dehydratase, NHase, and amidase were detected together with that of acyl-CoA synthetase under the culture conditions used. Moreover, on culture in a medium containing butyric acid as the sole carbon source, acyl-CoA synthetase activity was also detected. Together with the adjacent locations of the aldoxime dehydratase, NHase, amidase, and acyl-CoA synthetase genes, these findings suggest that the four enzymes are sequentially correlated with one another in vivo to utilize butyraldoxime as a carbon and nitrogen source. This is the first report of an overall "nitrile pathway" (aldoxime-->nitrile-->amide-->acid-->acyl-CoA) comprising these enzymes.  相似文献   

4.
A gene cluster responsible for aldoxime metabolism in the glutaronitrile degrader Pseudomonas sp. K-9 was analyzed genetically and enzymatically. The cluster was composed of genes coding for aldoxime dehydratase (Oxd), nitrile hydratase (NHase), NHase activator, amidase, acyl-CoA ligase, and some regulatory and functionally unknown proteins, which were similar to proteins appearing in the “aldoxime–nitrile pathway” gene cluster from strains having Fe-containing NHase. A key enzyme in the cluster, OxdK, which has 32.7–90.3 % identity with known Oxds, was overexpressed in Escherichia coli cells under the control of a T7 promoter in its His6-tagged form, purified, and characterized. The enzyme showed similar characteristics with the known Oxds coexisting with an Fe-containing NHase in its subunit structure, substrate specificity, and effects on various compounds. The enzyme can be classified into a group of “aliphatic aldoxime dehydratase (EC 4.99.1.5).” The existence of a gene cluster of enzymes responsible for aldoxime metabolism via the aldoxime–nitrile pathway (aldoxime→nitrile→amide→acid→acyl-CoA) in Pseudomonas sp. K-9, and the fact that the proteins comprising the cluster are similar to those acting on aliphatic type substrates, evidently clarified the alkylaldoxime-degrading pathway in that strain.  相似文献   

5.
Aldoxime dehydratase (OxdA), which is a novel heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. The combination of site-directed mutagenesis of OxdA (mutation of all conserved histidines in the aldoxime dehydratase superfamily), estimation of the heme contents and specific activities of the mutants, and CD and resonance Raman spectroscopic analyses led to the identification of the proximal and distal histidines in this unique enzyme. The heme contents and CD spectra in the far-UV region of all mutants except for the H299A one were almost identical to those of the wild-type OxdA, whereas the H299A mutant lost the ability of binding heme, demonstrating that His(299) is the proximal histidine. On the other hand, substitution of alanine for His(320) did not affect the overall structure of OxdA but caused loss of its ability of carbon-nitrogen triple bond synthesis and a lower shift of the Fe-C stretching band in the resonance Raman spectrum for the CO-bound form. Furthermore, the pH dependence of the wild-type OxdA closely followed the His protonation curves observed for other proteins. These findings suggest that His(320) is located in the distal heme pocket of OxdA and would donate a proton to the substrate in the aldoxime dehydration mechanism.  相似文献   

6.
Bacterial enzymes capable of nitrile hydrolysis have significant industrial potential. Microbacterium sp. AJ115, Rhodococcus erythropolis AJ270 and AJ300 were isolated from the same location in England and harbour identical nitrile hydratase/amidase gene clusters. Strain AJ270 has been well studied due to its nitrile hydratase and amidase activity. R. erythropolis ITCBP was isolated from Denmark and carries a very similar nitrile hydratase/amidase gene cluster. In this study, an identical nitrilase gene (nit1) was isolated from the four strains, and the nitrilase from strain AJ270 cloned and expressed in Escherichia coli. Analysis of the recombinant nitrilase has shown it to be functional with activity demonstrated towards phenylacetonitrile. A real-time PCR TaqMan® assay was developed that allowed nit1 detection directly from soil enrichment cultures without DNA extraction, with nit1 detected in all samples tested. Real-time PCR screening of isolates from these soils resulted in the isolation of nit1 and also very similar nitrilase gene nit2 from a number of Burkholderia sp. The genes nit1 and nit2 have also been detected in many bacteria of different genera but are unstable in these isolates. It is likely that the genes were acquired by horizontal gene transfer and may be widespread in the environment.  相似文献   

7.
Distribution of Aldoxime Dehydratase in Microorganisms   总被引:2,自引:1,他引:1       下载免费PDF全文
The distribution of phenylacetaldoxime-degrading and pyridine-3-aldoxime-degrading ability was examined with intact cells of 975 microorganisms, including 45 genera of bacteria, 11 genera of actinomyces, 22 genera of yeasts, and 37 genera of fungi, by monitoring the decrease of the aldoximes by high-pressure liquid chromatography. The abilities were found to be widely distributed in bacteria, actinomyces, fungi, and some yeasts: 98 and 107 strains degraded phenylacetaldoxime and pyridine-3-aldoxime, respectively. All of the active strains exhibited not only the aldoxime-dehydration activity to form nitrile but also nitrile-hydrolyzing activity. On the other hand, all of 19 nitrile-degrading microorganisms (13 species, 7 genera) were found to exhibit aldoxime dehydration activity. It is shown that aldoxime dehydratase and nitrile-hydrolyzing activities are widely distributed among 188 aldoxime and 19 nitrile degraders and that the enzymes were induced by aldoximes or nitriles.  相似文献   

8.
The distribution of phenylacetaldoxime-degrading and pyridine-3-aldoxime-degrading ability was examined with intact cells of 975 microorganisms, including 45 genera of bacteria, 11 genera of actinomyces, 22 genera of yeasts, and 37 genera of fungi, by monitoring the decrease of the aldoximes by high-pressure liquid chromatography. The abilities were found to be widely distributed in bacteria, actinomyces, fungi, and some yeasts: 98 and 107 strains degraded phenylacetaldoxime and pyridine-3-aldoxime, respectively. All of the active strains exhibited not only the aldoxime-dehydration activity to form nitrile but also nitrile-hydrolyzing activity. On the other hand, all of 19 nitrile-degrading microorganisms (13 species, 7 genera) were found to exhibit aldoxime dehydration activity. It is shown that aldoxime dehydratase and nitrile-hydrolyzing activities are widely distributed among 188 aldoxime and 19 nitrile degraders and that the enzymes were induced by aldoximes or nitriles.  相似文献   

9.
Analysis of the nitrile hydratase gene cluster involved in nitrile metabolism of Pseudomonas chlororaphis B23 revealed that it contains one open reading frame encoding aldoxime dehydratase upstream of the amidase gene. The amino acid sequence deduced from this open reading frame shows similarity (32% identity) with that of Bacillus phenylacetaldoxime dehydratase (Kato, Y., Nakamura, K., Sakiyama, H., Mayhew, S. G., and Asano, Y. (2000) Biochemistry 39, 800-809). The gene product expressed in Escherichia coli catalyzed the dehydration of aldoxime into nitrile. The Pseudomonas aldoxime dehydratase (OxdA) was purified from the E. coli transformant and characterized. OxdA shows an absorption spectrum with a Soret peak that is characteristic of heme, demonstrating that it is a hemoprotein. For its activity, this enzyme required a reducing reagent, Na2S2O4, but did not require FMN, which is crucial for the Bacillus enzyme. The enzymatic reaction was found to be catalyzed when the heme iron of the enzyme was in the ferrous state. Calcium as well as iron was included in the enzyme. OxdA reduced by Na2S2O4 had a molecular mass of 76.2 kDa and consisted of two identical subunits. The kinetic parameters of OxdA indicated that aliphatic aldoximes are more effective substrates than aromatic aldoximes. A variety of spectral shifts in the absorption spectra of OxdA were observed upon the addition of each of various compounds (i.e. redox reagents and heme ligands). Moreover, the addition of the substrate to OxdA gave a peak that would be derived from the intermediate in the nitrile synthetic reaction. P. chlororaphis B23 grew and showed the OxdA activity when cultured in a medium containing aldoxime as the sole carbon and nitrogen source. Together with these findings, Western blotting analysis of the extracts using anti-OxdA antiserum revealed that OxdA is responsible for the metabolism of aldoxime in vivo in this strain.  相似文献   

10.
Nitriles are widespread in the environment as a result of biological and industrial activity. Nitrile hydratases catalyse the hydration of nitriles to the corresponding amide and are often associated with amidases, which catalyze the conversion of amides to the corresponding acids. Nitrile hydratases have potential as biocatalysts in bioremediation and biotransformation applications, and several successful examples demonstrate the advantages. In this work a real-time PCR assay was designed for the detection of Fe-type nitrile hydratase genes from environmental isolates purified from nitrile-enriched soils and seaweeds. Specific PCR primers were also designed for amplification and sequencing of the genes. Identical or highly homologous nitrile hydratase genes were detected from isolates of numerous genera from geographically diverse sites, as were numerous novel genes. The genes were also detected from isolates of genera not previously reported to harbour nitrile hydratases. The results provide further evidence that many bacteria have acquired the genes via horizontal gene transfer. The real-time PCR assay should prove useful in searching for nitrile hydratases that could have novel substrate specificities and therefore potential in industrial applications.  相似文献   

11.
Aldoxime dehydratase (Oxd) is a novel hemeprotein that catalyzes the dehydration reaction of aldoxime to produce nitrile. In this study, we studied the spectroscopic and substrate binding properties of two Oxds, OxdB from Bacillus sp. strain OxB-1 and OxdRE from Rhodococcus sp. N-771, that show different quaternary structures and relatively low amino acid sequence identity. Electronic absorption and resonance Raman spectroscopy revealed that ferric OxdRE contained a six-coordinate low-spin heme, while ferric OxdB contained a six-coordinate high-spin heme. Both ferrous OxdRE and OxdB included a five-coordinate high-spin heme to which the substrate was bound via its nitrogen atom for the reaction to occur. Although the ferric Oxds were inactive for catalysis, the substrate was bound to the ferric heme via its oxygen atom in both OxdB and OxdRE. Electronic paramagnetic resonance (EPR) and rapid scanning spectroscopy revealed that the flexibility of the heme pocket was different between OxdB and OxdRE, which might affect their substrate specificity.  相似文献   

12.
A duplex real-time PCR assay with melting curve analysis, using the EvaGreen fluorescence dye, was developed for rapid and reliable identification of bovine and caprine in ruminant feeds. The method merges the use of bovine (Bos taurus) and caprine (Capra hircus) specific primers that amplify small fragments (bovine 96 bp and caprine 142 bp) of the mitochondrial 16S rRNA and 12S rRNA genes, respectively. DNA was isolated from heat-treated meats (133 °C/3 bar for 20 min) mixtures of bovine and caprine and was used to optimize the assay. Gene products of caprine and bovine produced two distinct melting peaks simultaneously at 82 and 86.8 °C, respectively. Duplex analysis of the reference samples showed that the detection limit of the assay was 0.003 % for bovine and 0.005 % for caprine species. The aim of this study was to develop a duplex real-time PCR assay followed by a melt curve step for sensitive, rapid, specific, and cost-effective detection of bovine and caprine species based on the amplicon melting peak in ruminant feeds to prevent Transmissible Spongiform Encephalopathies.  相似文献   

13.
We developed a molecular screening procedure using Southern hybridization and polymerase chain reaction (PCR) to identify aldoxime dehydratase (Oxd) encoding genes (oxds) among 14 aldoxime- or nitrile-degrading microorganisms. When an oxd gene of Rhodococcus erythropolis N-771 was used as a probe, positive hybridization signals were seen with the chromosomal DNA of eight strains, suggesting that these strains have similar oxd genes to R. erythoropolis N-771. By analyzing the PCR-amplified fragments with degenerate consensus primers, the occurrence of homologous Oxd coexisting with Fe-containing NHase in the active eight strains was demonstrated coinciding with the results of Southern hybridization. Whole length of oxd gene was cloned as an example from one of the positive strains, Pseudomonas sp. K-9, sequenced, and expressed in E. coli. Analysis of the primary structure of the protein (OxdK) encoded by the oxd gene of Pseudomonas sp. K-9 led to identify an Oxd having a new primary structure. Thus, the PCR-based analysis of oxd gene is a useful tool to detect and analyze the "aldoxime-nitrile pathway" in nature, since Oxd is the key enzyme for the pathway.  相似文献   

14.
High-purity water (HPW) can be contaminated with pathogenic microorganisms, which may result in human infection. Current culture-based techniques for the detection of microorganisms from HPW can be slow and laborious. The aim of this study was to develop a rapid method for the quantitative detection and identification of pathogenic bacteria causing low-level contamination of HPW. A novel internally controlled multiplex real-time PCR diagnostics assay was designed and optimized to specifically detect and identify Pseudomonas aeruginosa and the Burkholderia genus. Sterile HPW, spiked with a bacterial load ranging from 10 to 103 cfu/100 ml, was filtered and the bacterial cells were removed from the filters by sonication. Total genomic DNA was then purified from these bacteria and subjected to testing with the developed novel multiplex real-time PCR diagnostics assay. The specific P. aeruginosa and Burkholderia genus assays have an analytical sensitivity of 3.5 genome equivalents (GE) and 3.7 GE, respectively. This analysis demonstrated that it was possible to detect a spiked bacterial load of 1.06 × 102 cfu/100 ml for P. aeruginosa and 2.66 × 102 cfu/100 ml for B. cepacia from a 200-ml filtered HPW sample. The rapid diagnostics method described can reliably detect, identify, and quantify low-level contamination of HPW with P. aeruginosa and the Burkholderia genus in <4 h. We propose that this rapid diagnostics method could be applied to the pharmaceutical and clinical sectors to assure the safety and quality of HPW, medical devices, and patient-care equipment.  相似文献   

15.
The objective of this study was to develop a novel EvaGreen (EG) based real-time PCR technique for the simultaneous detection of Equine herpesvirus 1 (EHV-1) and Equine herpesvirus 4 (EHV-4) genomes from equine nasal swabs. Viral genomes were identified based on their specific melting temperatures (T m), which are 88.0 and 84.4 °C for EHV-1 and EHV-4, respectively. The detection limitation of this method was 50 copies/μl or 0.15 pg/μl for EHV-1 and 5 copies/μl or 2.5 fg/μl for EHV-4. This assay was 50–1,000 times more sensitive than the SYBR Green (SG)-based assay using the same primer pairs and as sensitive as the TaqMan-MGB probe-based assay. The validity of the real-time PCR assays was confirmed by testing 13 clinical samples. When all results of the EG, SG, and TaqMan probe-based singleplex and duplex real-time PCRs were considered together, a total of 84.6 % (11/13) horses and donkeys were positive for at least one virus. EHV-1 and EHV-4 coexisted in 81.8 % (9/11) horses. Overall, we report that the EvaGreen duplex real-time PCR is an economical and alternative diagnostic method for the rapid differentiation of EHV-1 and EHV-4 in nasal swabs.  相似文献   

16.
A set of real-time PCR based assays using the locked nucleic acid probes from Roche Universal ProbeLibrary were developed for rapid detection of eight bacterial species from positive blood culture bottles. Four duplex real-time PCR reactions targeting to one Gram-positive bacterium and one Gram-negative bacterium were optimized for species identification according to Gram stain results. We also included mecA-specific primers and probes in the assays to indicate the presence of methicillin resistance in the bacterial species. The analytical sensitivity was in the range of 1–10 CFU per PCR reaction mixture. The specificity and cross reactivity of the assay was validated by 28 ATCC reference strains and 77 negative blood culture specimens. No cross-reactivity was observed in these samples thus demonstrating 100 % specificity. 72 previously characterized clinical isolates were tested by the real-time PCR assay and validated the accuracy and feasibility of the real-time PCR assay. Furthermore, 55 positive blood culture samples were tested using real-time PCR and 50 (90.9 %) of them were identified as the same species as judged by biochemical analysis. In total, real-time PCR showed 98.2 % consistent to that of traditional methods. Real-time PCR can be used as a supplement for early detection of the frequently-occurred pathogens from the positive blood cultures.  相似文献   

17.
Yersinia ruckeri is the causative agent of enteric redmouth diseases (ERM) and one of the major bacterial pathogens causing losses in salmonid aquaculture. Since recent ERM vaccine breakdowns have been described mostly attributed to emergence of Y. ruckeri biotype 2 strains, rapid, reproducible, and sensitive methods for detection are needed. In this study, a real-time polymerase chain reaction (PCR) primer/probe set based on recombination protein A (recA) gene was designed and optimized to improve the detection of Y. ruckeri. The primer/probe set proved to have a 100 % analytical specificity and a sensitivity of 1.8 ag μl?1, equivalent to 1.7 colony-forming units (CFU)?ml?1, for purified DNA, 3.4 CFU g?1 for seeded liver, kidney, and spleen tissues, and 0.34 CFU/100 μl?1 for seeded blood, respectively. The assay was highly reproducible with low variation coefficient values for intra- and inter-run experiments (2.9 % and 9.5 %, respectively). Following optimization, the assay was used to detect changes in the bacterial load during experimental infection. Rainbow trout (Onchorhynchus mykiss) were exposed to two strains of Y. ruckeri (biotype 1 and biotype 2) by intraperitoneal inoculation. Internal organs (liver, kidney, spleen) and blood were biopsied from dead fish daily for 15 days to quantify copies of pathogen DNA per gram of tissue. The findings showed the efficacy of this real-time PCR assay to quantify Y. ruckeri cells in the fish tissues and also confirmed this assay as a non-lethal method for the detection of this pathogen in blood samples.  相似文献   

18.
The Embrapa 5.1 genetically modified (GM) common bean was approved for commercialization in Brazil. Methods for the quantification of this new genetically modified organism (GMO) are necessary. The development of a suitable endogenous reference is essential for GMO quantification by real-time PCR. Based on this, a new taxon-specific endogenous reference quantification assay was developed for Phaseolus vulgaris L. Three genes encoding common bean proteins (phaseolin, arcelin, and lectin) were selected as candidates for endogenous reference. Primers targeting these candidate genes were designed and the detection was evaluated using the SYBR Green chemistry. The assay targeting lectin gene showed higher specificity than the remaining assays, and a hydrolysis probe was then designed. This assay showed high specificity for 50 common bean samples from two gene pools, Andean and Mesoamerican. For GM common bean varieties, the results were similar to those obtained for non-GM isogenic varieties with PCR efficiency values ranging from 92 to 101 %. Moreover, this assay presented a limit of detection of ten haploid genome copies. The primers and probe developed in this work are suitable to detect and quantify either GM or non-GM common bean.  相似文献   

19.
Xie SX  Kato Y  Komeda H  Yoshida S  Asano Y 《Biochemistry》2003,42(41):12056-12066
An enzyme "alkylaldoxime dehydratase (OxdRG)" was purified and characterized from Rhodococcus globerulus A-4, in which nitrile hydratase (NHase) and amidase coexisted with the enzyme. The enzyme contains heme b as a prosthetic group, requires reducing reagents for the reaction, and is most active at a neutral pH and at around 30 degrees C, similar to the phenylacetaldoxime dehydratase from Bacillus sp. OxB-1 (OxdB). However, some differences were seen in subunit structure, substrate specificity, and effects of activators and inhibitors. The corresponding gene, oxd, encoding a 1059-base pair ORF consisting of 353 codons, was cloned, sequenced, and overexpressed in Escherichia coli. The predicted polypeptide showed 30.3% identity to OxdB. The gene is mapped just upstream of the gene cluster encoding the enzymes involved in the metabolism of aliphatic nitriles, i.e., NHase and amidase, and their regulatory and activator proteins. We report here the existence of an aldoxime dehydratase genetically linked with NHase and amidase, and responsible for the metabolism of alkylaldoxime in R. globerulus.  相似文献   

20.
Bacterial amidases and nitrile hydratases can be used for the synthesis of various intermediates and products in the chemical and pharmaceutical industries and for the bioremediation of toxic pollutants. The aim of this study was to analyze the expression of the amidase and nitrile hydratase genes of Rhodococcus erythropolis and test the stereospecific nitrile hydratase and amidase activities on chiral cyanohydrins. The nucleotide sequences of the gene clusters containing the oxd (aldoxime dehydratase), ami (amidase), nha1, nha2 (subunits of the nitrile hydratase), nhr1, nhr2, nhr3 and nhr4 (putative regulatory proteins) genes of two R. erythropolis strains, A4 and CCM2595, were determined. All genes of both of the clusters are transcribed in the same direction. RT-PCR analysis, primer extension and promoter fusions with the gfp reporter gene showed that the ami, nha1 and nha2 genes of R. erythropolis A4 form an operon transcribed from the Pami promoter and an internal Pnha promoter. The activity of Pami was found to be weakly induced when the cells grew in the presence of acetonitrile, whereas the Pnha promoter was moderately induced by both the acetonitrile or acetamide used instead of the inorganic nitrogen source. However, R. erythropolis A4 cells showed no increase in amidase and nitrile hydratase activities in the presence of acetamide or acetonitrile in the medium. R. erythropolis A4 nitrile hydratase and amidase were found to be effective at hydrolysing cyanohydrins and 2-hydroxyamides, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号