首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Hydrogenase-derepressed (chemolithotrophic growth conditions) and heterotrophically grown cultures of Bradyrhizobium japonicum accumulated nickel about equally over a 3-h period. Both types of cultures accumulated nickel primarily in a form that was not exchangeable with NiCl2, and they accumulated much more Ni than would be needed for the Ni-containing hydrogenase. The nickel accumulated by heterotrophically incubated cultures could later be mobilized to allow active hydrogenase synthesis during derepression in the absence of nickel, while cells both grown and derepressed without nickel had low hydrogenase activities. The level of activity in cells grown with Ni and then derepressed without nickel was about the same as that in cultures derepressed in the presence of nickel. The Ni accumulated by heterotrophically grown cultures was associated principally with soluble proteins rather than particulate material, and this Ni was not lost upon dialyzing an extract containing the soluble proteins against either Ni-containing or EDTA-containing buffer. However, this Ni was lost upon pronase or low pH treatments. The soluble Ni-binding proteins were partially purified by gel filtration and DEAE chromatography. They were not antigenically related to hydrogenase peptides. Much of the 63Ni eluted as a single peak of 48 kilodaltons. Experiments involving immunoprecipitation of 63Ni-containing hydrogenase suggested that the stored source of Ni in heterotrophic cultures that could later be mobilized into hydrogenase resided in the nonexchangeable Ni-containing fraction rather than in loosely bound or ionic forms.  相似文献   

2.
Nickel accumulation and storage in Bradyrhizobium japonicum.   总被引:2,自引:0,他引:2       下载免费PDF全文
R J Maier  T D Pihl  L Stults    W Sray 《Applied microbiology》1990,56(6):1905-1911
Hydrogenase-derepressed (chemolithotrophic growth conditions) and heterotrophically grown cultures of Bradyrhizobium japonicum accumulated nickel about equally over a 3-h period. Both types of cultures accumulated nickel primarily in a form that was not exchangeable with NiCl2, and they accumulated much more Ni than would be needed for the Ni-containing hydrogenase. The nickel accumulated by heterotrophically incubated cultures could later be mobilized to allow active hydrogenase synthesis during derepression in the absence of nickel, while cells both grown and derepressed without nickel had low hydrogenase activities. The level of activity in cells grown with Ni and then derepressed without nickel was about the same as that in cultures derepressed in the presence of nickel. The Ni accumulated by heterotrophically grown cultures was associated principally with soluble proteins rather than particulate material, and this Ni was not lost upon dialyzing an extract containing the soluble proteins against either Ni-containing or EDTA-containing buffer. However, this Ni was lost upon pronase or low pH treatments. The soluble Ni-binding proteins were partially purified by gel filtration and DEAE chromatography. They were not antigenically related to hydrogenase peptides. Much of the 63Ni eluted as a single peak of 48 kilodaltons. Experiments involving immunoprecipitation of 63Ni-containing hydrogenase suggested that the stored source of Ni in heterotrophic cultures that could later be mobilized into hydrogenase resided in the nonexchangeable Ni-containing fraction rather than in loosely bound or ionic forms.  相似文献   

3.
4.
5.
Production of Bradyrhizobium japonicum cell concentrates by spray-drying in skim milk plus sucrose medium and the feasability of storing dried inocula over long periods were investigated. Storage of spray-dried cells under mild vacuum was equivalent to storage under nitrogen. Oxygen and ambient temperature were found detrimental for survival of dried cells. High initial cell concentration and storage under low relative humidities (< 23% RH) at 4°C increased the longevity of the inocula (> 109 cfu g-1 during at least a 25 week storage period) without altering the symbiotic properties of B. japonicum.  相似文献   

6.
7.
The HypB protein from Bradyrhizobium japonicum is a metal-binding GTPase required for hydrogenase expression. In-frame mutagenesis of hypB resulted in strains that were partially or completely deficient in hydrogenase expression, depending on the degree of disruption of the gene. Complete deletion of the gene yielded a strain (JHΔEg) which lacked hydrogenase activity under all conditions tested, including the situation as bacteroids from soybean nodules. Mutant strain JHΔ23H lacking only the N-terminal histidine-rich region (38 amino acids deleted, 23 of which are His residues) expressed partial hydrogenase activity. The activity of strain JHΔ23H was low in comparison to the wild type in 10–50 nM nickel levels, but could be cured to nearly wild-type levels by including 50 μM nickel during the derepression incubation. Studies on strains harbouring the hup promoter–lacZ fusion plasmid showed that the complete deletion of hypB nearly abolished hup promoter activity, whereas the histidine deletion mutant had 60% of the wild-type promoter activity in 50 μM NiCl2. Further evidence that HypB is required for hup promoter-binding activity was obtained from gel-shift assays. HypB could not be detected by immunoblotting when the cells were cultured heterotrophically, but when there was a switch to microaerobic conditions (1% partial pressure O2, 10% partial pressure H2) HypB was detected, and its expression preceded hydrogenase synthesis by 3–6 h. 63Ni accumulation by whole cells showed that both of the mutant strains accumulate less nickel than the wild-type strain at all time points tested during the derepression incubation. Wild-type cultures that received nickel during the HypB expression-specific period and were then washed and derepressed for hydrogenase without nickel had activities comparable to those cells that were derepressed for hydrogenase with nickel for the entire time period. In contrast to the wild type, strain JHΔ23H cultures supplied with nickel only during the HypB expression period achieved hydrogenase activities that were 30% of those cultures supplied with nickel for the entire hydrogenase derepression period. These results indicate that the loss of the metal-binding area of HypB causes a decrease in the ability of the cells to sequester and store nickel for later use in one or more hydrogenase expression steps.  相似文献   

8.
A set of 19 heat shock proteins (Hsp) was observed - by subtractive two-dimensional gel electrophoresis - to be induced when Bradyrhizobium japonicum, the nitrogen-fixing root-nodule symbiont of soybean, was temperature up-shifted from 28 degrees C to 43 degrees C. Up-regulated protein spots were excised from multiple two-dimensional gels. The proteins were concentrated using a funnel-gel device before being blotted onto poly(vinylidene difluoride) membranes for digestion with trypsin before MS and tandem MS analysis or for Edman sequence determination. Five proteins in the range 8-20 kDa were identified as the small Hsp (sHsp; HspB, C, D, E and H) and three others showed strong sequence similarity to the sHsp family. Two other low molecular mass proteins corresponded to GroES1 and GroES2, and five novel proteins were found. Four proteins of approximately 60 kDa were identified as GroEL2, GroEL4, and GroEL5 and DnaK. An analysis of the heat shock induction of DnaK, of four of the most strongly induced GroESL proteins and six of the sHsp revealed that the proteins could be placed into four distinct regulatory groups based on the kinetics of protein appearance.  相似文献   

9.
Commercial soybean inoculants processed with sterilised peat and stored at 20 °C for 1–8 years were used as experimental materials to assess the changes in the physiological activity of Bradyrhizobium japonicum after storage. Viable counts decreased and physiological characteristics of the bacterium changed during storage, with an increase in the time taken for colony appearance on a medium without yeast extract, an increase in the lag time for nodule appearance on soybean grown in glass tubes and a decrease in survival on seeds. All the inoculants produced a significant increase in grain yield in a field experiment. The percentage of efficient cells in the field (relative to the plate counts) decreased as the length of storage increased. These results suggest that the physiological activity of B. japonicum cells changes after storage. Practical implications for inoculant quality control are discussed. Received: 20 September 1999 / Received revision: 3 March 2000 / Accepted: 6 March 2000  相似文献   

10.
11.
Homogenates from soybean nodules, formed by 12 strains of Bradyrhizobium japonicum, were plated into yeast-extract mannitol agar containing 3 or 37 g mannitol 1-1. Viable counts ranged from 8.298 to 11.265 log10 cells-gram nodule-1. When monitored over the life cycle of the symbiosis, the viability of strains USDA 110 and USDA 123 increased with days after planting (DAP), and at 70 DAP was 95% and 81%, respectively. By contrast, the viability of USDA 38 bacteroids decreased with time, and at 70 DAP was only 1.9%. At 49 DAP, nodules induced by USDA 38 had significantly fewer bacteroids per peribacteroid membrane than those formed by USDA 110 or USDA 123, and at 70 DAP, 27% of the USDA 38 bacteroids showed some degree of degeneration. Viable counts of USDA 123 and USDA 110 bacteroids, isolated from the nodules of 12 different cultivars, ranged from 10.963 to 11.463 and from 10.683 to 11.117 log10 viable cells-gram nodule-1, respectively. Varying the osmolarity of the medium had no predictable effect on bacteroid viability. When surface-sterilized nodules of IPAGO 587 (high bacteroid viability) and USDA 38 (low bacteroid viability) were inoculated into a nonsterile silt loam soil, at rates equivalent to 5.0×108 and 5.0×106 viable bacteroids g-1 soil, respectively, and then incubated at 28° C for 60 days, 4.3×104 and 1.5×104 surviving cells g-1 soil, respectively, were recovered. Thus, despite differences due to host and strain variation, bacteroid viability appears to be unrelated to persistence of individual strains following an annual legume crop cycle.Journal paper No. 14930, Agricultural Experiment Station University of Minnesota, St. Paul, MN 55108, USA  相似文献   

12.
Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms guiding storage-fat mobilization, are conserved between mammals and insects. We generated a Drosophila mutant lacking the receptor (AKHR) of the adipokinetic hormone signaling pathway, an insect lipolytic pathway related to ß-adrenergic signaling in mammals. Combined genetic, physiological, and biochemical analyses provide in vivo evidence that AKHR is as important for chronic accumulation and acute mobilization of storage fat as is the Brummer lipase, the homolog of mammalian adipose triglyceride lipase (ATGL). Simultaneous loss of Brummer and AKHR causes extreme obesity and blocks acute storage-fat mobilization in flies. Our data demonstrate that storage-fat mobilization in the fly is coordinated by two lipocatabolic systems, which are essential to adjust normal body fat content and ensure lifelong fat-storage homeostasis.  相似文献   

13.
Carbon metabolism in Bradyrhizobium japonicum bacteroids   总被引:2,自引:0,他引:2  
Abstract Carbon metabolism in Bradyrhizobium japonicum bacteroids is reviewed. Additionally, the bacteroid tricarboxylic acid (TCA) cycle and its regulation under oxygen-limited conditions is considered, with emphasis on possible sites of TCA cycle rate-limiting reactions. Furthermore, we consider other adaptive pathways that may be employed by these organisms while in symbiosis. These pathways include: (1) a poly-β-hydroxy-butyrate shunt, (2) a malate-aspartate shuttle, (3) an α-ketoglutarate-glutamate shunt, (4) a modified dicarboxylic acid cycle, and (5) fermentation pathways leading to lactate, acetaldehyde and ethanol. The effects of oxygen limitation on host carbon metabolism are also considered briefly.  相似文献   

14.
NopE1 is a type III-secreted protein of the symbiont Bradyrhizobium japonicum which is expressed in nodules. In vitro it exhibits self-cleavage in a duplicated domain of unknown function (DUF1521) but only in the presence of calcium. Here we show that either domain is self-sufficient for cleavage. An exchange of the aspartic acid residue at the cleavage site with asparagine prevented cleavage; however, cleavage was still observed with glutamic acid at the same position, indicating that a negative charge at the cleavage site is sufficient. Close to each cleavage site, an EF-hand-like motif is present. A replacement of one of the conserved aspartic acid residues with alanine prevented cleavage at the neighboring site. Except for EDTA, none of several protease inhibitors blocked cleavage, suggesting that a known protease-like mechanism is not involved in the reaction. In line with this, the reaction takes place within a broad pH and temperature range. Interestingly, magnesium, manganese, and several other divalent cations did not induce cleavage, indicating a highly specific calcium-binding site. Based on results obtained by blue-native gel electrophoresis, it is likely that the uncleaved protein forms a dimer and that the fragments of the cleaved protein oligomerize. A database search reveals that the DUF1521 domain is present in proteins encoded by Burkholderia phytofirmans PsNJ (a plant growth-promoting betaproteobacterium) and Vibrio coralliilyticus ATCC BAA450 (a pathogenic gammaproteobacterium). Obviously, this domain is more widespread in proteobacteria, and it might contribute to the interaction with hosts.  相似文献   

15.
Nickel uptake in Bradyrhizobium japonicum.   总被引:8,自引:6,他引:2       下载免费PDF全文
Free-living Bradyrhizobium japonicum grown heterotrophically with 1 microM 63Ni2+ accumulated label. Strain SR470, a Hupc mutant, accumulated almost 10-fold more 63Ni2+ on a per-cell basis than did strain SR, the wild type. Nongrowing cells were also able to accumulate nickel over a 2-h period, with the Hupc mutant strain SR470 again accumulating significantly more 63Ni2+ than strain SR. These results suggest that this mutant is constitutive for nickel uptake as well as for hydrogenase expression. The apparent Kms for nickel uptake in strain SR and strain SR470 were found to be similar, approximately 26 and 50 microM, respectively. The Vmax values, however, were significantly different, 0.29 nmol of Ni/min per 10(8) cells for SR and 1.40 nmol of Ni/min per 10(8) cells for SR470. The uptake process was relatively specific for nickel; only Cu2+ and Zn2+ (10 microM) were found to appreciably inhibit the uptake of 1 microM Ni, while a 10-fold excess of Mg2+, Co2+, Fe3+, or Mn2+ did not affect Ni2+ uptake. The lack of inhibition by Mg2+ indicates that nickel is not transported by a magnesium uptake system. Nickel uptake was also inhibited by cold (53% inhibition at 4 degrees C) and slightly by the ionophores nigericin and carbonyl cyanide m-chlorophenylhydrazone. Other ionophores did not appreciably affect nickel uptake, even though they significantly stimulated O2 uptake. The cytochrome c oxidase inhibitors azide, cyanide, and hydroxylamine did not inhibit Ni2+ uptake, even at concentrations (of cyanide and hydroxylamine) that inhibited O2 uptake. The addition of oxidizable substrates such as succinate or gluconate did not increase nickel uptake, even though they increased respiratory activity. Nickel update showed a pH dependence with an optimum at 6.0. Most (approximately 85%) of the 63Ni2+ taken up in 1 min by strain SR470 was not exchangeable with cold nickel.  相似文献   

16.
Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyzhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO4. For both strains, Ni2+ uptake was also markedly inhibited by Mg2+, and the Mg(2+)-mediated inhibition could be overcome by high levels of Ni2+ provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni2+ via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co2+, Mn2+, and Zn2+, like Mg2+, were competitive inhibitors of Ni2+ uptake. The KiS for nickel uptake inhibition by Mg2+, Co2+, Mn2+, and Zn2+ were 48, 22, 12, and 8 microM, respectively. Cu2+ strongly inhibited Ni2+ uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and ionophores nigericin and valinomycin significantly inhibited short-term (5 min) Ni2+ uptake, showing that Ni2+ uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup.  相似文献   

17.
18.
The effect of rice culture on changes in the number of a strain of soybean root-nodule bacteria, (Bradyrhizobium japonicum CB1809), already established in the soil by growing inoculated soybean crops, was investigated in transitional red-brown earth soils at two sites in south-western New South Wales. At the first site, 5.5 years elapsed between the harvest of the last of four successive crops of soybean and the sowing of the next. In this period three crops of rice and one crop of triticale were sown and in the intervals between these crops, and after the crop of triticale, the land was fallowed. Before sowing the first rice crop, the number of Bradyrhizobium japonicum was 1.32×105 g–1 soil. The respective numbers of bradyrhizobia after the first, second and third rice crops were 4.52 ×104, 1.26×104 and 6.40×102 g–1 soil. In the following two years the population remained constant. Thus sufficient bradyrhizobia survived in soil to nodulate and allow N2-fixation by the succeeding soybean crop. At the second site, numbers of bradyrhizobia declined during a rice crop, but the decline was less than when the soil was fallowed (400-fold cf. 2200-fold). Multiplication of bradyrhizobia was rapid in the rhizosphere of soybean seedlings sown without inoculation in the rice bays. At 16 days after sowing, their numbers were not significantly different (p<0.05) from those in plots where rice had not been sown. Nodulation of soybeans was greatest in plots where rice had not been grown, but yield and grain nitrogen were not significantly different (p<0.05). Our results indicate that flooding soil has a deleterious effect on the survival of bradyrhizobia but, under the conditions of the experiments, sufficient B. japonicum strain CB 1809 survived to provide good nodulation after three crops of rice covering a total period of 5.5 years between crops of soybean.  相似文献   

19.
Acetate-Activating Enzymes of Bradyrhizobium japonicum Bacteroids   总被引:1,自引:0,他引:1       下载免费PDF全文
Acetyl coenzyme A (acetyl-CoA) synthetase and acetate kinase were localized within the soluble portion of Bradyrhizobium japonicum bacteroids, and no appreciable activity was found elsewhere in the nodule. The presence of each acetate-activating enzyme was confirmed by separation of the two enzyme activities on a hydroxylapatite column, by substrate dependence of each enzyme in both the forward and reverse directions, by substrate specificity, by inhibition patterns, and also by identification of the reaction products by C18 reverse-phase high-pressure liquid chromatography. Phosphotransacetylase activity, found in the soluble portion of the bacteroid, was dependent on the presence of potassium and was inhibited by added sodium. The greatest acetyl-CoA hydrolase activity was found in the root nodule cytosol, although appreciable activity also was found within the bacteroids. The combined specific activities of acetyl-CoA synthetase and acetate kinase-phosphotransacetylase were approximate to that of the pyruvate dehydrogenase complex, thus providing B. japonicum with sufficient capacity to generate acetyl-CoA.  相似文献   

20.
C L Fu  R J Maier 《Applied microbiology》1991,57(12):3511-3516
Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyzhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO4. For both strains, Ni2+ uptake was also markedly inhibited by Mg2+, and the Mg(2+)-mediated inhibition could be overcome by high levels of Ni2+ provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni2+ via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co2+, Mn2+, and Zn2+, like Mg2+, were competitive inhibitors of Ni2+ uptake. The KiS for nickel uptake inhibition by Mg2+, Co2+, Mn2+, and Zn2+ were 48, 22, 12, and 8 microM, respectively. Cu2+ strongly inhibited Ni2+ uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and ionophores nigericin and valinomycin significantly inhibited short-term (5 min) Ni2+ uptake, showing that Ni2+ uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号