首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytostatic effect of 6-azauridine on cell growth is generally regarded to be a consequence of the inhibition of de novo pyrimidine biosynthesis by the metabolite, 6-azauridine 5'-monophosphate. We show here that wheat embryonic axes further metabolize 6-azauridine to the 5'-triphosphate and incorporate the analogue into RNA, thus offering an alternative mechanism for growth inhibition. At a level of 6-azauridine required to maximally inhibit UTP biosynthesis, the ratio of 6-azaUTP to UTP is about 2:1 and substitution of 6-azauridine for uridine in new RNA is on the order of 1 in 18. The new metabolites of 6-azauridine are identified by high pressure and thin layer chromatography coupled with enzyme treatments.  相似文献   

2.
The pyrimidine analogues 2-thiouracil, 2-thiouridine, 6-azauracial and 6-azauridine all inhibited the synthesis of turnip yellow mosaic virus (TYMV) and increased the synthesis of empty virus protein shells in infected Chinese cabbage leaf discs. Uracil and uridine reversed these effects. 2-Thiouracil also reduced the UTP pool in TYMV infected leaf discs. The results are consistent with the suggestion that these analogues or their in vivo derivatives affect virus synthesis by inhibiting the biosynthesis of uridylic acid, possibly by inhibiting orotidylic acid decarboxylase.  相似文献   

3.
The regulatory role of the allosteric site of CTP synthetase on flux through the enzyme in situ and on pyrimidine nucleotide triphosphate (NTP) pool balance was investigated using a mutant mouse T lymphoblast (S49) cell line which contains a CTP synthetase refractory to complete inhibition by CTP. Measurements of [3H]uridine incorporation into cellular pyrimidine NTP pools as a function of time indicated that CTP synthesis in intact wild type cells was markedly inhibited in a cooperative fashion by small increases in CTP pools, whereas flux across the enzyme in mutant cells was much less affected by changes in CTP levels. The cooperativity of the allosteric inhibition of the enzyme was greater in situ than in vitro. Exogenous manipulation of levels of GTP, an activator of the enzyme, indicated that GTP had a moderate effect on enzyme activity in situ, and changes in pools of ATP, a substrate of the enzyme, had small effects on CTP synthetase activity. The consequences of incubation with actinomycin D, cycloheximide, dibutyryl cyclic AMP, and 6-azauridine on the flux across CTP synthetase and on NTP pools differed considerably between wild type and mutant cells. Under conditions of growth arrest, an intact binding site for CTP on CTP synthetase was required to maintain a balance between the CTP and UTP pools in wild type cells. Moreover, wild type cells failed to incorporate H14CO3- into pyrimidine pools following growth arrest. In contrast, mutant cells incorporated the radiolabel at a high rate indicating loss of a regulatory function. These results indicated that uridine nucleotides are important regulators of pyrimidine nucleotide synthesis in mouse S49 cells, and CTP regulates the balance between UTP and CTP pools.  相似文献   

4.
Jones GE 《Plant physiology》1984,75(1):161-165
6-Azauracil-resistant variants of Haplopappus gracilis (Nutt.) Gray and Datura innoxia Mill. lack activity of uracil phosphoribosyltransferase, a pyrimidine salvage enzyme that catalyzes the conversion of uracil and 6-azauracil to uridine-5′-monophosphate and 6-azauridine-5′-monophosphate, respectively. Resistant cells are competent to take up uracil from their growth medium but do not convert it into a form that can be used for macromolecular synthesis. In extracts from resistant cells, orotate monophosphate decarboxylase, a target enzyme of 6-azauridine monophosphate, is fully sensitive to the phosphorylated analog. These results strongly suggest that uracil phosphoribosyltransferase is the major pathway of pyrimidine salvage in cells of these species and that loss of this enzyme activity confers on the variants resistance to 6-azauracil.  相似文献   

5.
A novel synergistic effect of several purine derivatives such as adenine, adenosine, hypoxanthine, and guanine on the toxicity of nucleoside analogs pyrazofurin and 6-azauridine towards cultured Chinese hamster ovary (CHO) cells has been observed. The presence of the above purine derivatives enhanced the toxicity of pyrazofurin and 6-azauridine, in a dose dependent manner. The growth inhibitory effects of these nucleoside analogs either alone or in combination with the purine derivatives were reversed by uridine and cytidine, providing evidence that the synergistic effect of the purine derivatives was exerted at the level of pyrimidine nucleotide biosynthesis. Studies with mutant cells lacking various purine phosphorylating enzymes show that phosphorylation of purine derivatives through reactions utilizing phosphoribosylpyrophosate (PRPP) is essential for observing the synergistic response. It is suggested that the above purine derivatives (including adenosine, via conversion to hypoxanthine) exert their synergistic effects by depleting the cellular pool of PRPP by two separate mechanisms (direct utilization and feedback inhibition of its synthesis), which as a result becomes rate limiting in the synthesis of orotidine monophosphate (OMP). The reduced levels of OMP, which is a competing substrate with pyrazofurin- and 6-azauridine-5'-monophosphates for binding to the target enzyme OMP decarboxylase, could then account for the inhibition of the enzyme at lower concentrations of these analogs.  相似文献   

6.
Tissue cultures of Nicotiana tabacum, Nicotiana suaveolens and Nicotiana suaveolens × Nicotiana langsdorffii were cultured in the presence of the growth inhibitors maleic hydrazide and 6-azauracil as well as 6-azauridine. Inhibition of growth was complete at 10−4 molar concentrations in all 3 genotypes of cells. The inhibition due to 6-azauracil could be completely relieved with uridine and partially relieved with uracil. The effect with maleic hydrazide was irreversible, a fact which indicates a different mechanism or level of inhibition. This study supports the concept that derivatives of 6-azauracil inhibit the synthesis of uridine derivatives required for ribose nucleic acid synthesis and growth.  相似文献   

7.
Uridine kinase activity measured in cell-free extracts of Novikoff rat hepatoma cells grown in suspension culture fluctuates about 10 fold during the growth cycle of the cells. Maximum specific activity (units/106 cells) is observed early in the exponential phase and then decreases progressively until the stationary phase. The rate of incorporation of uridine into the acid-soluble pool by intact cells fluctuates in a similar manner and both the rate of uridine incorporation by intact cells and the uridine kinase actvity of the cells increase several fold before cell division commences following dilution of stationary phase cultures with freshmedium. Regardless of the stage of growth, uridine is rapidly phosphorylated to the triphosphate level by the cells. The rates of incorporation of uridine into the nucleotide pool and into RNA by intact cells fluctuate in a similar manner during the growth cycle. However, evidence is presented that indicates that alterations in the rate of incorporation of uridine into RNA are not simply due to changes in the rate of phosphorylation of uridine, but are regulated independently. Inhibition of protein synthesis by treating cells with puromycin or actidione causes a marked inhibition of incorporation of uridine into RNA, but has little effect on the phosphorylation of uridine to UTP for several hours. Thus the depression of incorporation of uridine into RNA probably reflects a decrease in the rate of RNA synthesis as a result of inhibition of protein synthesis. Inhibition of RNA synthesis by treating cells with actinomycin D does not affect the rate of conversion of uridine to UTP and thus results in the accumulation of labeled UTP in treated cells.  相似文献   

8.
The effects of 2'-substitutions of ATP on the substrate and inhibitor properties for RNA synthesis were studied in the poly(dAT)-dependent reaction of Escherichia coli RNA polymerase. In the presence of UTP, 2'-deoxy-2'-azidoadenosine 5'-triphosphate (AZTP) was incorporated into an acid-insoluble fraction at one-tenth of the rate of ATP incorporation; it thus acts as a competitive inhibitor for poly(AU) synthesis. On the other hand, another ATP analog, 2'-deoxy-2'-fluoroadenosine 5'-triphosphate (AfTP), was co-polymerized with UTP into acid-insoluble materials at a rate less than 1% of that of ATP incorporation; in addition, it exerted a strong but mixed-type inhibition on poly(AU) synthesis. Different modes of action of the two ATP analogs are discussed in connection with the specificity of substrate recognition by RNA polymerase.  相似文献   

9.
Brief exposure to 6-azauridine stimulates the production of carbamoyl phosphate for de novo pyrimidine biosynthesis in vitro in slices of haematopoietic spleen from anaemic mice (preceding paper). In studies of the underlying mechanism for this response we turned our attention to changes in the level of substrates and effectors for carbamoyl-phosphate synthetase II. Intermediates of the orotic acid pathway and 6-azauridine had little effect on the synthetase activity in vitro. 6-Azauridine 5'-monophosphate (6-AzaUMP) stimulated synthetase II, possibly in an allosteric manner. However, in view of the potency as an activator and the tissue levels, 6-azaUMP may be only partially responsible for the stimulation. Adenine nucleotide levels in the tissue showed only minor changes after brief exposure (15 min) to 6-azauridine. The level of UTP and UDP, potent inhibitors for synthetase II, showed no significant change. The level of 5-phosphoribosyl 1-pyrophosphate (PPRibP), a potent positive effector for the synthetase II, showed a more than 1.5-fold increase after 15 min. The relative importance of these factors was evaluated by assay of the synthetase, partially purified from mouse spleen, under simulated conditions in vitro. The results indicated that the enhanced level of PPRibP played a major role in increasing the production of carbamoyl phosphate. In Ehrlich ascites cells in vitro, where 6-azauridine did not increase carbamoyl phosphate production, the basal PPRibP level was high (range over 0.1 mM) and the changes in the level, brought about by the analogue, were relatively small.  相似文献   

10.
The antineoplastic drugs 6-azauridine and cytosine arabinoside exhibit a supra-additive lethal effect on murine L5178Y lymphoblasts if exposure to 6-azauridine precedes exposure to cytosine arabinoside; an additive effect is seen if cytosine arabinoside precedes 6-azauridine, while a sub-additive effect is obtained when the two drugs are present simultaneously. The potentiation of the effect of cytosine arabinoside by 6-azauridine increases for 212hours following the removal of the 6-azauridine from the culture.  相似文献   

11.
Cell growth is orchestrated by a number of interlinking cellular processes. Components of the TOR pathway have been proposed as potential regulators of cell growth, but little is known about their immediate effects on protein synthesis in response to TOR‐dependent growth inhibition. Here, we present a resource providing an in‐depth characterisation of Schizosaccharomyces pombe phosphoproteome in relation to changes observed in global cellular protein synthesis upon TOR inhibition. We find that after TOR inhibition, the rate of protein synthesis is rapidly reduced and that notable phosphorylation changes are observed in proteins involved in a range of cellular processes. We show that this reduction in protein synthesis rates upon TOR inhibition is not dependent on S6K activity, but is partially dependent on the S. pombe homologue of eIF4G, Tif471. Our study demonstrates the impact of TOR‐dependent phospho‐regulation on the rate of protein synthesis and establishes a foundational resource for further investigation of additional TOR‐regulated targets both in fission yeast and other eukaryotes.  相似文献   

12.
The effect of 5-iodo-2'-deoxyuridine monophosphate (IdUMP), various 5-halogenated-5'-azido-2', 5' -dideoxyuridine derivatives, 2'-deoxy-6-azauridine (AzdUrd), and its halogenated analogs on the ultraviolet sensitization of Escherichia coli thymidylate kinase has been investigated. Only those compounds iodinated in position 5 enhance the rate of ultraviolet inactivation of this enzyme. However, 5'-azido nucleosides with iodo, bromo, chloro, or fluoro substituents in position 5 neither protect nor sensitize thymidylate kinase to ultraviolet inactivation. Thymidine 5'-monophosphate partially protects the enzyme against ultraviolet inactivation either in the presence or absence of ultraviolet-sensitizing iodinated analogs. Magnesium ion does not enhance the ultraviolet inactivation of thymidylate kinase by 5-iodinated nucleoside analogs. The kinatic data support an active site-directed enhancement of the enzyme to ultraviolet inactivation by 5-iodo-2'-deoxyuridine monophosphate, since the concentration of IdUMP required to attain 50% maximal enhancement is 0.24 mM which is in good agreement with its Ki of 0.18 mM. When either [125I]IdUMP or [2-14C]IdUMP was irradiated with the enzyme, both radioactivities were associated with the enzyme, however only with the 14C analog was the amount bound at half-saturation essentially equal to the amount required to inactivate the enzyme by 50%. These data support the hypothesis that the active entity in the enhancement by IdUMP of thymidylate kinase inactivation during ultraviolet irradiation is the uridylate free radical which is formed photochemically from IdUMP. Photochemical studies of 6-azauracil (AzUra), 2'-deoxy-6-azauridine, and 5-iodo-2'-deoxy-6-azauridine (IAzdUrd) were performed. Photolysis of IAzdUrd in the presence of a hydrogen donor yields AzdUrd which upon further photolysis yields the photohydrate. The photohydrate of AzdUrd when incubated in the dark at pH 5.2 is 90% converted back to AzdUrd, whereas the photohydrate of AzUra is only partially (20%) converted to AzUra. The rate of deiodination of IAzdUrd is 2.1-fold greater than that of IdUMP. Although the Ki of IdUMP and IAzdUrd is similar, the increased photosensitivity of the aza analog accounts for the much greater enhancement of ultraviolet inactivation of thymidylate kinase. The ability of a compound to enhance the ultraviolet inactivation of deoxythymidylate kinase is correlated with the potential of the compound to produce a free radical rather than a photohydrate when the enzyme-substrate analog complex is irradiated.  相似文献   

13.
Cotton (Gossypium hirsutum L.) ovules grown in a defined nutrient medium undergo normal morphogenesis, including fiber production. In identical medium lacking boron, ovules callus and accumulate brown substances. Boron deficiency-like symptoms were induced by 6-azauracil and 6-azauridine in ovules growing in boron-sufficient media. Other nucleoside base analogs either reduced or had no effect on over-all growth, but did not cause typical boron-deficient callus growth of cotton ovules. Orotic acid and uracil countered the effects of 6-azauracil. Actinomycin D, fluorodeoxyuridine, and ethidium bromide reduced not only fiber production on ovules growing in boron-sufficient media but also callusing of ovules in boron-deficient media.  相似文献   

14.
Steil BP  Barton DJ 《Journal of virology》2008,82(19):9400-9408
Initiation of RNA synthesis by RNA-dependent RNA polymerases occurs when a phosphodiester bond is formed between the first two nucleotides in the 5′ terminus of product RNA. The concentration of initiating nucleoside triphosphates (NTPi) required for RNA synthesis is typically greater than the concentration of NTPs required for elongation. VPg, a small viral protein, is covalently attached to the 5′ end of picornavirus negative- and positive-strand RNAs. A cis-acting replication element (CRE) within picornavirus RNAs serves as a template for the uridylylation of VPg, resulting in the synthesis of VPgpUpUOH. Mutations within the CRE RNA structure prevent VPg uridylylation. While the tyrosine hydroxyl of VPg can prime negative-strand RNA synthesis in a CRE- and VPgpUpUOH-independent manner, CRE-dependent VPgpUpUOH synthesis is absolutely required for positive-strand RNA synthesis. As reported herein, low concentrations of UTP did not support negative-strand RNA synthesis when CRE-disrupting mutations prevented VPg uridylylation, whereas correspondingly low concentrations of CTP or GTP had no negative effects on the magnitude of CRE-independent negative-strand RNA synthesis. The experimental data indicate that CRE-dependent VPg uridylylation lowers the Km of UTP required for viral RNA replication and that CRE-dependent VPgpUpUOH synthesis was required for efficient negative-strand RNA synthesis, especially when UTP concentrations were limiting. By lowering the concentration of UTP needed for the initiation of RNA replication, CRE-dependent VPg uridylylation provides a mechanism for a more robust initiation of RNA replication.  相似文献   

15.
16.
M Dostál  R Jelínek 《Teratology》1979,19(2):143-148
Embryotoxic effects were compared of intramuscularly (im) and intraamniotically (ia) administered 6-azauridine (Riboazauracil Spofa) in random-bred mice H-Velaz. Effects of single doses (0.25 mg, 2.5 mg, 25.0 mg and 250.0 mg for im and 0.0025 mg, 0.025 mg and 2.5 mg for ia administration) on days 11, 12, 13 and 14 were evaluated as a sum of dead fetuses and fetuses with cleft lip and/or palate, fetuses with limb deformities and fetuses with deformities constituting the syndrome of caudal regression (hypoplasia of the caudal part of the trunk, absent tail, short tail, curled tail). Considering the sensitivity peaks of the morphogenetic processes which were observed, the dose-response relationships, the transformation of the teratogenic to a lethal effect and critical period extension with increasing doses, it was found that the effects of ia and im administered 6-azauridine did not differ. It was concluded that ia administered 6-azauridine had direct effect on embryonic morphogenetic processes and that this, too, was the essential mechanism of embryotoxicity of im administered 6-azauridine. The value of the intraamniotic technique for establishing the direct embryotoxic effect is discussed.  相似文献   

17.
Quantitative aspects of de novo pyrimidine biosynthesis in rat hepatocytes were monitored. A reduction of intracellular UTP contents by different concentrations of D-galactosamine led to a dose-dependent increase of 14CO2 incorporation into the sum of all acid-soluble uracil nucleotides. In controls the rate of de novo synthesis which was calculated from the incorporation rate of 14CO2 into the sum of all acid-soluble uracil nucleotides was 0.014 mumol X h-1 X g-1 compared to 0.056 mumol X h-1 X g-1 wet weight of liver in situations of a maximally stimulated de novo synthesis. Incubation of hepatocytes with uridine led to a dose-dependent reduction of 14CO2 incorporation to less than 25% of the amount incorporated in the controls. Alterations of the CTP content had no influence on the 14CO2 incorporation. In the presence of high D-galactosamine concentrations the increase of the total amount of acid-soluble uracil nucleotides exceeded the rate of the de novo synthesis derived from the incorporation of 14CO2 into the sum of the acid-soluble uracil nucleotide pool. It was also greater than the increase of the total amount of intra- and extracellular orotate after acidic hydrolysis--even in the presence of 6-azauridine, which stimulated de novo pyrimidine biosynthesis by itself.  相似文献   

18.
Primary cultures of neonatal cardiac myocytes were used to determine the effects of tumor-promoting phorbol esters on ribosomal RNA (rRNA) synthesis during myocyte growth. Treatment of myocytes with phorbol-12,13-dibutyrate (PDBu) increased protein accumulation by 25% and RNA content by 20%. Rates of rRNA synthesis were measured to assess the mechanism by which rRNA accumulated during myocyte growth. Rates of rRNA synthesis were determined from the incorporation of [3H]uridine into UMP of purified rRNA and the specific radioactivity of the cellular UTP pool. After 24h of PDBu treatment, cellular rates of 18S and 28S rRNA synthesis were accelerated by 67% and 64%, respectively. The increased rate of rRNA synthesis accounted for the net increase in myocyte rRNA content after PDBu treatment.  相似文献   

19.
The effects of insulin on embryonic chicken cartilage in organ culture and the dependence of these effects on essential amino acids have been studied. In the presence of all essential amino acids, insulin: (1) increases 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake; (2) increases [5(-3H] uridine flux into uridine metabolites and the intracellular UTP pool; (3) expands the size of the intracellular UTP pool; (4) does not change the specific activity of the UTP pool; and (5) stimulates RNA, proteoglycan, and total protein synthesis. In lysine (or other essential amino acid)-deficient medium, the effects of insulin are different. While insulin stimulates incorporation of [5(-3)H] uridine into RNA, it does so by increasing the specific activity of the UTP pool without increasing RNA synthesis. Insulin stimulates 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake but no longer stimulates proteoglycan, total protein, or RNA synthesis or expands the size of the UTP pool. These data indicate that there are amino acid dependent and independent effects of insulin on cartilage. Transport processes are amino acid independent, while synthetic processes are amino acid dependent.  相似文献   

20.
Proline transport in Kirsten sarcoma virus-transformed BALB 3T3 (Ki-3T3) cells was increased approximately twofold by 0.5 mm dibutyryl cAMP (dbcAMP), and the increase was observed whether transport was assayed in the presence or absence of cycloheximide. Two days of exposure to the analog was required for maximum stimulation. Increased proline transport contributed almost entirely to the increased incorporation of [14C]proline into noncollagen protein but for only 13% of the increased incorporation into collagen of dbcAMP-treated Ki-3T3 cells. Proline transport was further characterized using an assay system containing 0.1 mm cycloheximide, which did not affect transport over a 30-min period. The Km for proline was decreased from 6.5 to 3.4 mm by dbcAMP treatment of Ki-3T3. Proline transport in Ki-3T3 proceeds almost entirely via the A system, and the effect of dbcAMP appears to be on this system specifically since glycine and glutamine transport, which are heterogeneous, were not affected but transport of N-methylaminoisobutyrate, a specific A system substrate, was increased by dbcAMP treatment. Although 0.5 mm butyrate increased proline transport in Ki-3T3 cells to a similar degree as dbcAMP, the effect of the latter appeared related to its action as a cAMP analog since N6-monobutyryl cAMP, having a stable butyryl group, and 8-bromo-cAMP also increased proline transport while dbcGMP did not. The rate of proline transport in normal BALB 3T3 cells was only 30–40% lower than that of Ki-3T3 cells at various growth stages, and dbcAMP and 8-bromo-cAMP treatment also increased proline transport in the normal cells. The results of these studies suggest that dbcAMP and other cAMP analogs induce the synthesis of an altered component of the A system for amino acid transport and that the effect of these compounds is unrelated to the effect of transformation on proline transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号